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Abstract

We investigate the problem of secure communication ovepéueallel relay channel in the presence
of a passive eavesdropper. We consider a four terminal -edsgsdropper channel which consists of
multiple independent relay-eavesdropper channels ashanbels. For the discrete memoryless model,
we establish outer and inner bounds on the rate-equivacatigion. The inner bound allows mode
selection at the relay. For each subchannel, secure trasismiis obtained through one of the two
coding schemes at the relay: decoding-and-forwardingdhece message or confusing the eavesdropper
through noise injection. For the Gaussian memoryless @dlawe establish lower and upper bounds
on the perfect secrecy rate. We show that lower and upperddcomcide in some special cases,
including when the relay does not hear the source. The sesglablished for the parallel Gaussian
relay-eavesdropper channel are then applied to study thegaelay-eavesdropper channel. Analytical

results are illustrated through some numerical examples.
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I. INTRODUCTION

The wiretap channel introduced by Wyner is a basic inforamatiheoretic model which
incorporates physical layer attributes of the channelandmit information securely[[1]. Wyner’s
basic model consists of a source, a legitimate receiver anegesdropper (wiretapper) under
noisy channel conditions. Secrecy capacity is establistieeih the eavesdropper channel (the
channel from the transmitter to the eavesdropper) is a dedraersion of the main channel
(the channel from the source to the legitimate receiverg discrete memoryless (DM) channel
studied by Wyner is further extended to study some otherradlarfor which secrecy capacity is
established, i.e, broadcast channels (EC) [2], [3], maiienna channel5][4],1[5],][6], etc. The
idea of cooperation between users in context of securityimesduced in([7]. The premise is that
when the main channel is more noisy than the channel to thesdespper, cooperation between
users is utilized to achieve positive secrecy capacityrédgcis achieved by using the relay as
a trusted node that facilitates the information decodinthatdestination while concealing the
information from the eavesdropper.

In this paper, we study a parallel relay-eavesdropper aanparallel relay-eavesdropper
channel is a generalization of the setup [in [7], in which eaththe source-to-relay (S-R),
source-to-destination (S-D), source-to-eavesdroppér)($elay-to-destination (R-D) and relay-
to-eavesdropper (R-E) link is composed of several indepeinparallel channels as subchannels.
The eavesdropper is passive in the sense that it just ligtehe transmitted information without
modifying it. We only focus on theerfect secrecy rate.e., the maximum achievable rate at
which information is reliably sent to the legitimate reaivand the eavesdropper is unable to
decode it.

The parallel relay-eavesdropper channel consideredsrptper relates to some of the channels
studied previously. Compared to the parallel relay chamstadied in [8], the parallel relay-
eavesdropper channel requires an additional secrecyraorisiThe parallel relay-eavesdropper
channel without relay simplifies to a number of channels wdised previously. For example,
the independent parallel wiretap channel studiedin [9¢ plarallel broadcast channel with

confidential messages (BCC) and no common message studjgf in

Contributions. The main contributions of this paper are summarized asvislié-or the discrete

memoryless case, we establish inner and outer bounds oratkesquivocation region for a
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parallel relay-eavesdropper channel. The inner boundtairedd with a coding scheme in which,
for each subchannel, the relay operates either in decodideawvard (DF) or noise forwarding
(NF) mode. The outer bound does not follow directly from thegke-letter outer bound for
the relay-eavesdropper channel developed|in [7, Theoreamd]so, a converse is needed. This
converse includes a redefinition of the involved auxiliampdom variables, a technique much
similar to the one used before in the context of secure tresssom over broadcast channels
[3]. For the Gaussian memoryless model, we establish lowdrupper bounds on the perfect
secrecy rate. The lower bound established for the Gaussiaelnfollows directly from the DM
case. We note that establishing a computable upper boundeosetrecy rate for the Gaussian
model is non-trivial, and it does not follow directly frometDM case. In part, this is because
the upper bound established for the DM case involves auoxiiandom variables, the optimal
choice of which is difficult to obtain. In this work, we devela new upper bound on the secrecy
rate of the parallel Gaussian relay-eavesdropper cha@uelconverse proof uses elements from
converse techniques developedlin [5], [6] in context of irauttennas wiretap channel; and in
a sense, can be viewed as a partial extension of these resulise case of the parallel relay-
eavesdropper channel. The established upper bound on drecgeaate shows some degree of
separability for different parallel subchannels. It is edplly useful when the multiple access
part of the channel is the bottleneck.

We also study a special case in which the relay does not heasdhbrce, for example
due to very noisy source-to-relay links. In this case we shbat noise-forwarding on all
links achieves the secrecy capacity. The converse proddwsl from the general converse
established for the parallel Gaussian relay-eavesdrogmannel and a new genie-aided upper
bound that assumes full cooperation between the relay amdléktination and a constrained
eavesdropper. The eavesdropper is constrained in the ¢$katét has to treat the relay’s
transmission as unknown noise for all subchannels, an ided previously in the context of a
class of classic relay-eavesdropper channel with orthalggomponents [10]. These assumptions
turn the parallel Gaussian relay-eavesdropper chanrelairgarallel Gaussian wiretap channel,
the secrecy capacity of which is establishedin [3], [9].

Furthermore, we apply the results established for the lghr&@aussian relay-eavesdropper
channel to the fading relay-eavesdropper channel. Thexdadilay-eavesdropper channel is a

special case of the parallel Gaussian relay-eavesdropyemel in which each realization of a
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fading state corresponds to one subchannel. We illustnateesults through some numerical
examples.

The rest of the paper is organized as follows. In Section &l gstablish outer and inner bounds
on the rate equivocation region for the DM channel. In sectih we establish lower and upper
bounds on the perfect secrecy rate and consider a specilitashich secrecy capacity is
achieved. In Section 1V, we present an application of thelte®stablished in section Il to the
fading model. We illustrate these results with some numaéexamples in section V. Section

VI concludes the paper by summarizing its contribution.

Notations. In this paper, the notatioX |, ;; is used as a shorthand foX;, X,,..., X;), the
notationXﬁ,L} is used as a shorthand foX7, X7, -, X}) where forl = 1,...,L, X]" :=
(X, Xi2,- -+, Xin), the notationX;; 1) is used as a shorthand far;; x Xy,... x Xy, E{.}
denotes the expectation operator, the boldface |I&tdenotes the covariance matrix. We denote
the entropy of a discrete and continuous random variabley H(X) and h(X) respectively.
We define the function€(z) = £ log,(1 + x) and [z]" = max{0, z}. Throughout the paper the
logarithm function is taken to the base 2.

[I. DISCRETE MEMORYLESS CHANNEL

In this section, we establish outer and inner bounds on tteeeguivocation region for a

parallel relay-eavesdropper channel.

A. Channel Model

Definition 1: A parallel relay-eavesdropper channel is a four termin&lvaek consisting of
Xip,r), Xopn ) as finite input alphabets ar; 1), Vi), Yopi,) @s finite output alphabets. The

transition probability distribution is given by
L

Hp(ybyu,yzl | Ty, 21) (1)

=1

wherexy; € Xy, xy € Xy, yy € Y,y € Yy andyy € Vo, forl=1,--- | L.

Definition 2: The source sends a messddec W = {1,---,2"} using a 2" n) code

consisting of

» a stochastic encoder at the source that maps> X7, ;)
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- arelay encoder that magi(Yy; ;) — Xopi gy, for 1 <i <n,

» a decoding functiony(Y}y ;) — W.

Definition 3: The average error probability of 8¢, n) code is defined as
Pr= o 3 plalYig) # Wi @
wew

Due to the openness of the wireless medium, the eavesdrdigpans for free to what the
source and relay transmit. It then tries to guess the infoamabeing transmitted. Denoting
Yoh 1 the output at the eavesdropper, the equivocation rate @emel use is defined a3, =
H(WIYy, 1))/n. Perfect secrecy for the channel is obtained when the eengser gets no
information aboutiV” from Y3, ;. That is, the equivocation rate is equal to the unconditiona

source entropy.

Definition 4: A rate equivocation pairK, R.) is achievable, if for any > 0 there exists a
sequence of codeg(®, n) such that for any: > n(e)
H(W)
n
HWIYy 1)
n

> R—e,

ZR8—€7

P <e 3)

e —

B. Outer bound

Theorem 1: For a parallel relay-eavesdropper channel vitbubchannels, and for any achiev-
able rate-equivocation pailR, R.), there exists a set of random variablés— (Vy;, Vo) —
(X1, Xo) = (Y1, Y1, Yy), L =1,..., L, such that R, R,.) satisfies

L L
R <min{ > T(ViVa; ), > (Vi ViYa | Vi)
=1

L L
R <min ¢ > I(VyVay; Vi | U)) — T(ViVar; Yar | U0), Y T(Va YiYay | Vo)) — I(ViVais Yar | U)
=1 =1

(4)

Proof: See [11] for details of the proof. O
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Remark 1. The bound in Theorem 1 does not follow directly from the sintgtter outer
bound on the rate-equivocation region of relay-eavesdrmoppannel given in[7]. A converse

proof is needed because we need to redefine the auxiliarpmandriables.

C. Achievable rate-equivocation region

Theorem 2: For a parallel relay-eavesdropper channel witlsubchannels, the rate pairs in

the closure of the convex hull of alR( R.) satisfying

R < min ¢ > I(VyVas Y|U),> T (Vi Yul Vo)) p 4+ Y 1(Va Vi Var)
leA leA le Ac

R. <R

R. < min Z I(Vqul; Y”Ul) - ](VuVQl; Y21|Ul), Z I(Vu; Y1l|V21Ul) - I(Vqul; Yzl\Ul)
leA leA

+ ) I(Vip Yi[Va) +min ¢ > T(Vai Y1), > T(Vays Yot Vi) p = min § > T(Vay; V),

le A le A le A leAc
D I(Va Yar) g = > T(Vag; Yar| Var), (5)
le A leAe

for some distribution(u;, vi, var, 210, @, yo, Y1, y2u) = p(w)p(vrr, varlw) (s, warlvrr, v20)p (e, Y, Yarlzan, w2r)
for [ € A and p(vii, var, @11, 2o, yi, yus ya) = pon)p(va)p(au|vw)p(@ave)p(ye, yin, yailzw, w20) for 1 e
Ac¢, are achievable.

In the statement of Theorefd 2, setsand .A° represent the subchannels for which relay
operates in DF and NF mode, respectively. The region in @2 is obtained through a
coding scheme which combines appropriately DF and NF schefe rates for the DF scheme
can be obtained readily by settiig := U 4, Vi = Vipap Vo == Vaopap Y = Y a4,

Y1 = Yip, 4 andYs = Yy 4y, for I € Ain [[Z, Theorem 2]. Similarly the rates for NF scheme
can be readily obtained by setting := Vip jac, Vo := Vapjac, Y = Y, pacs Y1 := Yap,ja|
andY; := Yop 4, for i € A° in [7, Theorem 3].

[1l. GAUSSIAN MODEL

In this section we study a parallel Gaussian relay-eaveg#mochannel. Figurlel 1 depicts the

studied model. We only focus on the perfectly secure achlevaates, i.e.(R, R.) = (R, R).
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A. Channel Model

For a parallel Gaussian relay-eavesdropper channel, tkee/egl signals at the relay, destination
and eavesdropper are given by

Yii=Xui+ Zu,
Yii= Xui+vVpuXo + 21
Yori = Xui + VpaXo + Zoi (6)

where i is the time index,{Zy,;},{Z;;} and {Zy,} are noise processes, independent and
identically distributed (i.i.d) with the components beingro mean Gaussian random variables
with varianceso?,, o7 and o2, respectively, forl = 1,..., L. For the subchanndl X;;; and
Xy, are the inputs from the source and relay nodes respectiVhly.parametep,; indicates
the ratio of the R-D link signal-to-noise (SNR) to the S-DkliSNR andp,; indicates the ratio

of the R-E link SNR to the S-E link SNR for subchanrelespectively. The source and relay
input sequences are subject to separate power constfirasd P, i.e,

L n
LSS RN < P ™)

=1 i=1

1 L n
- > S EX3,] < P (8)
=1 =1
B. Lower Bound on the Perfect Secrecy Rate

For the parallel Gaussian relay-eavesdropper chahhew@)apply Theorenmd]|2 to obtain a
lower bound on the perfect secrecy rate.

Corollary 1: For the parallel Gaussian relay-eavesdropper chahheh (@ywer bound on the

1The results established for the DM case can be readily estetml memoryless channels with discrete time and continuous
alphabets using standard techniques [12, Chapter 7].
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perfect secrecy rate is given by

P P 2/ Py P
RL?W _ Max min ZC 11+ prtar + 2\/ Qip1 1o
Sk, Pu<Pi, > Py <P, leA g
0<a;<1,fori =1,...,|A]|
Piy+ par Poi + 2+/aqpai Pri Py o Py Py + par Py + 27/ aqpar Pri Py
-C - S cel—|-c¢ -
a. g g
21 leA 11 21

leAc le Ac leAc

Py . puPo PP
Cl| —= C C
+ Z Ul2 + min { Z Pll T 0_12 ) Z O'gl

. p1 P P21 Py Py
- - — . 9
mln{lGZACC Pui+ o7 ,lGZACC Pu+of, } leZACC ) )
Proof: The achievability follows by applying Theorem 2 with the @®U; = constant,
Vi = Xy, Vo = Xoiy Xu = Xy + OQZP—JQ_—;”le, a=1-a, Xy ~ N (0, oy Py;) independent
of Xy ~ N(0, Py), wherea; € [0,1] for [ € A; and Xy, ~ N (0, Py;) independent ofXy, ~
N(0, Py) for [ € A°. Straightforward algebra which is omitted for brevity gvi). O

The parameter$’; and P,; indicate the source and relay power allocated for transamssver

the subchanndl In (@), after some straightforward algebra, the contiduto the equivocation

of information sent through NF (in se4“) can be condensed by observing that we only need to
considermin{ -, 4o 1(Xo, Yo1), > jeue L( X, Y1)} = >0 4e I( Xy, Yay), to get higher secrecy
rate. A simplified expression fak'°" is given by

. P+ p1uPo + 2v/a Py P
Rleow _ max min Z C 1T PrL2l : QP42
Sl Pu<PL, Y[ Py<Ps, leA op
0<o<1l,forl=1,..., [Al
1+ +
c Py + por Py + 2\/aqpa P Py c o Py c Py + parPoy + 2\ 0y pa P Py
- 0'2 ’Z 0-2 - 0.2
21 leA 11 21
+ -
. Py + pu P Py + po P P P.
+ min Z c 11 /2)11 20 | c 11 521 21 ] : Z C _121 +C P212 21
o] by o] b
leAc leAc
Jr
Py + pai Py

-C (10)

2
031
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Remark 2: The achievable perfect secrecy rate established in Coydllaan be larger than

the one obtained by coding separately over different paralibchannels.
This remark is elucidated by the following example.

Example:We consider a deterministic parallel relay-eavesdroppancel with two subchan-
nels, i.e,L = 2, as shown in figur€l2. For simplicity, we assume that the rekgs the same
scheme on all subchannels (either DF or NF). For subchanribeliink capacities to the relay,
legitimate receiver and eavesdropper are giverthy, = 4, C,1, = 3 andC,; = 2 respectively.
For subchannel 2, the link capacities to the relay, legittnmaceiver and eavesdropper are given
by Ca0 = 5,Crep = 7 and C,o = 3 respectively. For this channel, achievable rate obtained b

coding across subchannels is given by

2 2
Re =min Z(Cri,a - Cei)+7 Z(Cri,b - Cei)+

i=1 i=1

= min{4,5} = 4. (11)

Similarly achievable rate obtained by coding indepengeotier each subchannel is given by
2
Re = Z min{(Cri,a - Cei)+7 (Cri,b - Cei)+}
=1
=min{2, 1} + min{2,4} =3 (12)

which is clearly smaller thari(11). This shows the usefidnafscoding across subchannels.

C. Upper Bound on the Perfect Secrecy Rate

The following theorem provides an upper bound on the secraiey of the parallel Gaussian

relay-eavesdropper channel.

Theorem 3: For the parallel Gaussian relay-eavesdropper chahheai6ypper bound on the

secrecy rate is given by

L

RY < max I( XX Y)) — I( X1, X Y- 13
’ _{KP|€’CP.}|—14.‘L; (X0 Xor; Y1) = I(X0 Xor; Yor) (13)
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where the maximization is oveK;, Xo] ~ N(0, Kp,) with K = { Kp, : Kp = | | \/% w Vélllpm],

1<y <1y, forl=1,...,L, with the covariance matric@[Xl[LL]Xf[LL}], E[XQ[LL]Xg[LL}]
satisfying [T) and[{(8) respectively.

Proof: The proof follows from the rate-equivocation region estdi#d for the DM case
in Theorem L. Taking the first term of minimization in the bduon the equivocation rate in

TheorentlL, we get

L
R <max Y I(ViyVa; Vi | Ur) = I(VaiVa; Yar | U1) (14)

=1
whereU; — (Vi;, Vo) — (X1, Xop) — (Y3, Yy, Yy), for Il =1,..., L. The rest of the proof uses

elements from related works inl[3] and [5]. Continuing frdii@), we obtain

L
RP<N I(VuVai Vi | Ur) = (Vi Vag; Yar | U3)
=1

—
S}
N

L
> I(VuVa Yi) = 1(ViVag; Yar)

IA
T

-

](Vuvm; Yiym) - I(Vqul; Yzz)

N
Il
—

IS
h

[I( X1 Xo; YiYoy) — I( X1 Xo; YiYor | Vi Vay)]

N
Il
—

— (X1 Xo; Yo ) — I( X7 Xoy; Yo | Vi Vi)

[I( X1 Xo; YiYo) — 1( X1 Xo; Yo

M-

N
Il
—

—[I(X11X2l; Y Yo | Vqul) - ](X11X21;Y21 | Vqul)]

] =

<Y [I(XuXop YiYo) — I( X1 Xop; Yo

-
Il

1

F”ﬂh

I(XuXo; Yy | Yor) (15)
!

where (a) follows by noticing thak(V;,Vo,; Y, | Uy) — I(Vy,Var; Yo | Up) is maximized by setting

1

U, = constant and (b) follows from the Markov chain conditiov;, Vo) — (X, Xo) —
(Yia}/llyyél)’ for [ = 17"'7L'
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We now tighten the upper bound {15) by using an argument guely used in([6],[[6] in the
context of multi-antennas wiretap channel. More speclficabserving that, the original bound
(@4) depends on(y;, Yo |71, 21) Only through its marginalg(y;|z1;, z21) andp(ysy |21, 221), the

upper bound[(15) can be further tightened as

L
R < max min (X Xo Y] | Yy) (16)

p(®11,721) = (Y] yy|T11,721)
where the joint conditionap(y;, v, |z, z2;) has the same marginals a8y, yo|z1;, o), i.€.,

(Y|, va) = pyilrw, vor) and p(yy |, va) = p(yalru, va).
It can be easily shown that the bound[inl(16) is maximized wtherinputs are jointly Gaussian,

i.e., [Xll,Xgl] ~ N(O,Kpl), Kpl € ICH with ICH = Kpl : Kpl = " \/%wl Iiztlpm] ,—1 <

¢ <1, forl=1,...,L with the covariance matriceB[Xu, X7}, ;] and E[Xop 1 X5, 1]

satisfying [T) and[{8) respectively|[5],![6].
Next, using the specified Gaussian inputs, it can be showmnthieaevaluation of the upper

bound [(16) minimized over all possible correlations betw®g Y, for i =1,..., L yields

L
RP<  max Y I(XyXay; Vi) — I(XyXy; Ya). (17)

" {KpeKpti=1..L =1

This concludes the proof. O

The computation of the upper bound is given in Appernidix |

D. Special Case

We now study the case in which the S-R links are very noisy, the relay does not hear the

source.

Theorem 4: For the modell(6) in which the relay does not hear the sounessécrecy capacity

is given by

Co—min { max S ¢ [ Pl ) o PutpaPu) | omo(Pa) o P

2 2 v
11 g 9
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where the maximization is ovefPy;, Py}, for [ = 1...L, such thatZlL:1 P, < P, and
Zle Py < PB,.

Proof:
Upper Bound: The bound given by the first term of the minimization [n](18)ldws from a
straightforward application of the result in Theoréin 3 —ingkindependent source and relay
inputs since the relay does not hear the source transmissithis case.

The bound given by the second term of the minimizatior_in (&8) be established as follows.
Our approach borrows elements from an upper bounding teahrthat is used in [10], and can
be seen as an extension of it to the case of parallel relagsdaspper channels. Assume that
all links between the relay and the destination are noisebasd the eavesdropper is constrained
to treat the relay’s signal as unknown noise. As mentionefll@), any upper bound for this
model with full relay-destination cooperation and consied eavesdropper, also applies to the
general model.

Now, for the model with full relay-destination cooperatiand constrained eavesdropper, we
develop an upper bound on the secrecy capacity as followthisncase, the destination can
remove the effect of the relay transmission (which is indeleat from the source transmission
as the relay does not hear the source), and the equivalenhehto the destination can be

written as
Y}/Z = X+ 2y, (19)

For the constrained eavesdropper the relay’s transmisatd®m as an interference, with the
worst case obtained with the Gaussiah,, for [ = 1...,L [10]. The equivalent output at

the eavesdropper in this case is given by

Yo = Xui + \/ pQZE[XQQl,i] + Zoy - (20)

The rest of the proof follows by simply observing that theutesg model (with the worst
case relay transmission to the eavesdropper and full iajination cooperation) is, in fact, a
parallel Gaussian wiretap channel, the secrecy capacitvhath is established ir [3], i.e,

L
C, <max Y I(Xy;Y/) = I(Xy;Yy) (21)

=1
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where the maximization is oveK; ~ N(0, Py), Xo ~ N(0,Py) for I = 1...L, with
Zlel P, <P and Elel Py < P,.
Finally straightforward algebra which is omitted for brigvshows that the computation of

(21) gives the second term of the minimization [inl(18).

Lower Bound: The achievability follows by computing the lower bound inébrem 2 with the
CnOiceS|Ac| =L, Vi, = Xy, Vo = Xy, anXml ~ N(O, Pll) independent OKQl ~ N(O, Pgl).
[]

IV. APPLICATION

In this section we apply the results which we establishedferGaussian memoryless model
in section Il to study a fading relay-eavesdropper channel
For a fading relay-eavesdropper channel, the receivedlsigit the relay, legitimate receiver

and eavesdropper are given by

Yii=hsgiX1+ Z1,;
Yi = hsai X1 + hpaiXoi + Z;
Yoi = hseiX1i+ hreiXo; + 2o (22)

wherei is the time indexhsq i, hrai, hse.ir hres @ndhg, ; are the fading gain coefficients associated
with S-D, R-D, S-E, R-E and S-R links, given by complex Gaaissiandom variables with zero
mean and unit variance respectively. The noise processes, {Z;}, {Z.,;} are zero mean i.i.d
complex Gaussian random variables with varianegss? and o2 respectively. The source and
relay input sequences are subject to an average power aionsire, > " | E[| X1 ,|*] < nP,
S E[X2)?] < nPy. We defineh; == [hsa; hrai hsei hrei hsri] @and assume that perfect
channel state information (CSI) is available at all nodes, each node has access to the
instantaneous CSI and its statistics. For a given fadintg stalization’;, the fading relay-
eavesdropper channel is a Gaussian relay-eavesdroppereth@herefore, for a given channel
state with L fading state realizations, i.é, = {h;}~,, the fading relay-eavesdropper channel
can be seen as a parallel Gaussian relay-eavesdropperethétin . subchannels. The power
allocation vectors at the source and relay are denoted’loy) and P,(h) respectively. The
ergodic achievable secrecy rate of the fading relay-eagppér channel(22), which follows
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from (10) is given by

B = e in 1y | [ Pt PG 2 PP
< ERMI<P, hed
E[P2(h)]<Pa,
0<a(h)<1
1+
hsel” P hye|?Pa(h) + 2 hse|? P, hye|2Po(h h)|hsr|? P,
| Vsl + e Po(B) + 2 /G e PP e PPAT) EheA[QC o)l PP ()
o3 ot
1+
Rse|>Pr () + |hre| > P (h 2\/ )| hse|2 Py (R)|hre |2 Pa (R
—9C |se| 1()+|Te| 2 + O‘ |se| 1 )| re| 2()
o3
2 2 2 -
hsal* P hrq|* P hse|* P hre|” P,
+mm{Eh€Ac[2c sl P PP B) | o[ PP e PPsGR) ) |
g 0'2
2 A 2 A 2 2 *
hsal|*Pi(h hrel*Po(h hsel” P; hyel® P
EheAclzc P | (Ve Pl | _ PR+ e ol ] } 22
2 2

The upper bound for the fading relay-eavesdropper cha@@¢lf¢llows directly from the upper
bound established for the parallel Gaussian relay-eagppédr channel[{30). Straightforward

algebra which is omitted here for brevity gives

R < max
E[Py (R)]<P1,
E[P ()< Py,
—1<p(h)<1

o2

]E{ <|hsd|2P1( ) + |hral® Pa(h) + 24 (R)\/[hsal*Pr (R )|hrd|2P2(h))

—-2C

2
02

(lhse|2pl( )+ |hre|> Po(R) + 20(h)\/|hse 2Py (R )Ihrelsz(h)> } (24)

V. NUMERICAL RESULTS

In this section we provide numerical examples to illusttthiee performance of fading relay-
eavesdropper channel. We consider a fading relay-eaygselrchannel withL realizations of
fading state. It is assumed that perfect channel statenv#ton is available at all nodes. We can
consider this channel as a Gaussian relay-eavesdroppeneihaith L subchannels. We model
channel gain between node= {s,r} andj € {r,d, e} as distance dependent Rayleigh fading,

that is,h; ; = hj ;d; ]/2, where~ is the path loss exponent, ; is the distance between the node
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i andj, andh; ; is a complex Gaussian random variable with zero mean andnagione. Each
subchannel is corrupted by additive white Gaussian noigk méro mean and variance one.
Furthermore, for each symbol transmission same subchamnsled on S-R and R-D links to
make the optimization tractable. The objective function lboth lower and upper bounds are
optimized numerically using AMPL with a commercially awable solver, for instance SNOPT.

To illustrate the system performance, we set the source elag power to 64 Watt each. We
consider a network geometry in which the source is locatéldeapoint (0,0), the relay is located
at the point ¢,0), the destination is located at the point (1,0) and thes@opper is located at
the point (0,1), wherd is the distance between the source and the relay. In all noaheesults
we set path loss exponent=2 and L := 64. For each subchannel the selection of the coding
scheme at the relay is based on the relative strength of dirge w.r.t the S-R link, i.e, we use
NF scheme (setd¢) when |h.4|*> > |h.|* and DF scheme (sed) when |h4|* < |hs,|*. Fig.[3
shows the power allocation for a fading channel with 64 sahaokls where the relay is located
at (0.5,0), and marker<’ denotes NF on a particular subchannel while markérdenotes DF
on a particular subchannel. It can be seen from Big. 3 thaigeable perfect secrecy rate is
zero for some subchannels. Roughly speaking, this happbkas the condition/,q|* > |h,.|*
is violated.

Fig.[4 compares the average perfect secrecy rate of the loawerd, with optimized power
allocation and with uniform power allocation, i.e., alltiog same power at the source and
relay for all subchannels ih € A and inh € A°. It can be seen that for separate source and
relay powers, optimized power allocation scheme outper$ouniform power allocation scheme.
This fact follows because optimized power allocation schenaximizes the achievable perfect
secrecy rate and hence enhances the system performance.

Mode selection at the relay by only considering the relastrength of the S-D and the S-R
link in the lower bound is suboptimal because the achievabteecy rate[ (23) also depends on
the gain of other link. We now consider the case in which thayreelects the scheme which
maximizes the rate for each subchannel. We plot the lowendbovith this criteria and compare
it with the case in which same scheme is used on all subcheinigla reference we consider
the case in which there is no relay i.e. a parallel wiretaphnokl Fig.[H shows the achievable
average perfect secrecy rate of different schemes. It caseée that when the relay is close to

the source, DF scheme on all subchannels gives higher gaatec Similarly when the relay is
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close to the destination, NF scheme on all subchannelssofietter rate. The region when the
relay is betweeri).5 < d < 1.2 is of particular interest. In this region the relay seleat$neen
DF scheme and NF scheme for each subchannel based on theerstatngth of the S-D link
w.r.t the S-R link as mentioned above, and utilizes the gamfboth schemes. It is interesting
to note that when the relay is close to the destination, usBFoscheme on all subchannels
does not offer any gain because in this case the relay is @enalllecode the source information
and hence the average secrecy rate decreases. The lowe dloways perform better than the
wiretap channel which shows the usefulness of the relay.

In Fig.[8 we compare the lower bound obtained in Eig. 5, withdpper bound on the secrecy
capacity for the fading relay-eavesdropper channel. Itlmarseen that when the relay is close
to the source, the lower and upper bound matches. This fslloecause of using DF scheme

on all subchannels.

VI. CONCLUSIONS

We studied the problem of secure communication over thellparalay channel. Outer and
inner bounds on the rate-equivocation are establishedhDiM case. We established lower
and upper bound on the perfect secrecy rate for the Gausgarorgless case. For the Gaussian
model, the case in which the relay does not hear the souredowrer and upper bound coincide
and secrecy capacity is established. We apply the restidslestied for the Gaussian memoryless
model to a more practical fading relay-eavesdropper cHahhamerical examples showed that

power adjustment among parallel channels result in higeeresy rate.

APPENDIX |

We compute the upper bound on secrecy rate for the parallessin relay-eavesdropper

channel as follows.
L
max  » I(XyXa; Vi) — I(X1 X Ya)

{Kpekph=1..L

=  max Z[h(Y}) —h(Y) | XuXa) — h(Ya) + h(Yay | X1 Xa)]

{Kpekph=1..L =

= max Y [W(Y) = W(Z) — h(Yar) + h(Za)). (25)

{Kp €Kpti=1...L =1
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The first term in[(2b) is computed as follows.

e

hY)) = h(Xy + /puXa + 2)
1

=3 log(2me)(Pu + puPa + 2/ puPuPu + o7). (26)
Similarly the second, third and fourth term [n_[25) are cotegduas follows.
1
h(Z)) = 3 log 2me(o}) (27)
1
h(}@l) = 5 10g(27T€)(P11 + pgle + QIDM/ pglPuPQl + O'gl) (28)
1
hZy) = 3 log 2me(o3). (29)
Using (26)429) in[(2b) gives
R® < max XL: 1 log [ 1+ Py + puPo + zlﬂlvpllpupzl _ llog 14 Dt pal +22¢l\/P21P11P21
S, Pu<h, -1 2 g 2 021
S Pu<P,
—1< <1

(1]
(2]

(3]

(4]

(5]

(6]
(7]

(8]

9]

[10]

foril=1...,L

(30)
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Fig. 2. An example of a deterministic parallel relay-eavepger channel with two subchannels.
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Fig. 3. Achievable perfect secrecy rate of a parallel redayesdropper channel.
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Fig. 4. Comparison of achievable perfect secrecy rate ofdiver bound with optimized power allocation and with unifor

power allocation over all subchannels.
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Fig. 5. Comparison of achievable perfect secrecy rate ofesschemes with the lower bound.
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