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Abstract

We study the degrees of freedom (DoF) regions of two-user multiple-input multiple-output (MIMO)

Z and full interference channels in this paper. We assume that the receivers always have perfect channel

state information. We first derive the DoF region of Z interference channel with channel state information

at transmitter (CSIT). For full interference channel without CSIT, the DoF region has been fully

characterized recently and it is shown that the previously known outer bound is not achievable. In

this work, we investigate the no-CSIT case further by assuming that the transmitter has the ability of

antenna mode switching. We obtain the DoF region as a function of the number of available antenna

modes and reveal the incremental gain in DoF that each extra antenna mode can bring. It is shown that

in certain cases the reconfigurable antennas can bring extraDoF gains. In these cases, the DoF region

is maximized when the number of modes is at least equal to the number of receive antennas at the

corresponding receiver, in which case the previously outerbound is achieved. In all cases, we propose

systematic constructions of the beamforming and nulling matrices for achieving the DoF region. The

constructions bear an interesting space-frequency interpretation.
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I. INTRODUCTION

Characterizing the capacity region of interference channel has been a long open problem. Many

researchers investigated this important problem, and the capacity regions of certain interference

channels are known when the interference is strong, e.g. [1]–[3]. However, when the interference

is not strong, the capacity region is still unknown. Recent progress reveals the capacity region

for two-user interference channel to within one bit [4], andafter that the sum capacity for very

weak interference channel is settled [5]–[7]. Recently, a deterministic channel model has been

proposed and used to explore the capacity of Gaussian interference network [8]–[10] such that

the gap to capacity region can be bounded up to a constant value.

When it comes to multiple-input multiple-output (MIMO) networks, the capacity regions of

certain MIMO interference channels are known [11], [12]. Instead of trying to characterize the

capacity region completely, the degrees of freedom (DoF) region characterizes how capacity

scales with transmit power as the signal-to-noise ratio goes to infinity.

It is well-known that in certain cases, the absence of channel state information at transmitter

(CSIT) will not affect the DoF for MIMO networks, e.g., in themultiple access channel [13].

In other cases, CSIT does play an important role. For example, using interference alignment

scheme, it is shown that the total DoF of aK-user MIMO interference channel isMK/2, where

M is the number of antennas of each user [14]. The key idea is to pack interferences from

multiple sources so as to reduce the dimensionality of signal space spanned by interference.

The DoF region of two-user MIMO interference channel with CSIT has been obtained in

[15], where it is shown that zero forcing is enough to achievethe DoF region. However, it is

a different story in two-user MIMO X channel, where each transmitter has a message to every

receiver. In [16] it is shown that interference alignment isthe key to achieving the DoF region

of MIMO X network. The DoF region of two-user MIMO broadcast channel and interference

channel without CSIT are considered in [17], where there is an uneven trade-off between the

two users. Except for a special case, the DoF region for the interference channel is known and

achievable. Similar, but more general result of isotropic fading channel can be found in [18].

The DoF regions of theK-user MIMO broadcast, interference and cognitive radio channels are

derived in [19] for some cases. However, the special case in [17] remains unsolved.

When only one of the two transmitter-receiver pairs is subject to interference, the interference
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channel is termed asZ interference channel(ZIC). To avoid confusion, we will call the channel

where both pairs are subject to interference thefull interference channel(FIC). The capacity

region of MIMO Gaussian ZIC is established in [20] under verystrong interference and aligned

strong interference assumptions. In [21], the authors considered the capacity region of a single

antenna ZIC without CSIT using deterministic approach.

Recently, it is shown in [22] that if the channel is staggeredblock fading, we can explore

the channel correlation structure to do interference alignment, where the upper bound in the

converse can be achieved in some special cases. For example,it is shown that for two-user

MIMO staggered block fading FIC with 1 and 3 antennas at transmitters, 2 and 4 antennas at

their corresponding receivers and without CSIT, the DoF pair (1, 1.5) can be achieved. The idea

was further clarified in [23], where a blind interference alignment scheme is also proposed for

K-user multiple-input single-output (MISO) broadcast channel to achieve DoF outer bound when

CSIT is absent. Also recently, it is shown in [24] that the previous outer bound is not tight when

the channels are independent and identical distributed (i.i.d.) over time and isotropic over spatial

domain. So by now the DoF region of two-user MIMO FIC is completely known for both the

case with CSIT and the no CSIT case (receiver-side CSI, or CSIR, is always assumed available),

provided that the channel is i.i.d. over time and isotropic over spatial domain. However, when

the channel is not i.i.d. over time such as in the “staggered”fading channels [22], the DoF could

be larger.

In this paper, we consider the ZIC channel with CSIT, and bothZIC and FIC without CSIT

but with reconfigurable antennas. Specifically, we obtain the DoF regions for the cases of:

1) ZIC with CSIT. We show that zero forcing is sufficient for achieving the DoF region in

this case (Theorem 1).

2) ZIC and FIC when transmitter one has the numberK of antennas modes at least equal to

N1 (Theorems 2 and 3). IncreasingK beyondN1 does not bring more gains in DoF.

3) ZIC and FIC whenM1 ≤ K < N1, in which case each additional antenna mode brings

an incremental gain on the DoF region (Theorem 4).

We present joint beamforming and nulling schemes to achievethe DoF region in all cases. When

reconfigurable antennas are used, our proposed schemes havean interesting space-frequency

coding explanation.
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The rest of the paper is organized as follows. We first presentthe system model in Section II.

Known results on the DoF region of two-user MIMO FIC are also briefly reviewed. The DoF

region of ZIC with CSIT is discussed in Section III. The DoF regions of ZIC and FIC without

CSIT when there are enough antenna modes are investigated inSection IV. When there are not

enough modes, the DoF region is given in Section V. Finally, Section VI concludes this paper.

Notation: boldface uppercase (lowercase) letters denote matrices (vectors).R,Z,C are the real,

integer and complex numbers sets.CN (0, 1) denotes a circularly symmetric complex Gaussian

(CSCG) distribution with zero mean and unit variance. We useA⊗B to denote the Kronecker

product betweenA andB. 0 and1 denote all one and all zero matrices (vectors), respectively.

AT andA† denote the transpose and Hermitian ofA, respectively. We also use notation like

Am×n to emphasize thatA is of sizem×n. We useIm to denote a sizem×m identity matrix

and1m to denote an all-one column vector with lengthm. Denotegn(a) := [1, a, a2, . . . , an−1]T .

A size n × m Vandermonde matrix based on a set of element{a1, a2, . . . , am} is defined

as Vn(a1, a2, . . . , am) = [gn(a1), gn(a2), . . . , gn(am)]. We useI(x;y) to denote the mutual

information betweenx and y. The differential entropy of a continuous random variablex is

denoted asH(x).

II. SYSTEM MODEL AND KNOWN RESULTS

A. Channel Model

Consider a MIMO interference channel with two transmittersand two receivers, the number

of transmit (receive) antennas at theith transmitter (receiver) is denoted asMi (Ni), i ∈ {1, 2}.

The system is termed as an (M1, N1,M2, N2) system, which can be described as

y1(t) = H11(t)x1(t) +H12(t)x2(t) + z1(t) (1)

y2(t) = H21(t)x1(t) +H22(t)x2(t) + z2(t) (2)

wheret is the time index,yi(t) ∈ C
Ni, zi(t) ∈ C

Ni are the received signal and additive noise of

receiveri, respectively. The entries ofzi(t) are independent and identicallyCN (0, 1) distributed

in both time and space. The channel between theith transmitter and thejth receiver is denoted

asHji(t) ∈ CNj×Mi. We assume the probability ofHji(t) belonging to any subset ofCNj×Mi

that has zero Lebesgue measure is zero. For the two-user MIMOZIC, H21(t) = 0. xi(t) ∈ CMi
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is the input signal at transmitteri andx1(t) is independent ofx2(t). The transmitted signals

satisfy the following power constraint:

E(||xi(t)||
2) ≤ P i = 1, 2. (3)

Denote the capacity region of the two-user MIMO system asC(P ), which contains all the

rate pairs(R1, R2) such that the corresponding probability of error can approach zero as coding

length increases. The DoF region is defined as follows [17]

D :=
{
(d1, d2) ∈ R

+
2 : ∃(R1(P ), R2(P )) ∈ C(P ), such thatdi = lim

P→∞

Ri(P )

log(P )
, i = 1, 2

}

.

B. Reconfigurable antennas

Assume the CSI at receiver (CSIR) is always available. We would like to study the DoF

regions of MIMO FIC and ZIC with or without CSIT under an additional assumption that one

transmitter is equipped with reconfigurable antennas. The reconfigurable antennas are different

from the conventional antennas as they can be switched to different pre-determined modes so

that the channel fluctuation can be introduced artificially.Similar to [23], we use reconfigurable

antennas to explore multiplexing gain other than diversitygain.

We assume that only one transmitter is equipped with reconfigurable antennas. We define one

antennamodeas one possible configuration of a single transmit antenna such that by switching to

a different mode, the channel between this transmit antennaand all receive antennas is changed.

Different antenna modes can be realized via spatially separated physical antennas, or the same

physical antenna excited with different polarizations, and so on. The benefit of antenna mode

switching lies in the fact that channel variation can be artificially created, without the need to

increase the number of RF chains. We letK denote the total number of antenna modes available

at the transmitter with reconfigurable antennas (usually transmitter one).

We make the following assumption of the channel in this paper: the channel is block fading

with coherent length ofL symbols. Within each coherent block, the channels between all the

transmitter modes and the receive antennas remain constant. The channels between theK modes

of the reconfigurable transmitter and both receivers are isotropic, in the sense of [24]. From block

to block, the channel changes independently.

WhenK > M , the transmitter has the freedom to use different modes at different slots. For

a given antenna mode usage pattern over the length of a whole coherent block, the effective
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channel for the whole block is not isotropic fading and not i.i.d. over the time slots within the

block.

One may view our model approximately as a transition from an effective channel where all

the links have exactly the same coherent time as in [24] to an effective channel where the

links do not have the same coherent time [22]. However, thereare two important distinctions

between antenna mode switching and variation of channel coherence time: i) Antenna switching

can be initiated at will at the transmitter, whereas channelcoherence structure is in general not

controllable. ii) The resulting equivalent channel from antenna mode switching is not “staggered”

[22], so methods therein do not apply here.

C. Known Results on FIC

We first present some known results on DoF region of MIMO full interference channel which

will be useful for developing our results.

The total degrees of freedom of two-user MIMO full interference channel with CSIT is

developed in [15, Theorem 2], which leads to the following DoF regions:

di ≤ min(Mi, Ni), i = 1, 2; (4)

d1 + d2 ≤ min(max(N1,M2),max(M1, N2), N1 +N2,M1 +M2). (5)

An outer bound of degrees of freedom region of two-user MIMO full interference channel

without CSIT is as follows [18, Theorem 1]:

di ≤ min(Mi, Ni), i = 1, 2; (6)

d1+
min(N1, N2,M2)

min(N2,M2)
d2 ≤ min(M1 +M2, N1); (7)

min(N1, N2,M1)

min(N1,M1)
d1+d2 ≤ min(M1 +M2, N2). (8)

Note that the same result is also given in [17], though in a less compact form.

It is shown in [17] that the outer bound given in (6)–(8) can beachieved by zero forcing or

time sharing except for the caseM1 < N1 < min(M2, N2), for which it was not known how to

achieve

(d1, d2) =

(

M1,
min(M2, N2)(N1 −M1)

N1

)

(9)
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in general. The cases whenN1 > N2 can be converted by switching the user indices. It is shown

in [24] that when the channel is isotropic fading and i.i.d. over time, the outer bound given in

(6)–(8) is not tight: ifN1 ≤ N2, the DoF region of FIC without CSIT can be given as follows:

di ≤ min(Mi, Ni), i = 1, 2; (10)

d1+
min(N1,M2)− α

min(N2,M2)− α
(d2 − α) ≤ min(M1, N1). (11)

where α = min(M1 + M2, N1) − min(M1, N1). In other words, (9) is not achievable when

M1 < N1 < min(M2, N2), as (11) is reduced to

d1 +
M1

min(M2, N2)− (N1 −M1)
d2 ≤ M1 +

M1(N1 −M1)

min(M2, N2)− (N1 −M1)
(12)

and the DoF pair(d1, d2) = (M1, N1 −M1) is on the boundary of the DoF region.

III. T WO-USER MIMO ZIC WITH CSIT

In this section, we prove the following theorem.

Theorem 1 (ZIC with CSIT):The DoF region of a two-user MIMO Z interference channel

with CSIT is described by

di ≤ min(Mi, Ni), i = 1, 2; (13)

d1 + d2 ≤ min(max(N1,M2), N1 +N2,M1 +M2). (14)

Proof: We split the proof into the achievability and converse parts, as the following two

lemmas. The theorem can be proved by showing the regions given by Lemma 1 and Lemma 2

are the same for all the cases.

Lemma 1 (Achievability part of Theorem 1):The following region of two-user MIMO ZIC

with CSIT is achievable:

di ≤ min(Mi, Ni), i = 1, 2; (15)

d1 + d2 ≤ min(N1,M1 +min(N2,M2))1(M2 < N1)

+ min(M2, N2 +min(N1,M1))1(M2 ≥ N1) (16)

where1(·) is indicator function.

Proof: If M2 ≥ N1 and assume transmitter 1 sendsd1 streams, transmitter 2 can send at

mostM2 − N1 streams along the null space ofH12 without interfering receiver 1. Transmitter
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2 can also send at mostN1 − d1 streams along the row space ofH12. Therefore user 2 can

decodemin((M2 − N1) + (N1 − d1), N2) streams without interfering receiver 1. IfN1 ≥ M2

and assume transmitter 2 sendsd2 streams which interfere receiver 1, transmitter 1 can send

min(N1 − d2,M1) decodable streams to receiver 1. Combining these two cases,we have the

achievable DoF region shown in this lemma.

Lemma 2 (Conversepart of Theorem 1):The region given by (13) and (14) is a valid outer

bound for the two-user MIMO ZIC with CSIT.

Proof: It is obvious that adding antennas at the receiver will not shrink the DoF region.

Hence, we can addM1 antennas to receiver 2 resulting an(M1, N1,M2,M1 +N2) MIMO FIC,

and (14) follows from Corollary 1 in [15]. The outer bound of such a MIMO FIC is a valid outer

bound of an(M1, N1,M2, N2) MIMO ZIC. Combining the trivial upper bound on point-to-point

system, we have this lemma.

Based on Lemma 1, zero forcing at receiver is sufficient to achieve the DoF region of ZIC

when CSIT is available. The antenna mode switching ability is not needed in this case. However,

we shall see later that such an ability is important for the case when CSIT is absent.

IV. TWO-USER MIMO ZIC AND FIC WITHOUT CSIT WHEN NUMBER OF MODESK ≥ N1

In this section, we describe the DoF region of two-user ZIC and FIC without CSIT but with

transmitter side reconfigurable antennas. We deal with the case thatK, the number of antenna

modes is at least equal to theN1. The caseK < N1 will be dealt with in Section V.

Based on the antenna number configuration, the achievability scheme of ZIC and FIC without

CSIT can be divided into two cases. In the first case, no reconfigurable antenna is needed

to achieve an DoF outer bound — reconfigurable antennas are not helpful (Section IV-B). In

the second case, the outer bound can be achieved with enough transmit side antenna modes

(Section IV-C): reconfigurable antennas enlarges the DoF region. Our main results in this section

are the following two theorems.

Theorem 2 (ZIC with Enough Reconfigurable Antenna Modes):The DoF region of two-user

MIMO Z interference channel without CSIT is described by thefollowing inequalities

di ≤ min(Mi, Ni), i = 1, 2; (17)

d1+
min(N1, N2,M2)

min(N2,M2)
d2≤min(M1+M2, N1). (18)
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if either one of the following is true:

C1) M1 < N1 < min(M2, N2) and transmitter one can switch amongN1 antenna modes, or

C2) (M1, N1,M2, N2) do not satisfy the above condition.

The DoF region in Theorem 2 is shown in Fig. 1.

Theorem 3 (FIC with Enough Reconfigurable Antenna Modes):The DoF region of two-user

MIMO full interference channel without CSIT is described bythe inequalities (6)–(8) if any one

of the following is true:

C1) M1 < N1 < min(M2, N2) and transmitter one can switch amongN1 antenna modes, or

C2) M2 < N2 < min(M1, N1) and transmitter two can switch amongN2 antenna modes, or

C3) (M1, N1,M2, N2) are not one of the two above cases.

A. Converse part

We first prove the converse part of the two theorems.

Lemma 3 (Converse part of Theorem 3):The outer bound of DoF region of two-user MIMO

full interference channel given in (6)–(8) is still valid when either or both transmitters are using

antenna mode switching.

Proof: The outer bound (7) has been derived based on the assumption that the rows of

H12 and those ofH22 are statistically equivalent [17], [18]. Similarly, the outer bound (8) has

been derived based on the assumption that the rows ofH11 and those ofH21 are statistically

equivalent. These assumptions are not affected by antenna mode switching at either or both

transmitters. Hence, the DoF outer bound is still valid.

Lemma 4 (Converse part of Theorem 2):The outer bound of degrees of freedom region of

two-user MIMO Z interference channel without CSIT can be given as when transmitter one has

the antenna mode switching ability

di ≤ min(Mi, Ni), i = 1, 2; (19)

d1+
min(N1, N2,M2)

min(N2,M2)
d2≤min(M1+M2, N1). (20)

Proof: This is the direct result of [18, Theorem 1] as in (6)–(8), by noticing that there is

no interference from transmitter 1 to receiver 2 hence (8) isnot longer needed. The antenna

switching at transmitter one does not affect the upper bound, for the same reason stated in

Lemma 3.
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Fig. 1. DoF region of two-user MIMO ZIC without CSIT when number of antenna modesK ≥ N1. Figures (a)–(e) are for

the caseN1 ≤ N2; Figures (f)–(h) are for the caseN1 ≥ N2.

B. Achievability: when antenna mode switching is not needed

In this section, we prove the achievability part for Case C2)of Theorem 2 and Case C3) of

Theorem 3. Achievability for the remaining cases are left toSection IV-C.

Lemma 5:For the two-user MIMO Z interference channel without CSIT, when N1 ≥ N2,

(20) is achievable by zero forcing.
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Proof: WhenN1 ≥ N2, the corresponding outer regions are shown in Fig. 1 (f)–(h). Noticing

that (20) is reduced tod1 + d2 ≤ min(M1 + M2, N1), zero forcing is sufficient to achieve the

outer bound.

Lemma 6:When CSIT is absent, the DoF outer region given by Lemma 4 of a two-user

MIMO (M1, N1,M2, N2) ZIC is the same as that of an(M1, N1,min(M2, N2),min(M2, N2))

ZIC.

Proof: We give the proof case by case. It is trivial that whenM2 ≤ N2 reducing the number

of antennas at receiver 2 toM2 will not shrink the DoF region. WhenM2 > N2, we can further

consider two sub-cases:N2 ≥ N1 andN2 < N1.

1) WhenM2 > N2 ≥ N1, corresponding to Fig. 1 (d) and (e), the DoF bound (20) becomes

d1
N1

+ d2
N2

≤ 1. Hence the DoF outer region is the same as an(M1, N1, N2, N2) ZIC.

2) WhenM2 > N2 andN2 < N1, the DoF bound (20) becomesd1+d2 ≤ min(M1+M2, N1).

Hence, ifM1 ≥ N1 −N2, which impliesM1 +min(M2, N2) ≥ N1, the DoF outer region

is a pentagon or a tetragon; see Fig. 1 (g) and (h). Otherwise,it is a square, see Fig. 1

(f). One can show that the region is the same as that of an(M1, N1, N2, N2) ZIC.

Hence, the lemma holds.

We also have the following lemma regarding the relationshipbetween DoF regions of ZIC

and FIC.

Lemma 7:WhenN1 ≤ N2, the MIMO ZIC and FIC have the same DoF regions. Any encoding

scheme that is DoF optimal for one channel is also DoF optimalfor the other.

Proof: Any point in the FIC is also trivially achievable in the ZIC because user 2’s channel

is interference free. Conversely, any point achievable in the ZIC region, is also achievable in

FIC. This is based on the fact that the channels are statistically equivalent at both receivers. If

receiver 1 can decode user 1’s message, then receiver 2, having at least as many antennas, must

also be able to decode the same message. Receiver 2 can then subtract the decoded message,

which renders the resulting channel the same as in the ZIC.

Due to Lemma 7, we can translate all achievability schemes from FIC to ZIC and vice versa

when N1 ≤ N2. Therefore the achievability schemes in [17] for FIC whenN1 ≤ N2 and

M1 ≥ N1 can be used for ZIC. Therefore, the achievability part for Case C2) of Theorem 2 is

complete.

November 10, 2010 DRAFT



12

For the FIC, the achievability for the caseN1 ≤ N2, except whenM1 < N1 < min(M2, N2),

is shown in [17]. WhenN1 ≥ N2, we can swap the indices of the two users, so that except for

the Cases C1) and C2) the achievability scheme is known for FIC.

C. Achievability: with antenna mode switching whenK ≥ M1N1

In this subsection, we prove a weaker version of the achievability for Case C1) of Theorem 2

and Cases C1) and C2) of Theorem 3. Namely, we assume that the number of antenna modes

available isK ≥ M1N1. The scheme is simpler in this case, and the achievability scheme for

the caseK = N1 will be built upon this case.

Based on Lemma 6 and Lemma 7, we only consider the two-user MIMO ZIC with M1 <

N1 < M2 = N2 to prove the Cases C1) for both theorems. Case C2) of Theorem 3is the Case

of C1) with user indices swapped. Therefore, we want to show that the following DoF pair is

achievable for ZIC withK1 = M1N1 modes:

(d1, d2) =

(

M1,
M2(N1 −M1)

N1

)

. (21)

We first notice that this point cannot be achieved by zero forcing over one time instant. This

is because using zero forcing if transmitter 1 sendsM1 streams, transmitter 2 can only send

N1−M1 streams without interfering receiver 1. If transmitter 2 sends more streams, the desired

signal and interference are not separable at receiver 1 as transmitter 2 does not know channel

state information so it cannot send streams along the null space ofH12. A simple example is

the (1, 2, 3, 3) case, where the outer bound gives us(d1, d2) = (1, 1.5), which is not achievable

via zero forcing over one time slot. We make the assumption that the channelH12 stays the

same for at leastN1 time slots. It is sufficient to show that(M1N1,M2(N1 −M1)) streams can

be achieved inN1 time slots.

We first develop the beamforming and nulling design by assuming that there areN1M1 antenna

modes available at transmitter 1 such that it can use different antenna modes in different slots

to create channel variation. We will further show that the resultant beamforming and nulling

design still work even if there are onlyN1 modes available.

Here and after, we use tilde notation to indicate the time expansion signals, where the number

of slots of time expansion signals shall be clear within the context. The time expansion channel
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between transmitter 1 and receiver 1 inN1 time slots is

H̃11=











H11(1) 0 0 0

0 H11(2) 0 0

...
...

. . .
...

0 0 0 H11(N1)











N2

1
×N1M1

and the channel between transmitter 2 and receiver 1 is

H̃12 = IN1
⊗H12(1) (22)

as transmitter 2 does not create channel variation. We will use precoding at transmitter 2 only

and nulling at receiver 1 only. Let̃P be the transmit beamforming matrix at transmitter 2 and

Q̃ be the nulling matrix at receiver 1. We propose to use the following structures for them

P̃M2N1×M2(N1−M1) = PN1×(N1−M1) ⊗ IM2
(23)

Q̃M1N1×N2

1

= QM1×N1
⊗ IN1

. (24)

The received signal at receiver 1 can be written as

ỹ1 = H̃11x̃1 + H̃12P̃ x̃2 + z̃1 (25)

where x̃1 is a lengthM1N1 vector, andx̃2 is a lengthM2(N1 − M1) vector. After applying

nulling matrix Q̃, we have

Q̃ỹ1 = Q̃H̃11
︸ ︷︷ ︸

Ã

x̃1 + Q̃H̃12P̃
︸ ︷︷ ︸

B̃

x̃2 + Q̃z̃1. (26)

To achieve the degrees of freedom(M1N1,M2(N1−M1)) for both users, it is sufficient to design

our P̃ andQ̃ to satisfy the following conditions simultaneously

1) rank(Ã) = M1N1,

2) rank(P̃ ) = M2(N1 −M1),

3) B̃ = 0.

The second condition can be easily satisfied. Because rank(P̃ ) = rank(P )rank(IM2
), we only

need to designP such that rank(P ) = N1 −M1. As to the third condition, notice that

B̃ = (Q⊗ IN1
)(IN1

⊗H12(1))(P ⊗ IM2
)

= (QIN1
P )⊗ (IN1

H12(1)IM2
)

= (QP )⊗H12(1).
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It is therefore sufficient (and also necessary) to haveQP = 0. Then the key is to find aQ such

that the equivalent channel of user 1 after nulling

Ã = (Q⊗ IN1
)H̃11 (27)

has full rankM1N1 with probability 1. The matrixÃ is of sizeM1N1 ×M1N1 and has the

following structure

Ã=











q11H11(1) q12H11(2) · · · q1N1
H11(N1)

q21H11(1) q12H11(2) · · · q2N1
H11(N1)

...
...

. . .
...

qM11H11(1) qM12H11(2) · · · qM1N1
H11(N1)











.

To show thatÃ has full rank, we need the following lemma, which is known before, and a

proof of it can be found in e.g., [25].

Lemma 8: [25, Lemma 2] Consider an analytic functionh(x) of several variablesx =

[x1, . . . , xn]
T ∈ Cn. If h is nontrivial in the sense that there existsx0 ∈ Cn such thath(x0) 6= 0,

then the zero set off(x) Z := {x ∈ Cn|h(x) = 0} is of measure (Lebesgue measure inCn)

zero.

Because the determinant of̃A is an analytic polynomial function of elements ofH11(t), t =

1, . . . , N1, we only need to find a specific pair ofQ andH11(t), t = 1, . . . , N1, such thatÃ is

full rank. We propose the following:

Q = [VN1
(1, ωN1

, . . . , ωM1−1
N1

)]T , (28)

whereωN1
:= exp(−j2π/N1).

Let ω := exp(−j2π/N2
1 ). Take the realizations ofH11(t), t = 1, . . . , N1, as

H11(t) = VN1
(ωt−1, ωN1+t−1, . . . , ω(M1−1)N1+t−1). (29)

It can be verified that for such choices ofQ andH11(t), Ã is a Vandermonde matrix:

Ã = VM1N1
(1, ωN1, . . . , ω(M1−1)N1 , ω1, ωN1+1, . . . ,ω(M1−1)N1+1,

. . . , ωN1−1, ω2N1−1, . . . , ωM1N1−1),
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hence of full rank. We also notice that̃A is a leading principal minor of a permuted fast Fourier

transform (FFT) matrix with sizeN2
1 × N2

1 . The permutation is as follows: Index the columns

of an FFT matrix0, 1, . . . , N2
1 − 1, and then permute them in an order shown below:

(0, N1, 2N1, . . . , (M1 − 1)N1), (1, N1 + 1, 2N1 + 1, . . . , (M1 − 1)N1 + 1), ...

Based on Lemma 8, if we choose the nulling matrix usingQ as specified in (28),̃A has

full rank almost surely. One choice of the correspondingP matrix with respect to (28) is the

following

P = VN1
(ω−M1

N1
, ω

−(M1+1)
N1

, . . . , ω
−(N1−1)
N1

), (30)

which is orthogonal toQ. This completes the achievability part under conditions inCase C1)

of Theorem 2 and Cases C1) and C2) of Theorem 3, but withK ≥ M1N1.

D. Achievability: with antenna mode switching whenK = N1

Assuming there areN1 modes available at transmitter 1 and denote these channel vectors

between receive antennas of user 1 and theith mode ashi, 1 ≤ i ≤ N1 and letĤN1×N1
=

[h1,h2, . . . ,hN1
]. We choose the antenna modes to be switched cyclically:

H11(1) = [h1,h2, . . . ,hM1
], (31)

H11(2) = [h2,h3, . . . ,hM1+1], (32)

...

H11(N1) = [hN1
,h1, . . . ,hM1−1]. (33)

We want to show that under this switching pattern, the equivalent channelÃ in (27) between

transmitter one and receiver one after nulling, is still full rank. To show this, indexing the

columns ofÃ in (27) as0, 1, . . . , N1M1 − 1, we then permute and group the columns ofÃ in

the following way:

(0,M1, 2M1, . . . , (M1 − 1)N1), (1,M1 + 1, 2M1 + 1, . . . , (M1 − 1)N1 + 1), ...
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Denote the permutation result as̃A
′

and it can be expressed as

Ã
′
=











Ĥ Ĥ · · · Ĥ

GĤ ω−1
N1
GĤ · · · ω−M1

N1
GĤ

...
...

. . .
...

GM1Ĥ (ω−1
N1
G)M1Ĥ · · · (ω−M1

N1
G)M1Ĥ











,

whereG is a sizeN1 ×N1 diagonal matrix and can be expressed as

G = diag(1, ωN1
, ω2

N1
, . . . , ωN1−1

N1
). (34)

Notice thatÃ
′
= R(IM1

⊗ Ĥ), where

R =











IN1
IN1

· · · IN1

G ω−1
N1
G · · · ω−M1

N1
G

...
...

. . .
...

GM1 (ω−1
N1
G)M1 · · · (ω−M1

N1
G)M1











.

RecallωN1
= exp(−j2π/N1). To showÃ is full rank, it is necessary to showR is full rank as

IM1
⊗Ĥ is full rank with probability 1. It can be verified that via rowand column permutations

R can be changed to a block diagonal matrix with theith block being

VM1
(ωi

N1
, ωi−1

N1
, · · · , ωi−M1+1

N1
), (35)

which is full rank due to Vandermonde structure. HenceR is full rank. It follows thatA is full

rank with probability 1. This completes the achievability part under conditions in Case C1) of

Theorem 2 and Cases C1) and C2) of Theorem 3 forK = N1.

E. Discussion

1) Frequency domain interpretation:We note that the matrix[Q†, P ] is an inverse FFT

(IFFT) matrix in our construction (23), (24), (28) and (30).This observation yields an interesting

frequency domain interpretation of our construction. The signal of user 2 is transmitted over

frequencies corresponding to the lastN1 − M1 columns of an IFFT matrix, whereas the first

user’s signal is transmitted on all frequencies. Due to the antenna mode switching at transmitter 1,

the channel between transmitter 1 and receiver 1 is now time-varying and we manually introduce

frequency spread. User 1’s signal is spread from one frequency bin to all the frequencies while
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user 2’s signal remains in the lastN1 − M1 frequency bins. Therefore the signal in the first

M1 bins is interference free, which can be used to decode user 1’s message. The nulling matrix

applied at receiver 1 has a projection explanation as well. Left multiplying the left and right

hand sides of (26) with̃Q
†

yields

Q̃
†
Q̃ỹ1 = Q̃

†
Q̃H̃11x̃1 + Q̃

†
Qz̃1

= ((Q†Q)⊗ IN1
)(H̃11x̃1 + z̃1),

whereQ†Q is the frequency domain projection matrix. We can see that the signal of user 1 is

projected fromN1 frequencies to the firstM1 frequencies.

2) The Loss of DoF due to lack of CSIT:In two-user MIMO Z interference channel without

CSIT, losing CSIT will not shrink degrees of freedom region if M2 ≤ N1 orM2 > N1 ≥ N2+M1.

For all the other cases, the degrees of freedom region is strictly smaller when comparing with

the CSIT case.

This observation can be verified case by case. Notice that it is already shown in [17, Theorem

2] that whenM2 ≤ N1 ≤ N2 absence of CSIT does not reduce DoF region in two-user MIMO

FIC. Because MIMO FIC and ZIC has the same DoF region whenN1 ≤ N2. We only need to

consider the sub cases whenN1 > N2, corresponding to (f)–(h) in Fig. 1.

1) If M2 < N1 andN1 > N2, the total DoF of MIMO ZIC is upper bounded byN1 due to

(14), so the DoF region remains the same if CSIT is absent.

2) If M2 > N1 > N2, the DoF region of MIMO ZIC without CSIT is a square only when

M1 + N2 ≤ N1, same as that of ZIC with CSIT. Otherwise, the maximum total DoF of

ZIC with CSIT ismin(M2, N1 +N2,min(M1, N1) +N2), strictly larger thanN1 which is

the maximum total DoF when CSIT is absent, hence loss of CSIT reduces the DoF region.

3) Alternative construction whenN1/M1 = β ∈ Z: WhenN1/M1 = β ∈ Z, instead of using

theQ given in (28) we can use the followingQM1×N1
= IM1

⊗ 1
T
β . We need to show that this

Q matrix will lead to a full rankÃ. This can be achieved by choosing̃H11 such that it can be
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decomposed as̃H11 = IM1
⊗ H̃

′

11, where

H̃
′

11=











H11(1) 0 . . . 0

0 H11(2) . . . 0

...
...

. ..
...

0 0 . . . H11(β)











N1β×N1

.

For thisH̃11

Ã = (IM1
⊗ 1

T
β ⊗ IN1

)(IM1
⊗ H̃

′

11)

= IM1
⊗ ((1T

β ⊗ IN1
)H̃

′

11),

which has full rank. For this choice ofQ, we only useβM1 = N1 antenna modes inN1 time

slots.

Therefore, for the two-user MIMO ZIC and FIC whenM1 < N1 < min(M2, N2) and

N1/M1 = β ∈ Z, β fold time expansion is enough to achieve the DoF region. We remark

that this can be viewed as the generalization of the case we discussed in Section IV-C for

N1 = β andM1 = 1. In fact 1T
β is the nulling matrixQ given in (28) whenN1 = β,M1 = 1.

4) Successive Decoding in ZIC:For the two-user MIMO FIC whenM1 < N1 < min(M2, N2)

and CSIT is absent, we need block decoding at both receivers in general, which introduces

decoding delay. Successive interference cancellation decoder can be used at receiver 2 to reduce

decoding delay. Taking the caseN1/M1 = β ∈ Z as an example, we can useβ fold time

expansion and chooseQ = 1
T
β . The correspondingP matrix is not necessary to be the last

β − 1 columns of anβ × β FFT matrix. The followingP matrix still satisfies the design

constraint

P β×(β−1) =




Iβ−1

1
T
β−1



 . (36)

Here,P has a nice structure. Every stream of user 2 can be decoded immediately as they are

interference free. For other cases whereM1 cannot divideN1, we can still find aQ, P pair

through numerical simulation such that the upper diagonal parts ofP are all zeros and contain

small number of nonzero entries. Such a beamforming matrix can guarantee the immediate

decoding of user 2’s signal the interference only comes fromthe streams already decoded .
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V. TWO-USER MIMO ZIC AND FIC WITHOUT CSIT WHEN NUMBER OF MODESK < N1

In this section, we will present our result for theK < N1 case. The main result of this section

is the following theorem.

Theorem 4:WhenM1 < N1 < min(M2, N2) and the antennas of transmitter 1 can be switched

amongK antenna modes, whereK < N1, the DoF region of two-user MIMO ZIC and FIC

without CSIT is given by the following inequalities

di ≤ min(Mi, Ni), i = 1, 2; (37)

d1 +
K

min(M2, N2)− (N1 −K)
d2 ≤ M1 +

K(N1 −M1) + (min(M2, N2)−N1)(K −M1)

min(M2, N2)− (N1 −K)

(38)

The DoF region of FIC forM2 < N2 < min(M1, N1) can be obtained by switching the two

user indices.

The method of proof is heavily based on that in [24], to which the reader is referred for

several lemmas that will be used and their proofs. Some notation that is used in this section are

the following. We use tilde notation to denote the time expanded signalover L time slotsand

t ∈ [1, L] is the index of the slot within one block. In general, by default, for a vectorx, x̃ =

vec(x(1),x(2), · · · ,x(L)) and for a matrixV , Ṽ = diag(V (1),V (2), · · · ,V (L)). In addition,

for a time expanded vector̃x, we usex̃n or {x̃}n to denote a sequence ofn successive blocks of

x̃: x̃n = vec(x(1),x(2), . . . ,x(nL)). Furthermore,x(t)n is the sequence ofx(t) which contains

all the vectorx of the tth slot of alln blocks:x(t)n = vec(x(t),x(t+L), . . . ,x(t+(n−1)L)).

Similar notation is defined for matrices as well. We useH denotes(H11,H12,H21,H22),

henceH̃
n

denotes all the channel matrices overn blocks. In addition, for a random vectorx,

xG is a corresponding CSCG vector that has the same covariance matrix asx.

A. The Converse Part

We prove the converse part of Theorem 4 in the following. Recall that for M1 < N1 <

min(M2, N2), the proof is equivalent for both FIC and ZIC. We will only show the proof for

ZIC. To make the proof self-contained, we will go through some similar steps as in [24], but

avoiding details.

November 10, 2010 DRAFT



20

The converse is developed based on blocking for everyL slots. In each block, the channel

H12,H22 stay the same with the decompositionH12 = W 12Λ12V
†
12 andH22 = W 22Λ22V

†
22,

whereasH11 is time-varying amongL slots due to antenna mode switching at transmitter 1.

Transmitter 1 hasK modes withK < N1 and it can adopt arbitrary switching pattern. LetH11

be anN1 ×N1 full rank random matrix such thatH11 = [h1,h2, · · · ,hN1
] andhi, 1 ≤ i ≤ K

is the random vector channel between theith antenna mode and receive antennas of user 1. We

introduce the fictitious vectors{hi, K + 1 ≤ i ≤ N1} to simplify the proof. We assumeH11 is

isotropic fading and i.i.d. over blocks of lengthL each, whereL naturally satisfyL ≥ ⌈K/M1⌉.

We denote the decomposition ofH11 asW̃ 11Λ̃11Ṽ
†

11.

Furthermore, letE(t) of sizeN1 ×M1 denote the antenna mode selection matrix for timet.

Let em, 1 ≤ m ≤ N1 be themth column ofIN1
. Let i(t) denote the mode index selected by

antennai at time t. Then theith column ofE(t) is ei(t). We haveH11(t) = H11E(t).

At receiver 1, from Fano’s inequality, we have

nLR1 − δnL ≤ I(ỹn
1 ; x̃

n
1 |H̃

n
). (39)

whereδnL → 0 asn → ∞. Denote

r̃ = H̃11x̃1G + H̃
†

12x̃2 + z̃1 (40)

r̃1 = W̃
†

12H̃11x̃1G + Ṽ
†

12x̃2 + ñ1 (41)

where ñ1 = W̃
†

12z̃1. Using [24, Theorem 3], which says that Gaussian input can reduce the

mutual information by at most ano(log(P )) quantity, and two uses of chain rule we have

nLR1 − n o(log(P ))

≤ I(r̃n;xn
1G|H̃

n
) (42)

= I
(

r̃n;xn
1G|x̃

n
2 , H̃

n
)

+ I(r̃n; x̃n
2 |H̃

n
)− I

(

{H̃
†

12x̃2 + z̃1}
n; x̃n

2 |H̃
n
)

. (43)

Using [24, Lemma 2], we have

I
(

{H̃
†

12x̃2 + z̃1}
n; x̃n

2 |H̃
n
)

= I
(

{W̃ 12Λ̃12Ṽ
†

12x̃2 + z̃1}
n; x̃n

2 |H̃
n
)

(44)

= I
(

{Λ̃12Ṽ
†

12x̃2 + ñ1}
n; x̃n

2H̃
n
)

(45)

≥ I
(

{Ṽ
†

12x̃2 + ñ1}
n; x̃n

2 |H̃
n
)

− n o(log(P )), (46)
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and

I(r̃n; x̃n
2 |H̃

n
) = I

(

{W̃
†

12H̃11x̃1G + Λ̃12Ṽ
†

12x̃2 + ñ1}
n; x̃n

2 |H̃
n
)

(47)

≤ I
(

r̃n
1 ; x̃

n
2 |H̃

n
)

+ n o(log(P )). (48)

HenceR1 can be further bounded as

nLR1 − n o(log(P ))

≤ I
(

r̃n; x̃n
1G|x̃

n
2 , H̃

n
)

+ I(r̃n
1 ; x̃

n
2 |H̃

n
)− I

(

{Ṽ
†

12x̃2 + ñ1}
n; x̃n

2 |H̃
n
)

. (49)

As to receiver 2, using Fano’s inequality and [24, Lemma 2], we have

nLR2 − δnL ≤ I(ỹn
2 ; x̃

n
2 |H̃

n
) (50)

= I
(

{W̃ 22Λ̃22Ṽ
†

22x̃2 + z̃2}
n; x̃n

2 |H̃
n
)

(51)

≤ I
(

{Ṽ
†

22x̃2 + ñ2}
n; x̃n

2 |H̃
n
)

+ n o(log(P )), (52)

whereñ2 = W̃
†

22z̃2. Hence

nLR2 − n o(log(P )) ≤ I
(

r̃n
1 ; x̃

n
2 |H̃

n
)

− I
(

r̃n
1 ; x̃

n
2 |H̃

n
)

+ I
(

{Ṽ
†

22x̃2 + ñ2}
n; x̃n

2 |r̃
n
1 , H̃

n
)

.

(53)

Notice that by using Gaussian input, the following inequalities hold

I
(

r̃1; x̃
n
1G|x̃

n
2 , H̃

n
)

≤ E log

(

det(ILN1
+

P

M1
H̃11H̃

†

11)

)

(54)

= nLM1 log(P ) + nLo(log(P )), (55)

I
(

r̃n
1 ; x̃

n
2 |H̃

n
)

≤ nE log




det(ILN1

+ P
M2

W̃ 12W̃
†

12 +
P
M1

H̃11H̃
†

11)

det(ILN1
+ P

M1

H̃11H̃
†

11)



 (56)

= nL(N1 −M1) log(P ) + nLo(log(P )). (57)

Then letn → ∞, multiply (53) with some positive scalarµ, add it with (49) and use (55),

(57), we have the following inequality

nL[R1 + uR2 − o(log(P ))] ≤ nLM1 log(P ) + µnL(N1 −M1) log(P ) + η, (58)

whereµ is to be determined and

η =µI
(

{Ṽ
†

22x̃2 + ñ2}
n; x̃n

2 |H̃
n
)

−I
(

{Ṽ
†

12x̃2 + ñ1}
n; x̃n

2 |H̃
n
)

+(1−µ)I(r̃n
1 ; x̃

n
2 |H̃

n
). (59)
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Divide (58) bynL log(P ) and letP → ∞, we have the following inequality on the DoF of two

users

d1 + µd2 ≤ M1 + µ(N1 −M1) + λ, (60)

where

λ =
1

nL
lim
P→∞

η

log(P )
.

Recall thatr̃1 = W̃
†

12H̃11x̃1G + Ṽ
†

12x̃2 + ñ1 andH11(t) = H11E(t). We define

r̃2 = Λ̃
−1

11 W̃
†

11W̃ 12Ṽ
†

12x̃2 + Ṽ
†

11Ẽx̃1G + Λ̃
−1

11 W̃
†

11W̃ 12ñ1 (61)

r̃3 = W̃
†

11W̃ 12Ṽ
†

12x̃2 + Ṽ
†

11Ẽx̃1G + Λ̃
−1

11 W̃
†

11W̃ 12ñ1 (62)

r̃4 = Ṽ 11W̃
†

11W̃ 12Ṽ
†

12x̃2 + Ẽx̃1G + Ṽ 11Λ̃
−1

11 W̃
†

11W̃ 12ñ1 (63)

r̃5 = Ṽ 11W̃
†

11W̃ 12Ṽ
†

12x̃2 + Ẽx̃1G + ñ1 (64)

r̃6 = Ṽ
†

12x̃2 + Ẽx̃1G + ñ1 (65)

We have

I(r̃n
1 ; x̃

n
2 |H̃

n
) = I(r̃n

2 ; x̃
n
2 |H̃

n
) (66)

= I(r̃n
3 ; x̃

n
2 |H̃

n
) + o(log(P )) (67)

= I(r̃n
4 ; x̃

n
2 |H̃

n
) + o(log(P )) (68)

= I(r̃n
5 ; x̃

n
2 |H̃

n
) + o(log(P )) (69)

= I(r̃n
6 ; x̃

n
2 |H̃

n
) + o(log(P )), (70)

where (67) due to [24, Lemma 2]; (66) and (68) hold asW̃ 11Λ̃11 and Ṽ 11 are full rank square

matrices. (69) holds as changing noise variance will not change the DoF. (70) is true because

Ṽ 11W̃
†

11W̃ 12Ṽ
†

12 has the same distribution as̃V
†

12 and Ṽ 11W̃
†

11W̃ 12 is independent of̃V
†

12.

To find the DoF order ofI(r̃n
6 ; x̃

n
2 |H̃

n
), we first notice that for each slott in one block,V †

12

can be divided into three parts:V †
12,a(t), V

†
12,b(t) andV †

12,c.

1) V
†
12,a(t) is of sizeM1 ×M2 and consists ofM1 non-zero rows ofE(t)V †

12.

2) V
†
12,c is of size(N1 −K)×M2 and is the same for all1 ≤ t ≤ L. It consists ofN1 −K

rows ofV †
12 that do not appear in anyV 12,a(t)

†, 1 ≤ t ≤ L.
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3) V
†
12,b(t) is of size(K −M1)×M2 and consists ofK −M1 rows ofV †

12 that neither in

E(t)V 12,a(t)
† nor in V

†
12,c.

Example: AssumeN1 = 5, M1 = 2, L = 6, K = 4 andV 12 = [v1, v2, . . . , vN1
] wherevi’s are

M2 × 1 vectors. AssumeE(t) is the following

E(1) = [e1, e2], E(2) = [e1, e3], E(3) = [e1, e4],

E(4) = [e1, e2], E(5) = [e2, e4], E(6) = [e2, e3].

We have

V
†
12,a(1) = [v1, v2]

†, V
†
12,a(2) = [v1, v3]

†, V
†
12,a(3) = [v1, v4]

†,

V
†
12,a(4) = [v1, v2]

†, V
†
12,a(5) = [v2, v4]

†, V
†
12,a(6) = [v2, v3]

†,

V
†
12,b(1) = [v3, v4]

†, V
†
12,b(2) = [v2, v4]

†, V
†
12,b(3) = [v2, v3]

†,

V
†
12,b(4) = [v3, v4]

†, V
†
12,b(5) = [v1, v3]

†, V
†
12,b(6) = [v1, v4]

†,

andV †
12,c = v

†
5. Note thatV †

12,c remains the same in one block ofL slots.

Suppose receiver 1 receivesr6 as in (65) and wants to decode the message ofx2 that

goes through an equivalent channelV
†
12. ThenV †

12,a(t) are the directions of interference from

transmitter at timet, V †
12,b(t) are those directions that are temporarily interference-free at time

t, andV
†
12,c are the directions which are interference free for a whole block. The associated

noises of the those directions are similarly defined asn2,a(t),n2,b(t) andn2,c(t).

To bound the DoF ofI(r̃n
6 ; x̃

n
2 |H̃

n
) of (71), we define

V
†
12,ab(t) =




V

†
12,a(t)

V
†
12,b(t)



 , n1,ab(t) =




n1,a(t)

n1,b(t)



 , (71)

V
†
12,bc(t) =




V

†
12,b(t)

V
†
12,c



 , n1,bc(t) =




n1,b(t)

n1,c(t)



 , (72)

and adopt the following notation for simplicity

ya(t) = V
†
12,a(t)x2(t) + x1G(t) + n1,a(t) (73)

yb(t) = V
†
12,b(t)x2(t) + n1,b(t) (74)

yc(t) = V
†
12,cx2(t) + n1,c(t) (75)

ybc(t) = V
†
12,bc(t)x2(t) + n1,bc(t) (76)
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In addition,ya(t)
n,yb(t)

n,yc(t)
n,ybc(t)

n are sequences of corresponding vectors of thetth slot

overn blocks. The collection ofya(1)
n,ya(2)

n, . . .ya(t)
n is denoted as{y(1:t)

a }n. We also define

{y(1:t)
b }n , {y(1:t)

c }n and{y(1:t)
bc }n similarly. Using the chain rule, we have

I(r̃n
6 ; x̃

n
2 |H̃

n
) = I

(

{Ṽ
†

12,cx̃2 + ñ1,c}
n; x̃n

2 |H̃
n
)

+ I
(

{Ṽ
†

12,bx̃2 + ñ1,b}
n; x̃n

2 |{Ṽ
†

12,cx̃2 + ñ1,c}
n, H̃

n
)

+ I
(

{Ṽ
†

12,ax̃2 + x̃1G + ñ1,a}
n; x̃n

2 |{Ṽ
†

12,bcx̃2 + ñ1,bc}
n, H̃

n
)

(77)

Now checking the second term in (77), we notice that

I
(

{Ṽ
†

12,bx̃2 + ñ1,b}
n; x̃n

2 |{Ṽ
†

12,cx̃2 + ñ1,c}
n, H̃

n
)

=

L∑

t=1

I
(

yb(t)
n; x̃n

2 |{y
(1:t−1)
b }n, ỹn

c , H̃
n
)

(78)

=

L∑

t=1

H
(

yb(t)
n|{y(1:t−1)

b }n, ỹn
c , H̃

n
)

−H
(

yb(t)
n|x̃n

2 , {y
(1:t−1)
b }n, ỹn

c , H̃
n
)

(79)

=
L∑

t=1

H
(

yb(t)
n|{y(1:t−1)

b }n, ỹn
c , H̃

n
)

−H
(

yb(t)
n|x2(t)

n,yb(t)
n, H̃(t)n

)

(80)

≤
L∑

t=1

H (yb(t)
n|yc(t)

n,H(t)n)−H (yb(t)
n|x2(t)

n,yc(t)
n,H(t)n) (81)

=

L∑

t=1

I (yb(t)
n;x2(t)

n|yc(t)
n,H(t)n) (82)

=

L∑

t=1

[I (yb(t)
n,yc(t)

n;x2(t)
n|H(t)n)− I (yc(t)

n;x2(t)
n|H(t)n)] (83)

≤
L∑

t=1

(
N1 −M1

N1 −K
− 1

)

I (yc(t)
n;x2(t)

n|H(t)n) (84)

≤ nL(K −M1) log(P ) + o(log(P )) (85)

where:

• (78) and (83) follow by chain rule.

• (79) and (82) are expressing mutual information via entropy.

• (80) holds as the second term is the entropy of noise when conditioning onx2(t)
n.

• (81) is based on the fact that conditioning reduces entropy.
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• (84) follows by [24, Lemma 3].

• (85) holds due to the fact that the DoF of an(N1−K)×M2 point-to-point MIMO channel

is at mostmin(N1 −K,M2) = N1 −K.

The third term in (77) can be bounded in a similar fashion. We have

I
(

{Ṽ
†

12,ax̃2 + x̃1G + ñ1,a}
n; x̃n

2 |{Ṽ
†

12,bcx̃2 + ñ1,bc}
n, H̃

n
)

=

L∑

t=1

I
(

ya(t)
n; x̃n

2 |{y
(1:t−1)
a }n, ỹn

bc, H̃
n
)

(86)

=

L∑

t=1

H
(

ya(t)
n|{y(1:t−1)

a }n, ỹn
bc, H̃

n
)

−H
(

ya(t)
n|x̃n

2 , {y
(1:t−1)
a }n, ỹn

bc, H̃
n
)

(87)

=
L∑

t=1

H
(

ya(t)
n|{y(1:t−1)

a }n, ỹn
bc, H̃

n
)

−H
(

ya(t)
n|x2(t)

n,ybc(t)
n, H̃

n
)

(88)

≤
L∑

t=1

H (ya(t)
n|ybc(t)

n,H(t)n)−H (ya(t)
n|x2(t)

n,ybc(t)
n,H(t)n) (89)

=

L∑

t=1

I (ya(t)
n;x2(t)

n|ybc(t)
n,H(t)n) (90)

≤ n

L∑

t=1

I (yaG(t);x2G(t)|ybcG(t),H(t)) (91)

≤ nL log

(

det

(
P

M1
IM1

+ IM1
+

P

M2
IM1

)

det

(
P

M2
I(N1−M1) + I(N1−M1)

))

− nL log

(

det

(
P

M2

I(N1−M1) + I(N1−M1)

)

det

(
P

M1

IM1
+ IM1

))

(92)

= o(log(P )) (93)

where:

• (86) follows by chain rule.

• (87) and (90) are expressing mutual information via entropy.

• (88) holds as the second term is the entropy of noise when conditioning onx2(t)
n.

• (89) is based on the fact that conditioning reduces entropy.

• (91) and (92) follows by [24, Lemma 3], where the covariance matrix of x1G(t) + n1,a(t)

andn1,bc(t) are P
M1

IM1
+ IM1

andI(N1−M1), respectively. In addition, the optimal input of

x2(t) is CSCG with covariance matrixP
M2

I(N1−M1).
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Substitute (85) and (93) in to (77), we have

I(r̃n
1 ; x̃

n
2 |H̃

n
) ≤ I

(

{Ṽ
†

12,cx̃2 + ñ1,c}
n; x̃n

2 |H̃
n
)

+ nL(K −M1) log(P ) + o(log(P )) (94)

Now we go back to (59). Notice that if we chooseD = [0N1×(min(M2,N2)−N1), IN1
],

(DV
†
22,Dn2) has the same distribution as(V †

12,n1) as bothV 22 and V 12 are uniformly

distributed andV 22 has no fewer columns thanV 12. (Please refer to [24, Sec. IV-C2] for

more details). We have the following Markov chain:

x̃2 — Ṽ
†

22x̃2 + ñ2 — Ṽ
†

12x̃2 + ñ1 — Ṽ
†

12,cx̃2 + ñ1,c. (95)

DenoteJ = min(M2, N2) − (N1 − K). Let V 22,a contain the firstJ rows of V 22, andn2,a

contain the firstJ elements ofn2. We can boundη as

η ≤ µI
(

{Ṽ
†

22x̃2 + ñ2}
n; x̃n

2 |{Ṽ
†

12,cx̃2 + ñ1,c}
n, H̃

n
)

− I
(

{Ṽ
†

12x̃2 + ñ1}
n; x̃n

2 |{Ṽ
†

12,cx̃2 + ñ1,c}
n, H̃

n
)

+ (1− µ)nL(K −M1) log(P ) + o(log(P )) (96)

= µI
(

{Ṽ
†

22,ax̃2 + ñ2}
n; x̃n

2 |{Ṽ
†

12,cx̃2 + ñ1,c}
n, H̃

n
)

− I
(

{Ṽ
†

12,abx̃2 + ñ1}
n; x̃n

2 |{Ṽ
†

12,cx̃2 + ñ1,c}
n, H̃

n
)

+ (1− µ)nL(K −M1) log(P ) + o(log(P )) (97)

Notice that the size ofV †
12,ab is K ×M2. Based on [24, Lemma 3], if we choose

µ =
K

J
(98)

the difference of the first two mutual information terms of (97) is at most in the order of

o(log(P )) and we have

λ ≤

(

1−
K

J

)

(K −M1) =
(min(M2, N2)−N1)(K −M1)

min(M2, N2)− (N1 −K)
(99)

Recall thatd1 + µd2 ≤ M1 + µ(N1 −M1) + λ. We thus have the outer bound on the sum DoF

as shown in (38) and the proof of the converse part of Theorem 4is complete.
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B. Achievability

In order to show the achievability part of Theorem 4, we only need to construct an achievable

scheme for the corner point of the DoF region. Without loss ofgenerality, we assume that

M2 = min(M2, N2); otherwise, transmitter 2 can simply useN2 transmit antennas. SinceK(N1−

M1) + (M2 − N1)(K − M1) = M2(K − M1) + M1(N1 −K), it is sufficient to show that the

following DoF pair

(d1, d2) = (KM1,M2(K −M1) +M1(N1 −K)) (100)

can be achieved overK slots with antenna mode switching at transmitter one amongK modes.

Similar to Section IV-D, we choose the mode switching pattern as follows:

E(1) = [e1, e2, . . . , eM1
],

E(2) = [e2, e3, . . . , eM1+1],

...

E(K) = [eK , e1, . . . , eM1−1].

We propose to use a generalization of the joint nulling and beamforming design that is

investigated in Section IV-C. Unlike the frequency nullingthat has been used forK = N1,

this scheme requires that receiver 1 performs nulling in both frequency and spatial domains.

We hereby use two superscriptsF andS to indicate the matrices that associated with frequency

processing and spatial processing.

The generalized joint nulling and beamforming has the following structure:

Q̃ = QF
M1×K ⊗QS

K×N1
, (101)

P̃ = [P̃ a, P̃ b], where (102)

P̃ a = [P F
a]K×(K−M1) ⊗ [P S

a ]M2×M2
, (103)

P̃ b = [P F
b ]K×M1

⊗ [P S
b ]M2×(N1−K). (104)

The received signal at receiver 1 can be written as

ỹ1 = H̃11x̃1 + H̃12[P̃ a, P̃ b]x̃2 + z̃1 (105)

wherex̃1 is a lengthM1K vector, andx̃2 is a lengthM2(K −M1) +M1(N1 −K) vector.
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Fig. 2. Space-Frequency dimension allocation for the two users whenK < N1.

After applying nulling matrixQ̃, we have

Q̃ỹ1 = Q̃H̃11
︸ ︷︷ ︸

Ã

x̃1 +

[

Q̃H̃12P̃ a
︸ ︷︷ ︸

B̃

, Q̃H̃12P̃ b
︸ ︷︷ ︸

C̃

]

x̃2 + Q̃z̃1. (106)

To achieve the degrees of freedom pair shown in (100) for bothusers, it is sufficient to design

our P̃ andQ̃ to satisfy the following conditions simultaneously

1) rank(Ã) = M1K,

2) rank([P̃ a, P̃ b]) = M2(K −M1) +M1(N1 −K),

3) B̃ = 0,

4) C̃ = 0.

We propose to use the following realizations:

QF = [VK(1, ωK, . . . , ω
M1−1
K )]T , (107)

P F
a = VK(ω

−M1

K , ω
−(M1+1)
K , . . . , ω

−(K−1)
K ). (108)

P F
b = (QF)†, (109)

P S
a = IM2

, (110)
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P S
b = [IN1−K ; 0], (111)

QS = null(H12P
S
b )

T , (112)

where (112) means thatQSH12P
S
b = 0. Here, we choose((QF)†,P F

a) to be a sizeK×K IFFT

matrix, which offers the same frequency domain explanationas discussed in Section IV-E; see

also Fig. 2. It is trivial to seẽB = 0. In other words, receiver 1 will simply ignore the signal

in the lastK −M1 frequencies and only using the signal in the firstK frequencies to decode

his own message. Therefore,̃P a contains the interference directions from all the antennasof

transmitter 2 but only in certain frequencies. Now, after applying the frequency nulling, there

areN1K dimensions remaining, which contain both user 1’s message and the message of user

2 that is transmitted bỹP b. Among all theN1K dimensions, receiver 1 only requiresM1K

dimensions to decode his own message, while leaving additional K(N1 −M1) dimensions for

user 2. Here we choose one possible way of decomposing the remaining dimensions. Transmitter

2 sends some messages in the firstM1 frequencies but only thoughN1 −K antennas, as shown

in (111). Notice that

C̃ = Q̃H̃12P̃ b

= (QF ⊗QS)(IK ⊗H12)(P
F
b ⊗P S

b ) (113)

= (QFP F
b )⊗ (QSH12P

S
b ) (114)

which means that the choice ofQS as given in (112) is sufficient to set̃C = 0. It is clear that

for the interference signal sent viãP b, receiver 1 only need to do spatial zero-forcing in our

scheme, which can be seen from the factQFP F
b = IK due to (109).

To satisfy the second condition, notice that rank(P̃ a) = M2(K − M1) and rank(P̃ a) =

M1(N1 −K), it is sufficient to show that̃P a ⊥ P̃ b, which is obvious as

P̃
†

bP̃ a = (QFP F
a)⊗ ((P S

b )
†IM2

) = 0 (115)

becauseQFP F
a = 0. This is not surprising as the signal of user 2 transmitted via P̃ a and P̃ b

are orthogonal in frequency domain. The remaining part is toshow the first condition holds,

which is true because herẽA has the same structure asÃ
′

of (34) with N1 replaced byK and

hi replaced byQS
K×N1

hi.

November 10, 2010 DRAFT



30

M1 N1

min(M2, N2)

(N1 − M1)
min(M2, N2)

N1

K varies from M1 to N1

N1 − M1

(N1 − M1) + (min(M2, N2) − N1)

(

1 −

M1

K

)

d2

d1

Fig. 3. The benefit of antenna mode switching on the DoF region, in the case ofM1 < N1 < min(M2, N2).

C. Discussion

It is not surprising that whenK = N1, (38) implies

d1 +
N1

min(M2, N2)
d2 ≤ N1 (116)

which is the same as (7) and that in [17, Theorem 3] whenM1 < N1 < min(M2, N2). For the

scheme that we discussed above,P̃ b disappears and it is the DoF achievable scheme that we

developed in Section IV-C. In addition, whenK = M1, (38) becomes (12) and̃P a disappears,

the general scheme reduces to the DoF-optimal spatial zero-forcing as shown in [24]. Hence, for

one extra mode at transmitter 1, we can further alignmin(M2, N2)−N1 streams of interference

overK slots. The incremental gain per slot is reduced whenK increases; see Fig. 3. Our result

reveals the fundamental benefit that can be obtained from reconfigurable antenna modes when

there is no CSIT andM1 < N1 < min(M2, N2). In addition, combining with the known results,

we know that in order to achieve the DoF region of two-user FICand ZIC, zero-forcing in

frequency and spatial domains suffice regardless of the CSITassumption.
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VI. CONCLUSIONS

We derived the exact DoF region for the MIMO Z and full interference channels when perfect

channel state information is available at receivers, including i) the Z interference channel with

channel state information at the transmitter; ii) the Z and full interference channel without channel

state information at the transmitter, but with reconfigurable antennas at the transmitters. For both

FIC and ZIC, when the number of antenna modesK at the transmitter with the reconfigurable

antennas is not less than the number of receive antennas at the corresponding receiver, the DoF

region is maximized and no longer depends on the number of antenna modes. Otherwise, each

additional antenna mode can bring extra gain in the DoF region whenM1 < N1 < min(M2, N2)

for both FIC and ZIC, and whenM2 < N2 < min(M1, N1) for FIC. The incremental gain

diminishes asK increases.

The achievability schemes we designed for the reconfigurable antenna cases rely on time

expansion and joint beamforming and nulling over the time-expanded channel. Interestingly,

they also bear a space-frequency coding interpretation. Wecompletely characterized the DoF

regions for both Z and full interference channels when transmitter antenna mode switching is

allowed. Our result can specialize to previously known cases when there is no antenna mode

switching by simply setting the number of antenna modes equal to the number of transmit

antennas. Our work reveals how the channel variation introduced by the extra antenna mode

switching brings benefits in the sense of the DoF region.
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