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HIGHER WHITEHEAD PRODUCTS IN TORIC TOPOLOGY

JELENA GRBIĆ AND STEPHEN THERIAULT

Abstract. In this paper we study a relation between the moment-angle complex ZK and the

Davis-Januzkewicz space DJK for MF-complexes K by considering the homotopy fibration se-

quence ZK

w̃
−→ DJK −→

∏
n

i=1
CP∞. After observing that the homotopy type of ZK is a wedge

of spheres, we describe w̃ as a sum of higher and iterated Whitehead products.

1. Introduction

To a simplicial complexK on n vertices, Davis and Januszkiewicz [DJ] associated two fundamental

objects of toric topology: the moment-angle complex ZK and the Davis-Januszkiewicz space DJK ,

whose study connects algebraic geometry, topology, combinatorics, and commutative algebra. Al-

gebraic topologists, on their side, have tried to understand the homotopy theory of these spaces

and other related topological spaces with a torus action. Recent developments [BP1] have shown

that from the homotopy theoretical point of view both spaces ZK and DJK could be considered

as polyhedral products of the topological pairs (D2, S1) and (CP∞, ∗), respectively. That lead

to a wide generalisation [BP2, S] to polyhedral products (X,A)K of n-tuples of topological pairs

(X,A) = (Xi, Ai)
n
i=1. These spaces are still very closely related to combinatorics, and commutative

algebra but as yet are not known to have a strong connection with algebraic geometry.

Let X1, . . . , Xn be path-connected spaces and let X = {X1, . . . , Xn}. Following [BP2, BBCG],

for σ = (i1, . . . , ik) let Xσ =
∏k

j=1 Xij , and let DJK(X) =
⋃

σ∈K Xσ. Notice that there is an

inclusion DJK(X) −→
∏n

i=1 Xi. Define ZK(X) by the homotopy fibration

(1) ZK(X) −→ DJK(X) −→
n∏

i=1

Xi.

In this paper we will first consider the case when eachXi is a sphere, writing S = (Sm1+1, . . . , Smn+1).

If X1, . . . , Xn all equal a common spaceX , we instead write ZK(X) and DJK(X). When Xi = CP∞

for each 1 ≤ i ≤ n, the homotopy fibration (1) specializes to the case of primary interest in toric

topology, that is, to the homotopy fibration ZK −→ DJK −→
∏n

i=1 Xi. For the sake of clarity, we

remark that in the terms of polyhedral products our ZK(X) is actually (ConeΩX,ΩX)K , whereas

DJK(X) = (X, ∗)K .
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To date, there has been considerable success in studying the homotopy type of ZK [GT] or its

suspension [BBCG]. However, no attempt has been made to study the map ZK −→ DJK . This

means that the interesting information that is known about the moment-angle complex ZK cannot

be related to the Davis-Januszkiewicz space DJK . The purpose of this paper is to remedy this

deficiency. We show that for a certain family of simplicial complexes K, ZK is homotopy equivalent

to a wedge of spheres and the homotopy equivalence may be chosen so that the map ZK −→ DJK

consists of a specified collection of higher Whitehead products and iterated Whitehead products.

The defining property of this family is that the complex K must be the union of the boundaries

of its missing faces. For such a complex K, we show that each missing face corresponds to the

existence of a nontrivial higher Whitehead product whose adjoint has a nonzero Hurewicz image in

H∗(ΩDJK ;Q).

As mentioned, polyhedral products currently enjoy great popularity; in particular their loop ho-

mology with various coefficients and for different families of simplicial complexes has been calculated.

Some simple but important examples of the homology of ΩDJK(X) were calculated by Lemaire [L]

in 1974 before the notion of ZK(X) and DJK(X) were introduced. Panov and Ray [PR] introduced

categorical formalism to study the loop homology of DJK and gave explicit calculations when K is

a flag complex. Dobrinskaya [D] has a general approach for calculating the homology of ΩDJK(X)

for an arbitrary simplicial complex K in terms of the homology of Ω(X) and some special relations

coming from the homology of ΩDJK(S2). As an intermediate goal towards understanding the map

ZK −→ DJK we need to calculate the rational homology of ΩDJK(S) and ΩDJK . However, it is

important to emphasize that we do this in such a way as to remember the geometry of the space,

that is, in such a way as to keep track of specific Hurewicz images. The existing models for rational

loop homology are not known to do this, so we have to produce our own model which does.

The methods we use lend themselves well to concrete calculations. We include several examples

to illustrate this.

In what follows K will be a simplicial complex on n vertices whose simplices are subsets of the

vertex set [n] = {1, . . . , n}. That is, a simplex σ ∈ K corresponds to a sequence (i1, . . . , ik) where

1 ≤ i1 < · · · < ik ≤ n and the integers ij are the vertices of K which are in σ. Let |σ| = k − 1

be the dimension of σ. We concentrate on the collection MF (K) of missing faces. To be precise,

a sequence (i1, . . . , ik) is in MF (K) if: (i) (i1, . . . , ik) /∈ K, and (ii) every proper subsequence

of (i1, . . . , ik) is in K. For example, let K be the simplicial complex on 4 vertices with edges

(1, 2), (1, 3), (1, 4), (2, 3), (2, 4). Then MF (K) = {(3, 4), (1, 2, 3), (1, 2, 4)}.

Definition 1.1. Let K be a simplicial complex on n vertices. We say that K is an MF -complex if

|K| =
⋃

σ∈MF (K)

|∂σ|

where |K| and |∂σ| denote the geometrical realisations of K and ∂σ, respectively.
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If σ = (i1, . . . , ik) ∈ K, let FW (σ) be the fat wedge of the product Xi1 × · · · ×Xik . If K is an

MF -complex then DJK(X) can be written as

DJK(X) = colimσ∈MF (K)FW (σ).

Our first result shows that colimits of fat wedges behave nicely when included to the product

X1 × · · · ×Xn, allowing us to determine the homotopy fibre of the inclusion.

Theorem 1.2. Let K be an MF -complex on n vertices. Let X = {X1, . . . , Xn} where each Xi is

a path-connected topological space. Then ZK(X) is homotopy equivalent to a wedge of spaces of the

form ΣtΩXi1∧· · ·∧ΩXik for various 1 ≤ t < n and sequences (i1, . . . , ik) where 1 ≤ i1 < · · · < ik ≤ n.

Corollary 1.3. Let K be an MF -complex on n vertices. Then each of ZK(S) and ZK is homotopy

equivalent to a wedge of simply-connected spheres.

Next, as an intermediate step, we calculate H∗(ΩDJK(S);Q) and H∗(ΩDJK ;Q) using an Adams-

Hilton model, with the emphasis on detecting Hurewicz images. To state this we introduce some

notation. If V is a graded Q-vector space, let L〈V 〉 be the free graded Lie algebra generated by V ,

and let UL〈V 〉 be its universal enveloping algebra. Let Lab〈V 〉 be the free abelian Lie algebra

generated by V , whose bracket is identically zero. If L is a Lie algebra and x1, . . . , xk ∈ L, let

[[x1, x2], . . . , xk] denote the iterated bracket [. . . [[x1, x2], x3], . . . , xk].

Let bi be the Hurewicz image of the adjoint of the coordinate inclusion Smi+1 −→ DJK(S).

Abusing notation, let bi also be the Hurewicz image of the adjoint of the composite S2 −→ CP∞ −→

DJK , where the left map is the inclusion of the bottom cell and the right map is the inclusion of

the ith-coordinate. By uσ we denote the Hurewicz image of the adjoint of the Whitehead product

corresponding to a missing face σ ∈ MF (K). We will phraseH∗(ΩDJK(S);Q) and H∗(ΩDJK ;Q) as

quotients of U(Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉). A distinction needs to be made between the

elements uσ where |σ| = 1 and |σ| > 1. The latter elements are independent from b1, . . . , bn. On the

other hand, if |σ| = 1 then σ = (i1, i2) and uσ = [bi1 , bi2 ] which are not independent from b1, . . . , bn.

This leads to additional relations determined by the graded Jacobi identity and face relations.

Specifically, we have [uσ, bj ] = [[bi1 , bi2 ], bj] = [bi1 , [bi2 , bj ]]−(−1)|bi1 ||bi2 |[bi2 , [bi1 , bj]] and if (i, j) ∈ K

then [bi, bj] = 0. The collection of such relations forms an ideal in U(Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈

MF (K)〉) which we label as J . Note that if every missing face σ ∈ MF (K) is of dimension greater

than 1, then J is trivial.

Theorem 1.4. Let K be an MF -complex. There is an algebra isomorphism

H∗(ΩDJK(S);Q) ∼= U(Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉)/J
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where each uσ is the Hurewicz image of the adjoint of a higher Whitehead product. Further, the

looped inclusion ΩDJK(S) −→
∏n

i=1 ΩS
mi+1 is modelled by the map

U(Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉)/J
U(π)
−→ ULab〈b1, . . . , bn〉

where π is the projection.

Theorem 1.5. Let K be an MF -complex. There is an algebra isomorphism

H∗(ΩDJK ;Q) ∼= U(Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉)/(I + J)

where uσ is the Hurewicz image of the adjoint of a higher Whitehead product, J is as in Theorem 1.4,

and I is the ideal

I = (b2i , [uσ, bjσ ] | 1 ≤ i ≤ n, σ = (i1, . . . , ik) ∈ MF (K), jσ ∈ {i1, . . . , ik}).

Further, there is a commutative diagram of algebras

H∗(ΩDJK(S2);Q)
∼=

//

(ΩDJK(ı))∗

��

U(Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉)/J

q

��

H∗(ΩDJK ;Q)
∼=

// U(Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉)/(I + J)

where q is the quotient map.

Our main theorems are homotopy theoretic. For 1 ≤ i ≤ n, let ai : S
mi+1 −→ DJK(S) be the

inclusion of the ith-coordinate. Let ı : S2 −→ CP∞ be the inclusion of the bottom cell. Let ãi be

the composite ãi : S
2 ı
−→ CP∞ −→ DJK where the right map is the inclusion of the ith-coordinate.

The analogue of the algebraic ideal J occurs when σ = (i1, i2), in which case there is a Whitehead

product wσ = [ai1 , ai2 ]; as in the algebraic case, there are additional relations determined by the

Jacobi identity and face relations in cases of the form [wσ, aj ] when (i1, j) ∈ K or (i2, j) ∈ K. For

|σ| = 1, let Wσ be the collection of all independent Whitehead products of the form [[wσ, aj1 ] . . . , ajl ]

where 1 ≤ j1 ≤ · · · ≤ jl ≤ l and 1 ≤ l < ∞.

Theorem 1.6. Let K be an MF -complex on n vertices, so that there is a homotopy equivalence

ZK(S) ≃
∨

α∈I Stα . The equivalence can be chosen so that the composite

∨

α∈I

Stα −→ ZK(S) −→ DJK(S)

is a wedge sum of the following maps:

(a) a higher Whitehead product wσ : S
tσ −→ DJK(S) for each missing face σ =

(i1, . . . , ik) ∈ MF (K), where tσ = k − 1 + (Σk
j=1mij );
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(b) an iterated Whitehead product

[[wσ, aj1 ] . . . , ajl ] : S
tσ+l −→ DJK(S)

for each σ ∈ MF (K) of dimension greater than 1 and each list 1 ≤ j1 ≤ · · · ≤ jl ≤ l,

where 1 ≤ l < ∞;

(c) the collection of independent iterated Whitehead products Wσ for each σ ∈ MF (K)

of dimension 1.

Given σ = (i1, . . . , ik), let Jσ = {1, . . . , n} − {i1, . . . , ik}. If σ = (i1, i2), let w̃σ be the Whitehead

product [ãi1 , ãi2 ]. As above, for |σ| = 1, let W̃σ be the collection of all independent Whitehead

products of the form [[w̃σ, ãj1 ] . . . , ãjl ] where 1 ≤ j1 ≤ · · · ≤ jl ≤ l and 1 ≤ l < ∞.

Theorem 1.7. Let K be an MF -complex on n vertices, so that there is a homotopy equivalence

ZK ≃
∨

α̃∈Ĩ S
tα̃ . The equivalence can be chosen so that the composite

∨

α̃∈Ĩ

Stα̃ −→ ZK −→ DJK

is a wedge sum of the following maps:

(a) a higher Whitehead product w̃σ : S
2|σ|+1 −→ DJK for each missing face σ ∈

MF (K);

(b) an iterated Whitehead product

[[w̃σ, ãj1 ] . . . , ãjl ] : S
2|σ|+l+1 −→ DJK

for each σ ∈ MF (K) of dimension greater than 1 and each list j1 < · · · < jl in Jσ,

where 1 ≤ l ≤ n;

(c) the collection of independent iterated Whitehead products W̃σ for each σ ∈ MF (K)

of dimension 1.

Although in this paper our goal is to identify the map ZK −→ DJK for K an MF -complex, we

are hoping to generalise this first to a much larger family of simplicial complexes and second to the

map between polyhedral products of any n tuple of topological pairs. As a consequence we should

obtain a homotopy wedge decomposition of ZK(X,A), which will reduce to a wedge of spheres in

the case of ZK .

2. The objects of study

This section gives an initial analysis of MF -complexes. First, we compare MF -complexes to an-

other family of simplicial complexes that has received considerable attention for its role in producing

wedge decompositions of ZK . Then we show that both ZK(S) and ZK are homotopy equivalent to

a wedge of simply-connected spheres if K is an MF -complex, proving Theorem 1.3.
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We compare MF -complexes to shifted complexes. A simplicial complex K on n vertices is shifted

if there is an ordering on the vertex set such that whenever σ is a simplex of K and v′ < v, then

(σ − v) ∪ v′ is a simplex of K. In [GT] it was shown that if K is a shifted complex then ZK is

homotopy equivalent to a wedge of spheres. More properties of ZK for shifted complexes K were

considered in [BBCG, D].

We show that MF -complexes and shifted complexes form distinct families, with nontrivial inter-

section. Consider the three examples:

(1) K1 is the simplicial complex on 4 vertices with edges (1, 2), (1, 3), (1, 4), (2, 3), (2, 4);

(2) K2 is the simplicial complex on 4 vertices with edges (1, 2), (1, 3), (1, 4), (2, 3);

(3) K3 is the simplicial complex on 5 vertices with edges (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (3, 5).

Observe that K1 and K2 are shifted but K3 is not. The list of minimal missing faces in each case is:

(1) MF (K1) = {(3, 4), (1, 2, 3), (1, 2, 4)};

(2) MF (K2) = {(2, 4), (3, 4), (1, 2, 3)};

(3) MF (K3) = {(2, 5), (3, 4), (4, 5), (1, 2, 3), (1, 2, 4), (1, 3, 5)}.

Observe that |K1| =
⋃

σ∈M(K1)
|∂σ| and |K3| =

⋃
σ∈M(K2)

|∂σ|, but
⋃

σ∈M(K3)
|∂σ| = |K2 − (1, 4)|.

Thus K1 is a shifted complex which is also an MF -complex, while K2 is a shifted complex which is

not an MF -complex, and K3 is an MF -complex which is not shifted.

Now we turn to the homotopy type of ZK(S) and ZK when K is an MF -complex. We begin

with proving a much more general result.

Proof of Theorem 1.2: Since K is an MF -complex, we have |K| =
⋃

σ∈MF (K) |∂σ|. This union

can be realized by iteratively gluing on one ∂σ at a time. That is, if l is the cardinality of MF (K)

(note l is finite) then the elements of MF (K) can be ordered as σ1, . . . , σl in such a way that for

1 ≤ i ≤ l there is a sequence of subcomplexes Ki =
⋃i

j=1 ∂σj of K and pushouts

∂σi ∩Ki−1
//

��

Ki−1

��

∂σi
// Ki.

Observe that the intersection ∂σ ∩Ki−1 is a face of both ∂σ and Ki−1. That is, ∂σ and Ki−1 have

been glued along a common face.

Write Y ∈ W if Y is a space that is homotopy equivalent to a wedge of spaces of the form

ΣtΩXi1 ∧ · · · ∧ ΩXik for various 1 ≤ t < n and sequences (i1, . . . , ik) where 1 ≤ i1 < · · · < ik ≤ n.

For any such sequence, let FW (i1, . . . , ik) be the fat wedge of the product
∏k

j=1 Xij . By definition,

the homotopy fibre of the inclusion FW (i1, . . . , ik) −→
∏k

j=1 Xij is ZK for K = (∆k)k−1 = ∂σ. On

the other hand, by [P2], this homotopy fibre is homotopy equivalent to Σk−1ΩXi1 ∧ · · · ∧ ΩXik . In

particular, in an MF -complex |K| =
⋃

σ∈MF (K) |∂σ|, we have Z∂σ ∈ W for every σ ∈ MF (K).
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Now we proceed with the proof by induction. Since K1 = ∂σ1, the previous paragraph shows that

ZK1 ∈ W . Now suppose that ZKi−1 ∈ W . We have Ki constructed by gluing ∂σi and Ki−1 along a

common face, Z∂σi
∈ W by the preceeding paragraph, and ZKi−1 ∈ W by assumption. Under these

circumstances, [GT, Theorem 1.3] implies that ZKi
∈ W . (Actually, [GT, Theorem 1.3] is stated

for the special case when Xi = CP∞ for 1 ≤ i ≤ n, but the proof goes through without change in

the general case.) Hence, by induction, ZK(X) = ZKl
is in W . �

Proof of Theorem 1.3: In Theorem 1.2, suppose that Xi = Smi+1 for each 1 ≤ i ≤ n. Then

ZK(S) is homotopy equivalent to a wedge of spaces of the form ΣtΩSmi1+1 ∧ · · · ∧ ΩSmik
+1 for

various 1 ≤ t < n and sequences (i1, . . . , ik). By [J], there is a homotopy equivalence ΣΩSmi+1 ≃
∨∞

j=1 S
jmi+1. Since Sjmi+1 is a suspension, we can iterate this to show that each wedge summand

ΣtΩSmi1+1 ∧ · · · ∧ ΩSmik
+1 is homotopy equivalent to a wedge of simply-connected spheres. Thus

ZK(S) is homotopy equivalent to a wedge of simply-connected spheres.

Next, in Theorem 1.2, suppose that Xi = CP∞ for each 1 ≤ i ≤ n. Then ZK is homotopy

equivalent to a wedge of spaces of the form ΣtΩCP∞
i1

∧ · · · ∧ ΩCP∞
ik

for various 1 ≤ t < n and

sequences (i1, . . . , ik). Since ΩCP
∞ ≃ S1, each wedge summand ΣtΩCP∞

i1
∧· · ·∧ΩCP∞

ik
is homotopy

equivalent to Sk+t. Thus ZK is homotopy equivalent to a wedge of simply-connected spheres. �

3. Higher Whitehead products and Fat wedges

In this section we define a higher Whitehead product by means of a fat wedge, and relate the

existence of a missing face in K to the existence of a nontrivial higher Whitehead in DJK(X). Let

X1, . . . , Xn be path-connected spaces and let X = {X1, . . . , Xn}. The fat wedge is the space

FW (X) = {(x1, . . . , xn) ∈ X1 × · · · ×Xn | at least one xi = ∗}.

Consider the homotopy fibration obtained by including FW (X) into the product X1×· · ·×Xn. The

homotopy type of the fibre was first identified by Porter [P2], who showed that there is a homotopy

fibration

Σn−1ΩX1 ∧ · · · ∧ ΩXn −→ FW (X) −→ X1 × · · · ×Xn.

If each Xi is a suspension, Xi = ΣYi, then the standard suspension map E : Y −→ ΩΣY induces a

composite

φn : Σ
n−1Y1 ∧ · · · ∧ Yn −→ Σn−1ΩΣY1 ∧ · · · ∧ ΩΣYn −→ FW (ΣY ).

The map φn is the attaching map that yields the product. That is, there is a homotopy cofibration

Σn−1Y1 ∧ · · · ∧ Yn
φn
−→ FW (ΣY ) −→ ΣY1 × · · · × ΣYn.

In the case n = 2, we have FW (ΣY ) = ΣY1 ∨ ΣY2 and φ2 is the Whitehead product [i1, i2],

where i1 and i2 are the inclusions of ΣY1 and ΣY2 respectively into ΣY1 ∨ΣY2. This is the universal

example for Whitehead products. Given a space Z and maps f : ΣY1 −→ Z and g : ΣY2 −→ Z,

the Whitehead product [f, g] of f and g is the composite ΣY1 ∧ Y2
φ2
−→ ΣY1 ∨ ΣY2

f⊥g
−→ Z, where ⊥
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denotes the wedge sum. Porter [P1] used the maps φn for n > 2 as universal examples to define

higher Whitehead products.

Definition 3.1. For n ≥ 2, let Y1, . . . , Yn and Z be path-connected spaces, and let fi : ΣYi −→

Z be maps. Suppose that the wedge sum
∨n

i=1 ΣYi −→ Z of the maps fi extends to a map

f : FW (ΣY ) −→ Z. The nth-higher Whitehead product of the maps f1, . . . , fn is the composite

[f1, . . . , fn] : Σ
n−1Y1 ∧ · · · ∧ Yn

φn
−→ FW (ΣY )

f
−→ Z.

If n = 2, the Whitehead product of two maps f1 and f2 is always defined, and the homotopy

class of [f1, f2] is uniquely determined by the homotopy classes of f1 and f2. If n > 2, it may not be

the case that the higher Whitehead product of n maps f1, . . . , fn exists, as there may be nontrivial

obstructions to extending the given map
∨n

i=1 ΣYi −→ Z to the fat wedge. Even if such an extension

exists, there may be many inequivalent choices of an extension, implying that the homotopy class

of [f1, . . . , fn] need not be uniquely determined by the homotopy classes of f1, . . . , fn.

When n = 2, the adjoint of the Whitehead product [f1, f2] is homotopic to a Samelson product.

Its image in homology is given by commutators. We wish to have analogous information about

higher Whitehead products. The universal example is given by the adjoint of φn, which is a map

Σn−2Y1 ∧ · · · ∧ Yn −→ ΩFW (ΣY ). We want to know the Hurewicz image of this map. To do so we

need a good model for H∗(ΩFW (ΣY )) which sees this Hurewicz image. Producing such a model in

the case when each Yi is a sphere is the subject of Section 4.

Before getting to this, we give a general result which identifies nontrivial higher Whitehead

products in DJK(ΣY ) for any simplicial complex K. In short, there is a nontrivial higher Whitehead

product for each missing face ofK which, moreover, lifts to ZK(ΣY ). In what follows we will consider

sub-products
∏k

j=1 ΣYij of
∏n

i=1 ΣY . If σ = (i1, . . . , ik), let FW (ΣY , σ) be the fat wedge of the

sub-product
∏k

j=1 ΣYij .

Lemma 3.2. Let K be a simplicial complex on n vertices. If σ = (i1, . . . , ik) ∈ MF (K) then there

is a map FW (ΣY , σ) −→ DJK(ΣY ) and the composite

Σk−1Yi1 ∧ · · · ∧ Yik

φk
−→ FW (ΣY , σ) −→ DJK(ΣY )

is nontrivial.

Proof. Since σ = (i1, . . . , ik) ∈ MF (K), every proper subsequence of it is a face of K but σ

itself is not in K. This implies that there is a map FW (ΣY , σ) −→ DJK(ΣY ). Now suppose

that the composite Σk−1Yi1 ∧ · · · ∧ Yik

φk
−→ FW (ΣY , σ) −→ DJK(ΣY ) is trivial. Then the map

FW (ΣY , σ) −→ DJK(ΣY ) extends to a map
∏k

j=1 ΣYij −→ DJK(ΣY ), which implies that σ =

(i1, . . . , ik) is in K, a contradiction. �
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Lemma 3.3. The nontrivial map Σk−1Yi1 ∧· · ·∧Yik

φk
−→ FW (ΣY , σ) −→ DJK(ΣY ) in Lemma 3.2

lifts to ZK(ΣY ).

Proof. The inclusion FW (ΣY , σ) −→ DJK(ΣY ) is coordinate-wise, so the composite of inclusions

FW (ΣY , σ) −→ DJK(ΣY ) −→
∏n

i=1 ΣYi is homotopic to the composite of inclusions FW (ΣY , σ) −→
∏k

j=1 ΣYij −→
∏n

i=1 ΣYi. Thus there is an induced homotopy fibration diagram

F //

��

FW (ΣY , σ) //

��

∏k
j=1 ΣYij

��

ZK(ΣY ) // DJK(ΣY ) //
∏n

i=1 ΣYi

where F ≃ Σk−1ΩΣYi1 ∧ · · · ∧ ΩΣYik . By definition, φk factors through F , and so the lemma

follows. �

4. Adams-Hilton models

Let X be a simply-connected CW -complex of finite type and R a commutative ring. The Adams-

Hilton model [AH] is a means of calculating H∗(ΩX ;R). One advantage it has over other models

for H∗(ΩX ;R) is its relative simplicity, which allows for concrete calculations in certain cases. Its

presentation is stated in Theorem 4.1.

Let V be a graded R-module, and let T (V ) be the free tensor algebra on V . For a space X ,

let CU∗(X) be the cubical singular chain complex on X with coefficients in R. Note that CU∗(X)

is naturally chain equivalent to the simplicial singular chain complex on X . If X is a homotopy

associative H-space then the multiplication on X induces a multiplication on CU∗(X), giving it

the structure of a differential graded algebra. A map A −→ B of differential graded algebras is a

quasi-isomorphism if it induces an isomorphism in homology.

Theorem 4.1. Let R be a commutative ring and let X be a simply-connected CW -complex of finite

type. The Adams-Hilton model for X is a differential graded R-algebra AH(X) satisfying:

(a) if X = pt ∪ (
⋃

α∈S eα) is a CW -decomposition of X then AH(X) = T (V ; dV )

where V = {bα}α∈S and |bα| = |eα| − 1;

(b) the differential dV depends on the attaching maps of the CW -complex X;

(c) there is a map of differential graded algebras θX : AH(X) −→ CU∗(ΩX) which

induces an isomorphism H∗(AH(X)) ∼= H∗(ΩX ;R).

�

Notice that the generators of AH(X) are in one-to-one correspondence with the cells of X , shifted

down by one dimension. However, the differential dV and the quasi-isomorphism θX are not uniquely

determined by the CW -structure of X . There may be many inequivalent choices of both dV and θX
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which result in an isomorphism H∗(AH(X)) ∼= H∗(ΩX ;R). In that sense, there may be many

Adams-Hilton models for H∗(ΩX ;R). One would hope to choose a model which is particularly

advantageous. This is what we aim to do for X = DJK(S) or DJK and R = Q, by choosing a model

which keeps track of the Hurewicz images of adjointed higher Whitehead products.

We start with some general constructions in the case of DJK(S2) and DJK , producing Adams-

Hilton models for both which are compatible with the inclusion S2 ı
−→ CP∞ of the bottom cell.

The model will then be generalized to DJK(S), but without the need for an accompanying map.

By definition, for σ = (i1, . . . , ik), let S
σ =

∏k
j=1 S

2
ij
, with the lower index recording coordinate

position, and letDJK(S2) =
⋃

σ∈K Sσ. Similarly, regardingCP∞ as BT where T = S1, by definition

DJK =
⋃

σ∈K BT σ, where BT σ = BTi1×· · ·×BTik , again with the lower index recording coordinate

position. Let ıσ : Sσ −→ BT σ be the product map
∏k

j=1 ı. Then the map DJK(S)
DJK(ı)
−→ DJK is,

by definition,
⋃

σ∈K ıσ.

Many useful properties of Adams-Hilton models were proved in [AH]; a nice summary can be found

in [An, 8.1]. First, an Adams-Hilton model of a CW -subspace can be extended to one for the whole

space. Start with the inclusion of the bottom cell S2 ı
−→ CP∞. Then an Adams-Hilton model for S2

can be extended to one for CP∞. Second, an Adams-Hilton model for a product AH(X×Y ) can be

chosen so that it is quasi-isomorphic to A(X)⊗A(Y ), and this respects the quasi-isomorphisms θX×Y

and θX⊗θY to the respective cubical singular chain complexes. In our case, this lets us take the given

model AH(S2) for S2 and its extension AH(CP∞) for CP∞ and produce a model for Sσ mapping to

BT σ which, up to quasi-isomorphisms, is AH(S2)⊗σ mapping factor-wise to AH(CP∞)⊗σ. Third,

Adams-Hilton models preserve colimits, given coherency conditions. That is, if {Xα} is a family of

CW -subcomplexes of X and X =
⋃

α Xα, and there are models AH(Xα) satisfying the coherency

conditions dVα
|AH(Xα∩Xβ) = dVβ

|AH(Xα∩Xβ) and θXα
|AH(Xα∩Xβ) = θXβ

|AH(Xα∩Xβ) for all pairs

(α, β), then colimαAH(Xα) is an Adams-Hilton model for X . In our case, we have DJK(S)
DJK(ı)
−−−−→

DJK equalling, by definition,
⋃

σ∈K Sσ

⋃
σ∈K ıσ

−−−−−−→
⋃

σ∈K BT σ. Notice that intersection Sσ1 ∩ Sσ2 is

again a sub-product, namely Sσ1∩σ2 . Similarly, BT σ1 ∩ BT σ2 = BT σ1∩σ2 . Thus the compatibility

of Adams-Hilton models with products implies that the coherency conditions will be satisfied for
⋃

σ∈K Sσ and
⋃

σ∈K BT σ, and for the map
⋃

σ∈K iσ. Hence we have

AH(DJK(S))
=

//

AH(DJK(ı)

��

colimσ∈KAH(Sσ)

colimσ∈KAH(ıσ)

��

AH(DJK)
=

// colimσ∈KAH(BT σ).

Since homology commutes with colimits, after taking homology we obtain the following.
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Proposition 4.2. Let K be a simplicial complex on n vertices. There is a commutative diagram of

algebras

H∗(ΩDJK(S2);Q)
∼=

//

(ΩDJK(ı))∗

��

colimσ∈KH∗(ΩS
σ;Q)

colimσ∈K(Ωıσ)∗
��

H∗(ΩDJK ;Q)
∼=

// colimσ∈KH∗(ΩBT σ;Q).

�

Next, we consider an analogue of Proposition 4.2 with respect to MF -complexes and fat wedges.

To distinguish fat wedges, given σ = (i1, . . . , ik), let FW (S2, σ) be the fat wedge of
∏k

j=1 S
2
ij
,

where the lower index refers to coordinate position. Let FW (σ) be the fat wedge of
∏k

j=1 CP
∞
ij
.

Let ıσ : FW (S2, σ) −→ FW (σ) be the map of fat wedges induced by ı. Note that FW (S2, σ) =
⋃

τ∈(∆k)k−1
Sτ and FW (σ) =

⋃
τ∈(∆k)k−1

BT τ . Suppose K is an MF -complex on n vertices. Then

DJK(S) =
⋃

σ∈MF (K)

FW (S2, σ) =
⋃

σ∈MF (K)

⋃

τ∈(∆k)k−1

Sτ

is simply a reorganization of the union in DJK(S) =
⋃

τ∈K Sτ . Crucially, observe that if σ1 6= σ2

then the intersection FW (S2, σ1) ∩FW (S2, σ2) is a sub-product of
∏n

i=1 S
2. Thus, under the reor-

ganization of the union, the coherency conditions for the Adams-Hilton model will be satisfied. The

same is true for DJK and the map DJK(ı). Thus, in this case, Proposition 4.2 can be reformulated

as follows.

Proposition 4.3. Let K be an MF -complex. There is a commutative diagram of algebras

H∗(ΩDJK(S2);Q)
∼=

//

(ΩDJK(ı))∗

��

colimσ∈MF (K)H∗(ΩFW (S2, σ);Q)

colimσ∈MF (K)(Ωıσ)∗

��

H∗(ΩDJK ;Q)
∼=

// colimσ∈MF (K)H∗(ΩFW (σ);Q)

�

Proposition 4.3 reduces the problem of calculating H∗(ΩDJK(S2);Q) and H∗(ΩDJK ;Q) to that

of calculating the rational homology of looped fat wedges – with the proviso that the underlying

model for the fat wedges must be compatible with the inclusion of sub-products. In our case we

want more, that the homology of the looped fat wedges also keeps track of the Hurewicz images of

adjointed higher Whitehead products. We will discuss this further in the next section.

Observe that the argument for producing an Adams-Hilton model of DJK(S2) above is equally

valid for DJK(X), where X = {X1, . . . , Xn}. The cases we particularly care about are S =

{Sm1+1, . . . , Smn+1}, with the special case of DJK(S2), and the case of DJK . The focus is on

these cases as they give models which can be explicitly calculated. We do so for DJK(S) in Sec-

tion 6 and DJK in Section 7. For future reference, we state the case for S.
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Proposition 4.4. Let K be an MF -complex. An Adams-Hilton model for DJK(S) is

AH(DJK(S)) = colimσ∈MF (K)AH(FW (σ)).

�

5. An Adams-Hilton model for FW (S)

We are aiming for an Adams-Hilton model for FW (S) over Q which is compatible with the

inclusion of sub-products, and which keeps track of the Hurewicz images of adjointed higher White-

head products. We will obtain one by using Allday’s construction of a minimal Quillen model for

π∗(ΩFW (S))⊗Q and then using this to produce an Adams-Hilton model for H∗(ΩFW (S);Q).

We begin with some general statements which hold for any path-connected spaceX . Assume from

now on that the ground ring R is Q. Observe that π∗(X) can be given the structure of a graded Lie

algebra by using the Whitehead product to define the bracket. Equivalently, by adjointing, π∗(ΩX)

may be given the structure of a graded Lie algebra by using the Samelson product. Quillen [Q]

associated to X a free differential graded Lie algebra λ(X) over Q with the property that there is

an isomorphism H∗(λ(X)) −→ π∗(ΩX)⊗Q. The free property of λ(X) lets us write it as L〈V ; dV 〉

for some graded Q-module V and differential dV on V . A Quillen model MQ(X) is minimal if the

differential has the property that d(L〈V 〉) ⊆ [L〈V 〉, L〈V 〉].

Allday [Al] gave an explicit construction of a minimal Quillen model for π∗(ΩFW (S))⊗Q. This

is stated in Theorem 5.1 once some notation has been introduced. The cells of FW (S) are in one-

to-one correspondence with sequences (i1, . . . , ik) where 1 ≤ i1 < · · · < ik ≤ n and k < n. The

sequence (i1, . . . , ik) corresponds to the top cell of the coordinate subspace Smi1+1 × · · · × Smik
+1

within FW (S). This cell has dimension Σk
s=1(mis + 1). Note that the condition k < n excludes

only one sequence, (1, 2, . . . , n), corresponding to the top cell of the product Sm1+1 × · · · × Smn+1.

Allday’s minimal Quillen model for π∗(ΩFW (S)⊗Q is of the form

MQ(FW (S)) = L〈V ; dV 〉

where V has one generator bI for each sequence I = (i1, . . . , ik) with 1 ≤ i1 < · · · < ik ≤ n

and k < n, and the degree of bI is (Σk
s=1(mis + 1)) − 1. Similarly, his minimal Quillen model for

π∗(Ω
∏n

i=1 S
mi+1)⊗Q is of the form

MQ(
n∏

i=1

Smi+1) = L〈W ; dW 〉

where W has one generator bI for each sequence I = (i1, . . . , ik) with 1 ≤ i1 < · · · < ik ≤ n, and

the degree of bI is (Σk
s=1(mis + 1))− 1.

To describe the differentials dV and dW , fix a sequence I = (i1, . . . , ik) where 1 ≤ i1 < · · · < ik ≤ n

and k ≥ 2. If k < n this corresponds to a generator bI of V , and if k ≤ n this corresponds to a

generator bI ofW . In either case, the degree of bI is |bI | = (Σk
s=1mis+1)−1. Let SI be the collection
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of all shuffles (J, J ′) of {i1, . . . , ik} with the property that j1 = 1 (known as a type II shuffle relative

to 1). If (J, J ′) is an (r, s)-shuffle of {1, . . . , k}, let ǫ(J, J ′) ∈ {0, 1} be the number determined

by the equation zi1 · · · zik = (−1)ǫ(J,J
′)zj1 · · · zjrzj′1 · · · zj′s in the graded rational symmetric algebra

generated by zi1 , . . . , zik with |zit | = mit + 1 for 1 ≤ t ≤ k. Let

aI = −Σ(J,J′)∈SI
(−1)|bI |+ǫ(J,J′)[bJ , bJ′ ].

As special cases, let b = b(1,...,n) and a = a(1,...,n).

Theorem 5.1. With V and W as defined above, minimal Quillen models L〈V ; dV 〉 and L〈W ; dW 〉

for π∗(ΩFW (S))⊗Q and π∗(
∏n

i=1 ΩS
mi+1)⊗Q can be chosen to satisfy the following properties:

(a) W = V ⊕ {b};

(b) dV (bI) = 0 if I = (i) for 1 ≤ i ≤ n;

(c) dV (bI) = aI for I = (i1, . . . , ik) with 2 ≤ k < n;

(d) dW restricted to V is dV ;

(e) dW (b) = a;

(f) the adjoint of the higher order Whitehead product S|b|−1 φn
−→ FW (S) which at-

taches the top cell to the product
∏n

i=1 S
mi+1 is homotopic to a.

�

There is an explicit map α : L〈V 〉 −→ π∗(ΩFW (S)). Let bI ∈ V for I = (i1, . . . , ik). This

corresponds to the top cell of the coordinate subspace Smi1+1 × · · · × Smik
+1 in FW (S). Let

FW (i1, . . . , ik) be the fat wedge in Smi1+1 × · · · × Smik
+1. Let α(bI) be the adjoint of the com-

posite S|bI |−1 φk−→ FW (i1, . . . , ik) −→
∏k

j=1 S
mij

+1 −→ FW (S), where the latter two maps are

the inclusions. Now extend α to L〈V 〉 by using the fact that π∗(ΩFW (S)) ⊗ Q is a Lie algebra

under the Samelson product. Allday’s statement that L〈V ; dV 〉 is a minimal Quillen model for

π∗(ΩFW (S)⊗Q says two things: first, that α can be upgraded from a map of Lie algebras to a map

of differential graded Lie algebras, where the differential on π∗(ΩFW (S)) ⊗ Q is zero, and second,

that this upgraded map induces an isomorphism in homology. A similar construction can be made

with respect to
∏n

i=1 S
mi+1.

We now pass from a minimal Quillen model to an Adams-Hilton model. In general, observe that

the Hurewicz homomorphism π∗(ΩX)⊗Q −→ H∗(ΩX ;Q) factors as the composite π∗(ΩX)⊗Q
c

−→

CU∗(ΩX)
h

−→ H∗(ΩX ;Q), where CU∗(ΩX) is the cubical singular chain complex with coefficients

in Q, c is the canonical map to the cubical chains, and h is the quotient map to the homology of

the chain complex. Let MQ(X) be a minimal Quillen model for π∗(ΩX) ⊗ Q, and suppose there

is an associated map of differential graded Lie algebras α : MQ(X) = L〈VX ; dVX
〉 −→ π∗(ΩX)⊗Q

which induces an isomorphism in homology. Since CU∗(ΩX) is a differential graded algebra, the

composite c ◦ α extends to a map θX : UL〈VX ; dVX
〉 −→ CU∗(ΩX) of differential graded algebras.
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Thus there is a commutative diagram

(2)

L〈VX ; dVX
〉

i
//

α

��

UL〈VX ; dVX
〉

θX

��

π∗(ΩX)⊗Q
c

// CU∗(ΩX)
h

// H∗(ΩX ;Q)

where i is the inclusion. By Milnor-Moore [MM], regarding π∗(ΩX) ⊗ Q as a Lie algebra, we have

H∗(ΩX ;Q) ∼= U(π∗(ΩX) ⊗ Q), with the isomorphism induced by the Hurewicz homomorphism.

On the other hand, h is a map of differential graded algebras once H∗(ΩX ;Q) has been given

the zero differential. Thus h ◦ θX is a map of differential graded algebras, and therefore it is

determined by its restriction to the generating set V . The commutativity of the diagram implies

that h◦θX |V = h◦c◦α|V =: q. Thus h◦θX = U(q), implying that h◦θX induces an isomorphism in

rational homology. Hence UL〈VX ; dVX
〉 together with the quasi-isomorphism θX is an Adams-Hilton

model for X .

In our case, we obtain Adams-Hilton models (UL〈V ; dV 〉, θFW ) and (UL〈W ; dW 〉, θ∏) for FW (S)

and
∏n

i=1 S
mi+1, respectively. Theorem 5.1 therefore implies the following.

Theorem 5.2. The Adams-Hilton models AH(FW (S)) = (UL〈V ; dV 〉, θFW ) and AH(
∏n

i=1 S
mi+1) =

(UL〈W ; dW 〉, θ∏) have the following properties:

(a) W = V ⊕ {b};

(b) dV (bI) = 0 if I = (i) for 1 ≤ i ≤ n;

(c) dV (bI) = aI for I = (i1, . . . , ik) with 2 ≤ k < n;

(d) dW restricted to AH(FW (S)) is dV ;

(e) dW (b) = a;

(f) the adjoint of the higher order Whitehead product S|b|−1 φn
−→ FW (S) which at-

taches the top cell to the product
∏n

i=1 S
mi+1 has “Hurewicz” image a.

�

Remark 5.3. The inductive definition of the differential dV in the minimal Quillen model L〈V ; dV 〉

for FW (S) in Theorem 5.2 implies that the differential is compatible with the inclusion of sub-

products. The same is therefore true in UL〈V ; dV 〉. Moreover, the differential dV is what turns

the map α into a map of differential graded Lie algebras, and so both α and its extension to the

quasi-isomorphism θFW are compatible with the inclusion of sub-products.

As well as the inductive nature of the Adams-Hilton model, Theorem 5.2 also explicitly identifies

the “Hurewicz” image of the adjoint of the higher order Whitehead product φn. We put Hurewicz in

quotes as this image is an element in an Adams-Hilton model, whereas the honest Hurewicz image

is obtained after taking homology. That is, a is a cycle in AH(FW (S)), which could also be a

boundary. This turns out not to be the case. Observe that there is a sequence of isomorphisms
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H∗(AH(FW (S))) ∼= H∗(UL〈V ; dV 〉) ∼= U(H∗(L〈V ; dV 〉)), since homology commutes with the uni-

versal enveloping algebra functor. To calculate H∗(L〈V ; dV 〉) we proceed exactly as in [B], where

Bubenik used separated Lie models to elegantly obtain the answer. This is stated in Theorem 5.4

in terms of the universal enveloping algebra rather than the Lie algebra as we are ultimately after

H∗(ΩFW (S);Q). To state the result we need to introduce more notation. For 1 ≤ i ≤ n, let bi be

the generator in V (or W ) corresponding to the sequence I = (i). That is, bi corresponds to the

cell Smi+1 in Sm1+1 × · · · × Smn+1. Let N = (Σk
i=1mi + 1)− 2. In general, for a Q-module M , let

Lab〈M〉 be the free abelian Lie algebra generated by M . That is, the bracket is identically zero in

Lab〈M〉. Note that H∗(AH(
∏k

j=1 S
mj+1)) ∼= ULab〈b1, . . . , bn〉.

Theorem 5.4. For n ≥ 3, there are algebra isomorphisms

H∗(ΩFW (S);Q) ∼= H∗(AH(FW (S))) ∼= U(Lab〈b1, . . . , bn〉
∐

L〈u〉)

where u, of degree N , is the Hurewicz image of the adjoint of the higher Whitehead product φn.

Further, the looped inclusion ΩFW (S) −→
∏n

i=1 ΩS
mi+1 is modelled by the map

U(Lab〈b1, . . . , bn〉
∐

L〈u〉)
U(π)
−→ ULab〈b1, . . . , bn〉

where π is the projection. �

Note that the calculation of H∗(ΩFW (S);Q) is not new, it was originally done by Lemaire [L].

What is important to keep in mind about Theorem 5.4 is that the calculation also keeps track of

the Hurewicz image of the adjointed higher Whitehead product φn.

Remark 5.5. When n = 2, we have FW (S) = Sm1+1 ∨ Sm2+1 and then it is well known that

H∗(ΩFW (S);Q) ∼= H∗(Ω(S
m1+1 ∨ Sm2+1);Q) ∼= UL〈b1, b2〉. In this case φ2 is the ordinary White-

head product and its adjoint has Hurewicz image u = [b1, b2]. In this case we can regard L〈b1, b2〉

as Lab〈b1, b2〉
∐

L〈u〉, modulo Jacobi identities on brackets of the form [u,−] = [[b1, b2],−].

6. Properties of ΩDJK(S) and ΩZK(S) for MF -complexes

In this section we explicitly calculate H∗(ΩDJK(S);Q) when K is an MF -complex, proving

Theorem 1.4. This is then used in tandem with the loops on the homotopy fibration ZK(S)
f

−→

DJK(S)
g

−→
∏n

i=1 S
mi+1 to calculate H∗(ΩZK(S);Q). We then give a homotopy decomposition of

ZK(S) as a wedge of spheres and desribe the map ZK(S) −→ DJK(S) in terms of higher Whitehead

products and iterated Whitehead products, proving Theorem 1.6.

Remark 6.1. To simplify the presentation, for the remainder of Sections 6 and 7 we will assume

that the given MF -complex K has the property that |σ| > 1 for every σ ∈ MF (K). This is to

appeal directly to Theorem 5.4. If |σ| = 1 for some σ = (i1, i2) ∈ MF (K), then the calculations can

be modified by regarding L〈bi1 , bi2〉 as Lab〈bi1 , bi2〉
∐

L〈u〉 for u = [bi1 , bi2 ] as in Remark 5.5, and by

introducing the ideal J discussed in the Introduction.
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We begin by calculating H∗(ΩDJK(S);Q) using the Adams-Hilton model

AH(DJK(S)) = colimσ∈MF (K)AH(FW (σ))

in Proposition 4.4. Let b1, . . . , bn be the generators in AH(DJK(S)) corresponding to the cells

Sm1+1, . . . , Smn+1 respectively. For σ = (i1, . . . , ik) ∈ K, observe that {bi1 , . . . , bik} corresponds

to the cells Smi+1 which are in FW (σ). Let Nσ = (Σk
j=1mij + 1) − 2. By Theorem 5.4, we have

H∗(AH(FW (σ))) ∼= U(Lab〈bi1 , . . . , bik〉
∐

L〈uσ〉) where uσ is the Hurewicz image of the adjoint of

a higher Whitehead product SNσ+1 −→ FW (σ).

Proof of Theorem 1.4: Consider the string of isomorphisms

H∗(ΩDJK(S);Q) ∼= H∗(AH(DJK(S))

∼= colimσ∈MF (K)H∗(AH(FW (σ)))

∼= colimσ∈MF (K)U(Lab〈bi1 , . . . , bik〉
∐

L〈uσ〉)

∼= U(colimσ∈MF (K)Lab〈bi1 , . . . , bik〉
∐

L〈uσ〉)

∼= U(Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉).

The first isomorphism exists because AH(DJK(S)) is an Adams-Hilton model. The second isomor-

phism exists because AH(DJK(S)) ∼= colimσ∈MF (K)AH(FW (σ)) by Proposition 4.4, and because

homology commutes with colimits. The third isomorphism exists by Theorem 5.4. For the fourth

isomorphism, Remark 5.3 implies that the calculation of H∗(AH(FW (σ))) ∼= U(Lab〈bi1 , . . . , bik〉)

is compatible with the inclusion of sub-products. Therefore both the underlying Lie algebra and

its universal enveloping algebra respect the colimit over MF (K). Hence the fourth isomporphism

holds, and the fifth isomorphism is obtained by evaluating the colimit. This establishes the asserted

isomorphism. The statement regarding Hurewicz images now follows from that in Theorem 5.4. The

statement regarding the model for the looped inclusion follows again from Remark 5.3 regarding the

compatibility of the colimit with the inclusion of sub-products. �

Theorem 1.4 is the crucial algebraic result. We first use it to determine H∗(ΩZK(S);Q), and

then to determine a more detailed description of the Hurewicz homomorphism.

Since Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉 is a coproduct, there is a short exact sequence of

graded Lie algebras

(3) L〈R〉
i

−→ Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉
π

−→ Lab〈b1, . . . , bn〉

where i is the inclusion, π is the projection, and

R = {[[uσ, bj1 ], . . . , bjl ] | σ ∈ MF (K), 1 ≤ j1 ≤ · · · ≤ jl ≤ n, 0 ≤ l < ∞}.

Here, when l = 0 we interpret the bracket as simply being uσ.
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Proposition 6.2. There is a commutative diagram of algebras

H∗(ΩZK(S);Q)
(Ωf)∗

//

∼=

��

H∗(ΩDJK(S);Q)

∼=

��

UL〈R〉
U(i)

// U(Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉).

Proof. By [CMN, 3.7], a short exact sequence of graded Lie algebras induces a short exact sequence

of Hopf algebras. In our case, (3) induces a short exact sequence

UL〈R〉
U(i)
−→ U(Lab〈b1, . . . , bn〉

∐
L〈uσ | σ ∈ MF (K)〉)

U(π)
−→ ULab〈b1, . . . , bn〉.

Here, by a short exact sequence of Hopf algebras, we mean that there is an isomorphism

U(Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉) ∼= ULab〈b1, . . . , bn〉 ⊗ UL〈R〉

as rightUL〈R〉-modules and left ULab〈b1, . . . , bn〉-comodules. In particular, U(i) is the algebra kernel

of U(π). On the other hand, Theorem 1.4 implies that U(π) is a model for the looped inclusion

ΩDJK(S)
Ωg
−→

∏n
i=1 ΩS

mi+1. Since Ωg has a right homotopy inverse, the homotopy decomposition

ΩDJK(S) ≃ (
∏n

i=1 ΩS
mi+1)×ΩZK(S) implies that there is a short exact sequence of Hopf algebras

H∗(ΩZK(S);Q) −→ H∗(ΩDJK(S);Q)
U(π)
−→ H∗(

∏n
i=1 ΩS

mi+1;Q). Thus H∗(ΩZK(S);Q) is also the

algebra kernel of U(π), and the proposition follows. �

Theorem 1.4 implies that the rational homology of ΩDJK(S) is generated by Hurewicz images.

Specifically, for σ ∈ MF (K), let

wσ : S
Nσ+1 φk

−→ FW (σ) −→ DJK(S)

be the higher Whitehead product. Let

sσ : S
Nσ −→ ΩDJK(S)

be the adjoint of wσ. As stated in Theorem 1.4, the element uσ ∈ H∗(ΩDJK(S);Q) is the Hurewicz

image of sσ. For 1 ≤ i ≤ n, let

ai : S
mi+1 −→ DJK(S)

be the coordinate inclusion and let

āi : S
mi −→ ΩDJK(S)

be the adjoint of ai. The Hurewicz image of āi is bi. Let I be the index set for R. Then α ∈ I

corresponds to a face σ ∈ MF (K) and a sequence (j1, . . . , jl) where 1 ≤ j1 ≤ · · · ≤ jl ≤ n and

0 ≤ l < ∞. Given such an α, let tα = (Σl
t=1mjt) + (Nσ − 2). Then there is a Samelson product

[[sσ, āj1 ], . . . , ājl ] : S
tα −→ ΩDJK(S).
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Since Samelson products commute with Hurewicz images, the Hurewicz image of [[sσ, āj1 ], . . . , ājl ]

is [[uσ, bj1 ], . . . , bjl ]. Adjointing, we have a Whitehead product

[[wσ, aj1 ], . . . , ajl ] : S
tα+1 −→ DJK(S).

Taking the wedge sum over all possible α, we obtain a map

W :
∨

α∈I

Stα+1 −→ DJK(S).

Corollary 6.3. The map Ω(
∨

α∈I S
tα+1)

ΩW
−→ ΩDJK(S) induces in rational homology the map

UL〈R〉
U(i)
−→ U(Lab〈b1, . . . , bn〉

∐
L〈uσ | σ ∈ MF (K)〉).

Proof. Let S be the composite

S :
∨

α∈I

Stα E
−→ Ω(

∨

α∈I

Stα+1)
ΩW
−→ ΩDJK(S).

Then S is homotopic to the adjoint of W . In particular, the wedge summands of S are the Samelson

products [[sσ, āj1 ], . . . , ājl ] for α ∈ I. Thus, taking Hurewicz images, S∗ is the composite

ī : R →֒ UL〈R〉
U(i)
−→ U(Lab〈b1, . . . , bn〉

∐
L〈uσ | σ ∈ MF (K)〉)

∼=
−→ H∗(ΩDJK(S)).

By the Bott-Samelson Theorem, H∗(Ω(
∨

α∈I Stα+1);Q) ∼= T (H̃∗(
∨

α∈I S
tα ;Q)), and the latter al-

gebra is isomorphic to UL〈R〉. Therefore, as (ΩW )∗ is the multiplicative extension of S∗, it induces

the multiplicative extension U(i) of ī. �

Finally, we bring ZK(S) back into the picture.

Theorem 6.4. The map
∨

α∈I Stα+1 W
−→ DJK(S) lifts to ZK(S), and induces a homotopy equiva-

lence
∨

α∈I S
tα+1 −→ ZK(S).

Proof. By Lemma 3.3, each higher Whitehead product wσ lifts to ZK(S). Therefore each iterated

Whitehead product [[wσ, aj1 ], . . . , ajl ] into DJK(S) composes trivially to
∏n

i=1 S
mi+1 and so lifts to

ZK(S). Hence there is a lift
∨

α∈I S
tα+1

W

��

λ

yyrr
r
r
r
r
r
r
r
r

ZK(S) // DJK(S)

for some map λ.

After looping, Corollary 6.3 implies that the map Ω(
∨

α∈I S
tα+1)

Ωλ
−→ ΩZK(S) induces an inclu-

sion UL〈R〉
(Ωλ)∗
−→ H∗(ΩZK(S);Q). By Proposition 6.2, there is an isomorphism H∗(ΩZK(S);Q) ∼=

UL〈R〉. Therefore a counting argument implies that the inclusion (Ωλ)∗ must be an isomorphism.

Hence Ωλ is a rational homotopy equivalence. That is, Ωλ induces an isomorphism of rational

homotopy groups. Therefore, so does λ, and so λ is a rational homotopy equivalence.



HIGHER WHITEHEAD PRODUCTS IN TORIC TOPOLOGY 19

To upgrade this to an integral homotopy equivalence, observe that ZK(S) is homotopy equivalent

to a wedge of simply-connected spheres by Corollary 1.3. Therefore λ is a map between two wedges

of simply-connected spheres which is a rational homotopy equivalence. In particular, λ induces an

isomorphism in rational homology. But as the integral homology of a wedge of spheres is torsion

free, a map inducing an isomorphism in rational homology also induces an isomorphism in integral

homology. Therefore, by Whitehead’s theorem, λ is an integral homotopy equivalence. �

Proof of Theorem 1.6: This is simply a rephrasing of Theorem 6.4. �

7. Properties of ΩDJK and ΩZK for MF -complexes

Let ı : S2 −→ CP∞ be the inclusion of the bottom cell. By naturality, there is a homotopy

fibration diagram

ZK(S2) //

ZK(ı)

��

DJK(S2) //

DJK(ı)

��

∏r
i=1 S

2

∏r
i=1 ı

��

ZK
// DJK //

∏r
i=1 CP

∞.

In this section we will use the calculations of H∗(ΩDJK(S2);Q) and H∗(ΩZK(S2);Q) in Section 6

to calculate H∗(ΩDJK ;Q), proving Theorem 1.5, and H∗(ΩZK ;Q). We then give a homotopy

decomposition of ZK as a wedge of spheres and desribe the map ZK −→ DJK in terms of higher

Whitehead products and iterated Whitehead products, proving Theorem 1.7.

By Proposition 4.3, H∗(ΩDJK) ∼= colimσ∈MF (K)H∗(ΩFW (σ);Q), so we first need to calculate

H∗(ΩFW (σ);Q) and then take a colimit to put the pieces together. We do this in Lemma 7.3 and

Proposition 1.5 after two preliminary lemmas. In general, let X1, . . . , Xn be path-connected spaces

and consider the fat wedge FW (X) in
∏n

i=1 Xi. Let j be the inclusion j : FW (X) −→
∏n

i=1 Xi.

Lemma 7.1. The map ΩFW (X)
Ωj
−→

∏n
i=1 ΩXi has a right homotopy inverse, which can be chosen

to be natural for maps Xi −→ Yi.

Proof. The inclusion
∨n

i=1 Xi −→ FW (X) is natural, as are the inclusions Xi −→
∨n

i=1 Xi for

1 ≤ i ≤ n. Now loop and consider the composite

m :

n∏

i=1

ΩXi −→

n∏

i=1

Ω(

n∨

i=1

Xi)
µ

−→ Ω(

n∨

i=1

Xi) −→ ΩFW (X),

where µ is the loop multiplication. All three maps in the composite are natural, and m is a right

homotopy inverse of Ωj. �

Let F be the homotopy fibre of j. As mentioned earlier, Porter [P2] showed that there is a

homotopy equivalence F ≃ Σn−1ΩX1∧· · ·∧ΩXn. Further, in [P1, 1.2] he showed that this homotopy

equivalence is natural for maps Xi −→ Yi. We record this as follows.
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Lemma 7.2. Let fi : Xi −→ Yi be maps between simply-connected spaces. There is a homotopy

commutative diagram between fibrations

Σn−1ΩX1 ∧ · · · ∧ ΩXn
//

Σn−1Ωf1∧···∧Ωfn

��

FW (X)
j

//

FW (f1,...,fn)

��

∏n
i=1 Xi

∏n
i=1 fi

��

Σn−1ΩY1 ∧ · · · ∧ ΩYn
// FW (Y )

j
//
∏n

i=1 Xi.

�

Let FW (S2) and FW (CP∞) be the fat wedges of
∏n

i=1 S
2 and

∏n
i=1 CP

∞ respectively. Let

FW (ı) : FW (S2) −→ FW (CP∞) be the map induced by the inclusion S2 ı
−→ CP∞.

Lemma 7.3. There is a commutative diagram of algebras

H∗(ΩFW (S2);Q)
∼=

//

(ΩFW (ı))∗

��

U(Lab〈b1 . . . , bn〉
∐

L〈u〉)

q

��

H∗(ΩFW (CP∞);Q)
∼=

// U(Lab〈b1, . . . , bn〉
∐

L〈u〉)/I

where u, of degree n− 2, is the Hurewicz image of the adjoint of a higher Whitehead product, I is

the ideal (b2i , [u, bi] | 1 ≤ i ≤ n), and q is the quotient map.

Proof. The isomorphism for H∗(ΩFW (S2);Q) holds by Theorem 5.4. To obtain the compatible

isomorphism for H∗(ΩFW (CP∞);Q) we first consider what happens on the level of spaces. By

Lemma 7.2, the map ı induces a homotopy commutative diagram

Σn−1(ΩS2)(n) //

Σn−1(Ωı)(n)

��

FW (S2)
j

//

FW (ı)

��

∏n
i=1 S

2

∏n
i=1 ı

��

Σn−1(ΩCP∞)(n) // FW (CP∞)
j

//
∏n

i=1 CP
∞.

Note that ΩCP∞ ≃ S1 so Σn−1(ΩCP∞)(n) ≃ S2n−1. Also, since S1 E
−→ ΩS2 is a right homo-

topy inverse for Ωı, if we let s = Σn−1E(n) and t = Σn−1(Ωi)(n), then the composite S2n−1 s
−→

Σn−1(ΩS2)(n)
t

−→ S2n−1 is homotopic to the identity map.

After looping we obtain a homotopy commutative diagram

(4)

Ω(Σn−1(ΩS2)(n)) //

Ωt

��

ΩFW (S2)
Ωj

//

ΩFW (ı)

��

∏n
i=1 ΩS

2

∏
n
i=1 Ωı

��

ΩS2n−1 // ΩFW (CP∞)
Ωj

//
∏n

i=1 S
1.
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By Lemma 7.1, Ωj has a natural right homotopy inverse, so there is a homotopy commutative

diagram of sections

(5)

∏n
i=1 ΩS

2 m
//

∏n
i=1 Ωı

��

ΩFW (S2)

ΩFW (ı)

��∏n
i=1 S

1 m
// ΩFW (CP∞).

Now we examine the effect of (5) in homology. By Theorem 1.4 and Proposition 6.2, a model for

the homology of the homotopy fibration along the top row of (4) is

(6) UL〈R〉
U(i)
−→ U(Lab〈b1, . . . , bn〉

∐
L〈u〉)

U(π)
−→ ULab〈b1, . . . , bn〉,

where R = {[[u, bj1 ], . . . , bjl ] | 1 ≤ j1 ≤ · · · ≤ jl ≤ n, 0 ≤ l < ∞}. From (5), we obtain a right

inverse m∗ of U(π). In particular, if H∗(
∏n

i=1 ΩS
2;Q) ∼= Q[c1, . . . , cn], then m∗(ci) = bi + γi for

some γi ∈ UL〈R〉. However, the least degree of UL〈R〉 which is nontrivial is 2n − 1, while ci has

degree 1. As n ≥ 3, for degree reasons we must have γi = 0. Thus m∗(ci) = bi. For similar degree

reasons, we have m∗(c
2
i ) = b2i (even though m∗ may not be multiplicative). On the other hand, (Ωı)∗

is an isomorphism on the first homology group and the same is true after composing with m∗, while

(Ωı)∗(c
2
i ) = 0. Thus the commutativity of (5) after taking homology implies that for 1 ≤ i ≤ n,

(ΩFW (ı))∗ is degree one on bi while (ΩFW (ı))∗(b
2
i ) = 0. The latter implies by multiplicativity that

(ΩFW (ı))∗ sends the ideal (b21, . . . , b
2
n) to 0.

Next, consider the commutator [u, bi] ∈ H∗(ΩFW (S2);Q). In terms of (6), [u, bi] composes

trivially with U(π) and so is the image of an element δi ∈ UL〈R〉. Note that δi has degree 2n.

Taking homology in (4), we see that (Ωt)∗(δi) = 0 for degree reasons. Thus the commutativity of

the left square in (4) implies that (ΩFW (ı))∗([u, bi]) = 0. By multiplicativity, (ΩFW (ı))∗ therefore

sends the ideal I = (b2i , [u, bi] | 1 ≤ i ≤ n) to 0.

Thus there is a factorization

(7)

H∗(ΩFW (S2);Q)
∼=

//

(ΩFW (ı))∗

��

U(Lab〈b1 . . . , bn〉
∐

L〈u〉)

q

��

H∗(ΩFW (CP∞);Q) U(Lab〈b1, . . . , bn〉
∐

L〈u〉)/I
h

oo

for some algebra map h, which is degree one on bi for each 1 ≤ i ≤ n. In addtion, the fact that Ωt

has a right homotopy inverse implies that h is degree one on u.

We claim that h is an isomorphism, from which the lemma would follow. To see the isomor-

phism, let I ′ be the ideal ([u, bi] | 1 ≤ i ≤ n). Observe that U(Lab〈b1, . . . , bn〉
∐

L〈u〉)/I ′ is iso-

morphic to ULab〈b1, . . . , bn, u〉 ∼= Q[b1, . . . bn, u]. Thus U(Lab〈b1, . . . , bn〉
∐

L〈u〉)/I is isomorphic

to Λ(b1, . . . , bn) ⊗ Q[u]. On the other hand, the section m in (5) implies that there is a homo-

topy decomposition ΩFW (CP∞) ≃ (
∏n

i=1 S
1) × ΩS2n−1. Thus there is a coalgebra isomorphism
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H∗(ΩFW (CP∞);Q) ∼= Λ(c1, . . . , cn)⊗Q[v] where v has degree 2n− 1. From the use of m and t in

both the homotopy decomposition of ΩFW (CP∞) and the factorization of (ΩFW (ı))∗ through h,

we see that h(bi) = ci for 1 ≤ i ≤ n and h(u) = v. As h is an algebra map, it therefore induces an

isomorphism. �

Now we pass to a colimit of fat wedges to prove Theorem 1.5.

Proof of Theorem 1.5: With σ = (i1, . . . , ik), consider the diagram

H∗(ΩDJK(S2);Q)
(ΩDJK(ı))∗

//

∼=

��

H∗(ΩDJK ;Q)

∼=

��

colimσ∈MF (K)U(Lab〈bi1 , . . . , bik〉
∐

L〈uσ〉)
colimσ∈MF (K)qσ

//

∼=

��

colimσ∈MF (K)U(Lab〈bi1 , . . . , bik〉
∐

L〈uσ〉)/Iσ

∼=

��

U(Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉)
q

// U(Lab〈W 〉
∐

L〈uσ | σ ∈ MF (K)〉)/I

where Iσ is the ideal generated by (b2σi
, [uσ, bjσ ] | jσ ∈ {i1, . . . , ik}). The upper square commutes

by combining Proposition 4.3 and Lemma 7.3. The lower square is the result of evaluating the

colimit, and so commutes. Note that both squares commute as maps of algebras. The lower row

is the isomorphism asserted by the theorem, and the outer rectangle is the asserted commutative

diagram. �

Next, we use Theorem 1.5 to calculate H∗(ΩZK ;Q) in Proposition 7.5 as the universal enveloping

algebra of a certain free graded Lie algebra. This will involve some explicit calculations involving

graded Lie algebra identities, which we recall now. In general, if L is a graded Lie algebra over Q

with bracket [ , ], there is a graded anti-symmetry identity [x, y] = −(−1)|x||y|[y, x] for all x, y ∈ L

and a graded Jacobi identity [[x, y], z] = [x, [y, z]]− (−1)|x||y|[y, [x, z]] for all x, y, z ∈ L.

The ideal in Theorem 1.5 involves brackets of the form [uσ, bj ] where j ∈ {i1, . . . , ik}, where

σ = (i1, . . . , ik). Thus in the quotient we need to keep track of brackets of the form [uσ, bj] where j

is in the complement of {i1, . . . , ik}. Let Jσ = {1, . . . , n} − {i1, . . . , ik}. Consider the free graded

Lie algebra generated by

R̃ = {[[uσ, bj1 ], . . . , bjl ] | σ ∈ MF (K), {j1, . . . , jl} ⊆ Jσ, 1 ≤ j1 < · · · < jl ≤ n, 0 ≤ l ≤ n}.

Note that each jt can appear at most once in any given bracket. This should be compared to the

Q-module R, where each jt can appear arbitrarily many times in a given bracket. Let iR : R̃ −→ R

be the inclusion and πR : R −→ R̃ be the projection.

Lemma 7.4. There is a short exact sequence of Lie algebras

L〈R̃〉
ĩ

−→ (Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉)/Ĩ
π̃

−→ Lab〈b1, . . . , bn〉/Ĩ
′
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where Ĩ is the ideal Ĩ = ([bi, bi], [uσ, bjσ ] | 1 ≤ i ≤ n, σ ∈ MF (K), jσ ∈ {i1, . . . , ik}), Ĩ
′ is the ideal

([bi, bi] | 1 ≤ i ≤ n), ĩ is the inclusion, and π̃ is the projection.

Proof. To simplify notation, let L = Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉. Observe from the

definitions of Ĩ and Ĩ ′ that there is a commutative diagram

L
π

//

q

��

Lab〈b1, . . . , bn〉

q′

��

L/Ĩ
π̃

// Lab〈b1, . . . , bn〉/Ĩ
′

where q and q′ are the quotient maps. By (3), the kernel of π is L〈R〉. Let L̃ be the kernel of π̃.

The commutativity of the diagram implies that there is an induced map q̃ : L〈R〉 −→ L̃.

We claim that q̃ is a surjection. Let x ∈ L̃ and let x also denote its image in L/Ĩ. As q is onto

there is an element y ∈ L such that q(y) = x. Let z = π(y). If z = 0 then by exactness y lifts

to ỹ ∈ L〈R〉 and so q̃(ỹ) = x. If z 6= 0, then q′(z) = 0 by exactness. Since L is a coproduct, the

projection π has a right inverse r : Lab〈b1, . . . , bn〉 −→ L which is a map of Lie algebras. As the

generators of the ideal Ĩ ′ are all generators of the ideal Ĩ, we have (q ◦ r)(m) = 0 if and only if

q′(m) = 0 for any m ∈ Lab〈b1, . . . , bn〉. Thus r(z) has the property that (q ◦ r)(z) = 0. Therefore

ỹ = y − r(z) lifts to L〈R〉 and q(y − r(z)) = q(y) = x, so q̃(ỹ) = x. Hence q̃ is a surjection.

Now q̃ is a surjection and L̃ injects into L/Ĩ. Therefore L̃ is isomorphic to the image of L〈R〉

under q. We next show that this image is L〈R̃〉. We first perform two short calculations.

Calculation 1 : The Jacobi identity states that [[a, bi], bj] = [a, [bi, bj]] − (−1)|a||bi|[bi, [a, bj]] for any

a ∈ L and any 1 ≤ i, j ≤ n. The abelian property of Lab〈b1, . . . , bn〉 implies that [bi, bj] = 0 and so

[a, [bi, bj ]] = 0. By the anti-symmetry identity, −(−1)|a||bi|[bi, [a, bj]] = (−1)|a||bi|+|bi||[a,bj]|[[a, bj ], bi].

Since |bi| = 1 for 1 ≤ i ≤ n, the sign on the right side of this equation equals (−1)2|a|+1, which

is −1. Therefore [[a, bi], bj ] = −[[a, bj], bi].

Calculation 2 : The Jacobi identity states that [[a, bi], bi] = [a, [bi, bi]] − (−1)|a||bi|[bi, [a, bi]] for any

a ∈ L and 1 ≤ i ≤ n. Since [bi, bi] = 0 in L, we have [a, [bi, bi]] = 0. As in Calculation 1, the anti-

symmetry identity shows that −(−1)|uσ|[bi, [a, bi]] = −[[a, bi], bi]. Thus [[a, bi], bi] = −[[a, bi], bi], and

so 2[[a, bi], bi] = 0. As L is a Lie algebra over Q, 2 is invertible and so [[a, bi], bi] = 0.

By Calculation 1, up to sign change, whenever consecutive b’s appear in a bracket of L〈R〉 or L

their order can be interchanged. By Calculation 2, the effect of taking the quotient in L〈R〉 and L by

the ideal I ′ = ([bi, bi] | 1 ≤ i ≤ n) is to annihilate all brackets in which appears a copy of [a, [bi, bi]].

Together with Calculation 1 which lets us freely interchange consecutive b’s, any bracket of the form

[[uσ, bj1 ], . . . , bjl ] is zero if any bjt appears more than once. Thus, the only such nontrivial brackets

must have 1 ≤ j1 < · · · < jl ≤ n, 0 ≤ l < n, as in the definition of R̃. The effect of then taking the

quotient by the ideal generated by [uσ, bjσ ] for jσ ∈ {i1, . . . , ik} is to annihilate those brackets in
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{[[uσ, bj1 ], . . . , bjl ] | σ ∈ MF (K), 1 ≤ j1 < · · · < jl ≤ n, 0 ≤ l < n} which do not have j1, . . . , jl ∈ Jσ.

Thus the image of L〈R〉 under q is L〈R̃〉. �

In general, the image of a graded Lie algebra L in its universal enveloping algebra UL has the

property that [x, y] = xy−(−1)|x||y|yx, where the multiplication is taking place in UL. In particular,

the anti-symmetry identity implies that [x, x] = 2x2 if the degree of x is odd. Thus if 2 has been

inverted in the ground ring, then the ideal in UL generated by [x, x] is identical to the ideal generated

by x2. In our case, the short exact sequence of Lie algebras in Lemma 7.4 implies that there is a

short exact sequence of Hopf algebras

(8) L〈R̃〉 −→ (Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉)/I
π

−→ Lab〈b1, . . . , bn〉/I
′

where I is the ideal in Theorem 1.5 and I ′ = (b2i | 1 ≤ i ≤ n).

Proposition 7.5. There is a commutative diagram of algebras

H∗(ΩZK ;Q) //

∼=

��

H∗(ΩDJK ;Q)

∼=

��

UL〈R̃〉
U (̃i)

// U(Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉)/I.

Proof. Argue as in Proposition 6.2, replacing the short exact sequence of Hopf algebras appearing

there with that in (8), and replacing Theorem 1.4 with Theorem 1.5. �

Now we use the description of H∗(ΩDJK ;Q) in Theorem 1.5 to produce maps as was done in the

case of ΩDJK(S). For σ ∈ MF (K), let

w̃σ : S
2|σ|+1 φk

−→ FW (S2, σ)
FW (ı)
−→ FW (σ) −→ DJK

be the higher Whitehead product. By Theorem 1.5, the element uσ ∈ H∗(ΩDJK(S);Q) is the

Hurewicz image of the adjoint of w̃σ. For 1 ≤ i ≤ n, let ãi be the composite

ãi : S
2 ı
−→ CP∞ −→ DJK

where the right map is the ith-coordinate inclusion. Let Ĩ be the index set for R̃. Then α̃ ∈ Ĩ

corresponds to a face σ ∈ MF (K) and a sequence (j1, . . . , jl) where 1 ≤ j1 < · · · < jl ≤ n and

0 ≤ l ≤ n. Given such an α̃, let tα̃ = Nσ+ l−2. The inclusion iR induces a map ĩR :
∨

α̃∈Ĩ S
tα̃+1 −→

∨
α∈I S

tα+1. Note that (ΩĩR)∗ can be identified with U(iR). Consider the composite

W̃ :
∨

α̃∈Ĩ

Stα̃+1 ĩR−→
∨

α∈I

Stα+1 W
−→ DJK(S2)

DJK(ı)
−→ DJK .

If α̃ indexes σ ∈ MF (K), then the restriction of W̃ to Stα̃+1 is the higher Whitehead product w̃σ.

Otherwise, the restriction of W̃ to Stα̃+1 is an iterated Whitehead product of a single w̃σ with some

selection of the coordinate inclusions ã1, . . . , ãn, where each ãi appears at most once.
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Corollary 7.6. The map Ω(
∨

α̃∈Ĩ S
tα̃+1)

ΩW̃
−→ ΩDJK induces in homology the map UL〈R̃〉

U (̃i)
−→

U(Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉)/I.

Proof. Let S̃ be the composite

S̃ :
∨

α̃∈Ĩ

Stα̃+1 E
−→ Ω(

∨

α̃∈Ĩ

Stα̃+1)
ΩW̃
−→ ΩDJK .

The definition of W̃ implies that S̃∗ induces the composite

R̃ →֒ UL〈R̃〉
UL(iR)

−−−−−−→ UL〈R〉
(ΩW )∗

−−−−−−→ H∗(ΩDJK(S2))
(ΩDJK(ı))∗
−−−−−−→ H∗(ΩDJK).

Now argue as in Corollary 6.3, using the description of (ΩDJK(ı))∗ in Theorem 1.5, to obtain the

asserted inclusion in homology. �

We finish by bringing ZK back into the picture.

Theorem 7.7. The map
∨

α̃∈Ĩ S
tα̃+1 W̃

−→ DJK lifts to ZK , and induces a homotopy equivalence
∨

α̃∈Ĩ S
tα̃+1 −→ ZK .

Proof. Argue as in Theorem 6.4, using Proposition 7.5 and Corollary 7.6 in place of Proposition 6.2

and Corollary 6.3 respectively. �

Proof of Theorem 1.7: This is simply a rephrasing of Theorem 7.7. �

8. Examples

We now discuss a useful family of examples. Let X1, . . . , Xn be simply-connected CW -complexes

of finite type. For 1 ≤ k ≤ n, define the space T n
k as

T n
k = {(x1, . . . , xn) ∈ X1 × · · · ×Xn | at least k of x1, . . . , xn are ∗}.

For example, T n
0 = X1 × · · · × Xn, T

n
1 is the fat wedge, and T n

n−1 = X1 ∨ · · · ∨ Xn. Define the

space Fn
k by the homotopy fibration

Fn
k −→ T n

k −→

n∏

i=1

Xi

where the right map is the inclusion. Note that T n
k is DJK(X) for K = (∆n)n−k−1, the full

k-skeleton of ∆n, and so Fn
k = ZK(X).

In this case, the missing faces MF (K) of K = (∆n)n−k−1 is precisely the set of
(

n
n−k

)
faces of ∆n

of dimension n− k. In terms of sequences,

MF (K) = {(i1, . . . , in−k) | 1 ≤ i1 < · · · < in−k ≤ n}.

Observe that |K| =
⋃

σ∈MF (K) |∂σ|. Thus K is an MF -complex. Therefore, by Proposition 1.2, Fn
k

is homotopy equivalent to a wedge of spaces of the form ΣtΩXi1 ∧ · · · ∧ ΩXil for various 1 ≤ t < n

and sequences (i1, . . . , il) where 1 ≤ i1 < · · · < il ≤ n. The precise homotopy type was given by
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Porter [P2], and later the authors [GT] by the methods used to prove Proposition 1.2. There is a

homotopy equivalence

(9) Fn
k ≃

n∨

j=n−k+1


 ∨

1≤i1<···<ij≤n

(
j − 1

n− k

)
Σn−kΩXi1 ∧ · · · ∧ ΩXij


 .

We will consider the special cases T n
k (S) and Fn

k (S) when Xi = Smi+1; T n
k (S

2) and Fn
k (S

2) when

Xi = S2 for 1 ≤ i ≤ n; and T n
k (CP

∞) and Fn
k (CP

∞) when Xi = CP∞ for 1 ≤ i ≤ n. Also, we will

restrict to k < n − 1, eliminating the product T n
n ( ) and the wedge T n

n−1( ), as both of these cases

are well understood by other means. Note that with this restriction, as K = (∆n)n−k−1, we have

|σ| > 1 for every σ ∈ MF (K). In particular, the ideal J in Theorems 1.4 and 1.5 is trivial.

Since K is an MF -complex, we have

T n
k (S) = colimσ∈MF (K)FW (σ).

By Theorem 1.4, there is an algebra isomorphism

H∗(ΩT
n
k (S);Q) ∼= U(Lab〈b1, . . . , bn〉

∐
L〈uσ | σ ∈ MF (K)〉)

where bi and uσ respectively are the Hurewicz images of the adjoints of the coordinate inclusion

ai : S
mi −→ T n

k (S) and the higher Whitehead product wσ : S
Nσ −→ T n

k (S). By Theorem 6.4 there

is a homotopy decomposition

ΩFn
k (S) ≃

∨

α∈I

Stα+1

such that the composition
∨

α∈I S
tα+1 −→ Fn

k (S) −→ T n
k (S) is homotopic to the wedge sum of

higher Whitehead products and iterated Whitehead products specified by

{[[wσ, aj1 ] . . . , ajl ] | σ ∈ MF (K), 1 ≤ j1 ≤ · · · ≤ jl ≤ n, 0 < l < ∞}.

Similarly, by Theorem 7.5, there is an algebra isomorphism

H∗(ΩT
n
k (CP

∞);Q) ∼= U(Lab〈b1, . . . , bn〉
∐

L〈uσ | σ ∈ MF (K)〉)/I

where I is the ideal (b2i , [uσ, biσ ] | 1 ≤ i ≤ n, iσ ∈ σ), and bi is the Hurewicz images of the

adjoint of the composite ãi : S
2 ı
−→ CP∞ −→ T n

k (CP
∞) where the right map is the inclusion of

the ith-coordinate, and uσ is the Hurewicz image of the adjoint of the higher Whitehead product

w̃σ : S
Nσ −→ T n

k (CP
∞). By Theorem 7.7 there is a homotopy decomposition

ΩFn
k (CP

∞) ≃
∨

α̃∈Ĩ

Stα̃+1

such that the composition
∨

α̃∈Ĩ S
tα̃+1 −→ Fn

k (CP
∞) −→ T n

k (CP
∞) is homotopic to the wedge sum

of higher Whitehead products and iterated Whitehead products specified by

{[[wσ, aj1 ] . . . , ajl ] | σ ∈ MF (K), 1 ≤ j1 < · · · < jl ≤ n, 0 < l ≤ n}.
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It is useful to say more about how each Whitehead product corresponds to summands in the

homotopy decompositions of Fn
k (S) and Fn

k (CP
∞). We begin with the case of the fat wedge Fn

1 (S).

Example 8.1. Consider the homotopy fibration Fn
1 (S) −→ T n

1 (S) −→
∏n

i=1 S
mi+1. By (9), there

is a homotopy equivalence

Fn
1 (S) ≃ Σn−1ΩSm1+1 ∧ · · · ∧ ΩSmn+1.

By [J], for any path-connected space X there is a homotopy decomposition ΣΩΣX ≃
∨∞

n=1 ΣX
(n).

Taking X = Smi and iterating, we obtain a homotopy decomposition

Σn−1ΩSm1+1 ∧ · · · ∧ ΩSmn+1 ≃

∞∨

d1,...,dn=1

Σn−1Sd1m1+···+dnmn .

The lowest dimensional sphere in this wedge occurs when di = 1 for every 1 ≤ i ≤ n. Let t =

(n − 1) + (Σn
i=1mi). The composite St −→ Fn

1 (S) −→ T n
1 (S) is the map which attaches the

top cell to the product
∏n−k+1

j=1 Smij
+1. That is, this composite is the higher Whitehead product

wσ : S
t φn−1
−−→ T n

1 (S). Next, consider a sphere Sd1m1+···+dnmn where at least one di > 1. This sphere

maps to T n
1 (S) by the iterated Whitehead product

[[wσ, a1], . . . , a1], a2], . . . , a2] . . . an], . . . an]

where ai appears di − 1 times. Note that the collection of such brackets is in one-to-one correspon-

dence with the set {1 ≤ j1 ≤ · · · ≤ jl ≤ n, 0 < l < ∞}.

Now we return to the more general case of Fn
k (S).

Example 8.2. Consider the homotopy decomposition of Fn
k (S) in (9). When the index j is n−k+1,

we have wedge summands
(∨

1≤i1<···<in−k+1≤n Σ
n−k(ΩSmi1+1 ∧ · · · ∧ ΩSmin−k+1

+1)
)
. There are

(
n

n−k

)
such summands, and each corresponds to the homotopy fiber of FW (i1, . . . , in−k+1) −→

Smi1+1×· · ·×Smin−k+1+1 , where each σ = (i1, . . . , in−k+1) is one of the missing faces inM((∆n)n−k−1).

As in Example 8.1, the bottom cell of each wedge summand maps to T n
k (S) by a higher Whitehead

product wσ, and the remaining summands map to T n
k (S) by iterated Whitehead products consisting

of one copy of wσ and an appropriate number of coordinate inclusions.

Continuing, when the index j is larger than n − k + 1, there are
(
j−1
n−k

)
wedge summands of the

form Σn−k(ΩSmi1+1∧· · ·∧ΩSmij
+1) in Fn

k (S). By [J], for each wedge summand there is a homotopy

decomposition

(10) Σn−kΩSmi1+1 ∧ · · · ∧ ΩSmij
+1 ≃

∞∨

di1 ,...,dij
=1

Σn−kSdi1mi1+···+dij
mij .

Note that i1 < · · · < ij . Partition the set {i1, . . . , ij} into two sets, I = {i1, . . . , in−k} and

J = {in−k+1, . . . , ij}. The missing face in question is determined by I: σ = (i1, . . . , in−k) ∈

M((∆n)n−k−1). The lowest dimensional sphere in (10) occurs when dit = 1 for all 1 ≤ t ≤ j. This
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maps to T n
k (S) by the iterated Whitehead product [[wσ , ain−k+1

], . . . , aij ]. Next, consider a wedge

summand Sdi1mi1+···+dij
mij in (10) where at least one of di1 , . . . , din−k+1

is larger than 1. This

sphere maps to T n
k (S) by the iterated Whitehead product

[[wσ, ai1 ], . . . , ai1 ], ai2 ], . . . , ai2 ] . . . aij ], . . . aij ]

where ait appears dit − 1 times if 1 ≤ t ≤ n − k and ait appears dit times if n− k + 1 ≤ t ≤ j. In

particular, note that each ait for n− k + 1 ≤ t ≤ j appears at least once in each bracket.

Next, we consider how Examples 8.1 and 8.2 modify when we pass from T n
k (S

2) to T n
k (CP

∞).

Example 8.3. By Lemma 7.2, the inclusion S2 ı
−→ CP∞ induces a homotopy commutative diagram

Fn
1 (S

2) ≃ Σn−1(ΩS2)(j) //

Σn−1(Ωı)(j)

��

T n
1 (S

2) //

Tn
1 (ı)

��

∏n
i=1 S

2

∏
n
i=1 ı

��

Fn
1 (CP

∞) ≃ Σn−1Sj // T n
1 (CP

∞) //
∏n

i=1 CP
∞.

Since Σn−1(Ωı)(j) has a right homotopy inverse, the map Σn−1Sj −→ T n
1 (CP

∞) along the bottom

row is homotopic to the composite Sn−1+j −→ Σn−1(ΩS2)(j) −→ T n
1 (S

2) −→ T n
1 (CP

∞), and so is a

higher Whitehead product. This higher Whitehead product w̃σ corresponds to the one missing face

σ ∈ M((∆n
n−2). Note that the remaining spheres in the homotopy decomposition of Σn−1(ΩS2)(j)

are not present in the homotopy decomposition of Fn
1 (CP

∞), and so there is no need to introduce

iterated Whitehead products of w̃σ with coordinate inclusions as in Example 8.1.

Example 8.4. By Lemma 7.2, the inclusion S2 ı
−→ CP∞ induces a homotopy fibration diagram

Fn
k (S

2) ≃
∨n

j=n−k+1

(∨
1≤i1<···<ij≤n

(
j−1
n−k

)
Σn−k(ΩS2)(j)

)
//

��

T n
k (S

2) //

Tn
k (ı)

��

∏n
i=1 S

2

∏n
i=1 ı

��

Fn
k (CP

∞) ≃
∨n

j=n−k+1

(∨
1≤i1<···<ij≤n

(
j−1
n−k

)
Σn−kSj

)
// T n

k (CP
∞) //

∏n
i=1 CP

∞.

When the index j is n−k+1, Fn
k (CP

∞) has wedge summands
∨

1≤i1<···<in−k+1≤n Σ
n−kSj . There

are
(

n
n−k

)
such summands, and each corresponds to the homotopy fiber of FW (i1, . . . , in−k+1) −→

CP∞
i1

× · · · × CP∞
in−k+1

, where the indices on the product refer to their coordinate position within
∏n

i=1 CP
∞, and σ = (i1, . . . , in−k+1) is one of the missing faces in M((∆n)n−k−1). As in Exam-

ple 8.3, each sphere maps to T n
k (CP

∞) by a higher Whitehead product w̃σ.

Continuing, when the index j is larger than n − k + 1, there are
(
j−1
n−k

)
wedge summands of the

form Σn−k(S1
i1
∧ · · · ∧ S1

ij
) in Fn

k (CP
∞), where the indices it refer to coordinate position. Partition

the set {i1, . . . , ij} into two sets, I = {i1, . . . , in−k} and J = {in−k+1, . . . , ij}. The missing face in

question is determined by I: σ = (i1, . . . , in−k+1) ∈ M((∆n)n−k−1). As in Example 8.2, the sphere

Σn−k(S1
i1
∧· · ·∧S1

ij
) maps to T n

k (CP
∞) by the iterated Whitehead product (∗) [[w̃σ , ãin−k+1

], . . . , ãij ].
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The difference with Example 8.2 is that there are no other spheres arising from the decomposition

of ΣΩS2 apart from the bottom ΣS1, and so there are no additional iterated Whitehead products.

In particular, each map ãit appears at most once in (∗).

Next, we consider the example of the shifted complex which appeared in the Introduction, and

to speed up we consider only the case of ZK and DJK , omitting the case of ZK(S) and DJK(S).

Example 8.5. Let K =
{
(1), (2), (3), (4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4)

}
. Under this ordering of

the vertices, K is shifted. The missing faces of K are given by MF (K) =
{
(3, 4), (1, 2, 3), (1, 2, 4)

}
.

Observe that in this case |K| =
⋃

σ∈MF (K) |∂σ|. Now we can writeDJK asDJK = colimσ∈MF (K)FW (σ).

By Theorem 1.4, there is an algebra isomorphism

H∗(ΩDJK(S)) ∼= U (Lab〈b1, b2, b3, b4〉
∐

L〈u1, u2, u3〉) /J

where u1, u2, u3 are the Hurewicz images of the adjoint of the higher Whitehead products corre-

sponding to the missing faces (3, 4), (1, 2, 3), (1, 2, 4), respectively. The ideal J is determined by

Jacobi identities and face relations based on the one missing face (3, 4) of dimension 1. Specifically,

observe that the Jacobi identity gives [u1, b1] = [[b3, b4], b1] = [b3, [b4, b1]] + [b4, [b3, b1]]. As both

(1, 3) and (1, 4) are faces of K, we have [b3, b1] = 0 and [b4, b1] = 0. Therefore [u1, b1] = 0. Similarly,

[u1, b2] = 0. Thus J = ([u1, b1], [u1, b2]).

By Theorem 1.5, there is an algebra isomorphism

H∗(ΩDJK) ∼= U (Lab〈b1, b2, b3, b4〉
∐
L〈u1, u2, u3〉) /(I + J)

where u1 is the Hurewicz image of the adjoint of the Whitehead product w̃1 : S
3 −→ CP∞

3 ∨CP∞
4 −→

DJK , while u2 and u3 are the Hurewicz images of the adjoints of the higher Whitehead products

w̃2 : S
5 −→ FW (1, 2, 3) −→ DJK , and w̃3 : S

5 −→ FW (1, 2, 4) −→ DJK , respectively; J is as

above, and I = (b2i , [u1, b3], [u2, b4], [u2, b1], [u2, b2], [u2, b3], [u3, b1], [u3, b2], [u3, b4]).

By Theorem 1.7, the wedge summands of ZK and the maps to DJK are as follows. Part (a)

gives the three summands S3, S5 and S5 with maps w̃1, w̃2 and w̃3 respectively. Part (b) gives two

additional summands S6 and S6 from iterated Whitehead products

[w̃2, ã4] : S
6 −→ DJK and [w̃3, ã3] : S

6 −→ DJK .

Part (c) is vacuous in this case. The possible Whitehead products are [w̃1, ã1] and [w̃1, ã2]. Note

that this uses the fact that w̃1 = [ã3, ã4] and so both [w̃1, ã3] and [w̃1, ã4] are ruled out as ã3 appears

twice in the first instance and ã4 appears twice in the second. As for [w̃1, ã1], this corresponds to the

algebraic element [u1, b1] which is in J and so is trivial. Similarly for [w̃1, ã2]. Thus neither appears

in W̃(3,4).

Collectively then, we obtain a homotopy equivalence ZK ≃ S3 ∨ 2S5 ∨ 2S6 and a map

S3 ∨ 2S5 ∨ 2S6 −→ DJK
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which is the wedge sum of w̃1, w̃2, w̃3, [w̃2, ã4] and [w̃3, ã3]. Note that the homotopy equivalence

matches that of [GT, Example 10.2], which was calculated by different means.
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