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Abstract

We investigate the problem of secure communication over theparallel relay channel in the presence

of a passive eavesdropper. We consider a four terminal relay-eavesdropper channel which consists of

multiple independent relay-eavesdropper channels as subchannels. For the discrete memoryless model,

we establish outer and inner bounds on the rate-equivocation region. The inner bound allows mode

selection at the relay. For each subchannel, secure transmission is obtained through one of the two

coding schemes at the relay: decoding-and-forwarding the source message or confusing the eavesdropper

through noise injection. For the Gaussian memoryless channel, we establish lower and upper bounds

on the perfect secrecy rate. We show that lower and upper bound coincide in some special cases,

including when the relay does not hear the source. The results established for the parallel Gaussian

relay-eavesdropper channel are then applied to study the fading relay-eavesdropper channel. Analytical

results are illustrated through some numerical examples.
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I. INTRODUCTION

The wiretap channel introduced by Wyner is a basic information theoretic model which

incorporates physical layer attributes of the channel to transmit information securely [1]. Wyner’s

basic model consists of a source, a legitimate receiver and an eavesdropper (wiretapper) under

noisy channel conditions. Secrecy capacity is establishedwhen the eavesdropper channel (the

channel from the transmitter to the eavesdropper) is a degraded version of the main channel

(the channel from the source to the legitimate receiver). The discrete memoryless (DM) channel

studied by Wyner is further extended to study some other channels for which secrecy capacity is

established, i.e, broadcast channels (BC) [2], [3], multi-antenna channels [4], [5], [6], etc. The

idea of cooperation between users in context of security wasintroduced in [7]. The premise is that

when the main channel is more noisy than the channel to the eavesdropper, cooperation between

users is utilized to achieve positive secrecy capacity. Secrecy is achieved by using the relay as

a trusted node that facilitates the information decoding atthe destination while concealing the

information from the eavesdropper.

In this paper, we study a parallel relay-eavesdropper channel. A parallel relay-eavesdropper

channel is a generalization of the setup in [7], in which eachof the source-to-relay (S-R),

source-to-destination (S-D), source-to-eavesdropper (S-E), relay-to-destination (R-D) and relay-

to-eavesdropper (R-E) link is composed of several independent parallel channels as subchannels.

The eavesdropper is passive in the sense that it just listensto the transmitted information without

modifying it. We only focus on theperfect secrecy rate, i.e., the maximum achievable rate at

which information is reliably sent to the legitimate receiver and the eavesdropper is unable to

decode it.

The parallel relay-eavesdropper channel considered in this paper relates to some of the channels

studied previously. Compared to the parallel relay channelstudied in [8], the parallel relay-

eavesdropper channel requires an additional secrecy constraint. The parallel relay-eavesdropper

channel without relay simplifies to a number of channels discussed previously. For example,

the independent parallel wiretap channel studied in [9], the parallel broadcast channel with

confidential messages (BCC) and no common message studied in[3].

Contributions. The main contributions of this paper are summarized as follows. For the discrete

memoryless case, we establish inner and outer bounds on the rate-equivocation region for a
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parallel relay-eavesdropper channel. The inner bound is obtained with a coding scheme in which,

for each subchannel, the relay operates either in decode-and-forward (DF) or noise forwarding

(NF) mode. The outer bound does not follow directly from the single-letter outer bound for

the relay-eavesdropper channel developed in [7, Theorem 1]and so, a converse is needed. This

converse includes a redefinition of the involved auxiliary random variables, a technique much

similar to the one used before in the context of secure transmission over broadcast channels

[3]. For the Gaussian memoryless model, we establish lower and upper bounds on the perfect

secrecy rate. The lower bound established for the Gaussian model follows directly from the DM

case. We note that establishing a computable upper bound on the secrecy rate for the Gaussian

model is non-trivial, and it does not follow directly from the DM case. In part, this is because

the upper bound established for the DM case involves auxiliary random variables, the optimal

choice of which is difficult to obtain. In this work, we develop a new upper bound on the secrecy

rate of the parallel Gaussian relay-eavesdropper channel.Our converse proof uses elements from

converse techniques developed in [5], [6] in context of multi-antennas wiretap channel; and in

a sense, can be viewed as a partial extension of these resultsto the case of the parallel relay-

eavesdropper channel. The established upper bound on the secrecy rate shows some degree of

separability for different parallel subchannels. It is especially useful when the multiple access

part of the channel is the bottleneck.

We also study a special case in which the relay does not hear the source, for example

due to very noisy source-to-relay links. In this case we showthat noise-forwarding on all

links achieves the secrecy capacity. The converse proof follows from the general converse

established for the parallel Gaussian relay-eavesdropperchannel and a new genie-aided upper

bound that assumes full cooperation between the relay and the destination and a constrained

eavesdropper. The eavesdropper is constrained in the sensethat it has to treat the relay’s

transmission as unknown noise for all subchannels, an idea used previously in the context of a

class of classic relay-eavesdropper channel with orthogonal components [10]. These assumptions

turn the parallel Gaussian relay-eavesdropper channel into a parallel Gaussian wiretap channel,

the secrecy capacity of which is established in [3], [9].

Furthermore, we apply the results established for the parallel Gaussian relay-eavesdropper

channel to the fading relay-eavesdropper channel. The fading relay-eavesdropper channel is a

special case of the parallel Gaussian relay-eavesdropper channel in which each realization of a
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fading state corresponds to one subchannel. We illustrate our results through some numerical

examples.

The rest of the paper is organized as follows. In Section II, we establish outer and inner bounds

on the rate equivocation region for the DM channel. In section III, we establish lower and upper

bounds on the perfect secrecy rate and consider a special case in which secrecy capacity is

achieved. In Section IV, we present an application of the results established in section III to the

fading model. We illustrate these results with some numerical examples in section V. Section

VI concludes the paper by summarizing its contribution.

Notations. In this paper, the notationX[1,L] is used as a shorthand for(X1, X2, . . . , XL), the

notationXn
[1,L] is used as a shorthand for(Xn

1 , X
n
2 , · · · , Xn

L) where for l = 1, . . . , L, Xn
l :=

(Xl1, Xl2, · · · , Xln), the notationX1[1,L] is used as a shorthand forX11 × X12 . . . × X1L, E{.}
denotes the expectation operator, the boldface letterX denotes the covariance matrix. We denote

the entropy of a discrete and continuous random variableX by H(X) andh(X) respectively.

We define the functionsC(x) = 1
2
log2(1 + x) and [x]+ = max{0, x}. Throughout the paper the

logarithm function is taken to the base 2.

II. D ISCRETE MEMORYLESS CHANNEL

In this section, we establish outer and inner bounds on the rate-equivocation region for a

parallel relay-eavesdropper channel.

A. Channel Model

Definition 1: A parallel relay-eavesdropper channel is a four terminal network consisting of

X1[1,L],X2[1,L] as finite input alphabets andY[1,L],Y1[1,L],Y2[1,L] as finite output alphabets. The

transition probability distribution is given by

L
∏

l=1

p(yl, y1l, y2l | x1l, x2l) (1)

wherex1l ∈ X1l, x2l ∈ X2l, y1l ∈ Y1l, yl ∈ Yl andy2l ∈ Y2l, for l = 1, · · · , L.

Definition 2: The source sends a messageW ∈ W = {1, · · · , 2nR} using a (2nR, n) code

consisting of

• a stochastic encoder at the source that mapsW → Xn
1[1,L],
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• a relay encoder that mapsfi(Y
i−1
1[1,L]) → X2[1,L],i for 1 ≤ i ≤ n,

• a decoding functiong(Y n
[1,L]) → W .

Definition 3: The average error probability of a (2nR, n) code is defined as

P n
e =

1

2nR

∑

W∈W
p{g(Y n

[1,L]) 6= W |W}. (2)

Due to the openness of the wireless medium, the eavesdropperlistens for free to what the

source and relay transmit. It then tries to guess the information being transmitted. Denoting

Y n
2[1,L] the output at the eavesdropper, the equivocation rate per channel use is defined asRe =

H(W |Y n
2[1,L])/n. Perfect secrecy for the channel is obtained when the eavesdropper gets no

information aboutW from Y n
2[1,L]. That is, the equivocation rate is equal to the unconditional

source entropy.

Definition 4: A rate equivocation pair (R,Re) is achievable, if for anyǫ > 0 there exists a

sequence of codes (2nR, n) such that for anyn ≥ n(ǫ)

H(W )

n
≥ R − ǫ,

H(W |Y n
2[1,L])

n
≥ Re − ǫ,

P n
e ≤ ǫ. (3)

B. Outer bound

Theorem 1: For a parallel relay-eavesdropper channel withL subchannels, and for any achiev-

able rate-equivocation pair(R,Re), there exists a set of random variablesUl → (V1l, V2l) →
(X1l, X2l) → (Yl, Y1l, Y2l), l = 1, . . . , L, such that (R,Re) satisfies

R ≤ min







L
∑

l=1

I(V1lV2l; Yl),
L
∑

l=1

I(V1l; YlY1l | V2l)







Re ≤ R

Re ≤ min







L
∑

l=1

I(V1lV2l; Yl | Ul)− I(V1lV2l; Y2l | Ul),
L
∑

l=1

I(V1l; YlY1l | V2lUl)− I(V1lV2l; Y2l | Ul)







.

(4)

Proof: See [11] for details of the proof.
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Remark 1: The bound in Theorem 1 does not follow directly from the single letter outer

bound on the rate-equivocation region of relay-eavesdropper channel given in [7]. A converse

proof is needed because we need to redefine the auxiliary random variables.

C. Achievable rate-equivocation region

Theorem 2: For a parallel relay-eavesdropper channel withL subchannels, the rate pairs in

the closure of the convex hull of all (R,Re) satisfying

R ≤ min







∑

l∈A
I(V1lV2l; Yl|Ul),

∑

l∈A
I(V1l; Y1l|V2lUl)







+
∑

l∈Ac

I(V1l; Yl|V2l)

Re ≤ R

Re ≤ min







∑

l∈A
I(V1lV2l; Yl|Ul)− I(V1lV2l; Y2l|Ul),

∑

l∈A
I(V1l; Y1l|V2lUl)− I(V1lV2l; Y2l|Ul)







+
∑

l∈Ac

I(V1l; Yl|V2l) + min







∑

l∈Ac

I(V2l; Yl),
∑

l∈Ac

I(V2l; Y2l|V1l)







−min







∑

l∈Ac

I(V2l; Yl),

∑

l∈Ac

I(V2l; Y2l)







−
∑

l∈Ac

I(V1l; Y2l|V2l), (5)

for some distributionp(ul, v1l, v2l, x1l, x2l, yl, y1l, y2l) = p(ul)p(v1l, v2l|ul)p(x1l, x2l|v1l, v2l)p(yl, y1l, y2l|x1l, x2l)

for l ∈ A and p(v1l, v2l, x1l, x2l, yl, y1l, y2l) = p(v1l)p(v2l)p(x1l|v1l)p(x2l|v2l)p(yl, y1l, y2l|x1l, x2l) for l ∈
Ac, are achievable.

In the statement of Theorem 2, setsA and Ac represent the subchannels for which relay

operates in DF and NF mode, respectively. The region in Theorem 2 is obtained through a

coding scheme which combines appropriately DF and NF schemes. The rates for the DF scheme

can be obtained readily by settingU := U[1,|A|], V1 := V1[1,|A|], V2 := V2[1,|A|], Y := Y[1,|A|],

Y1 := Y1[1,|A|] andY2 := Y2[1,|A|], for l ∈ A in [7, Theorem 2]. Similarly the rates for NF scheme

can be readily obtained by settingV1 := V1[1,|Ac|], V2 := V2[1,|Ac|], Y := Y[1,|Ac|], Y1 := Y1[1,|Ac|]

andY2 := Y2[1,|Ac|], for l ∈ Ac in [7, Theorem 3].

III. GAUSSIAN MODEL

In this section we study a parallel Gaussian relay-eavesdropper channel. Figure 1 depicts the

studied model. We only focus on the perfectly secure achievable rates, i.e.,(R,Re) = (R,R).
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A. Channel Model

For a parallel Gaussian relay-eavesdropper channel, the received signals at the relay, destination

and eavesdropper are given by

Y1l,i = X1l,i + Z1l,i

Yl,i = X1l,i +
√
ρ1lX2l,i + Zl,i

Y2l,i = X1l,i +
√
ρ2lX2l,i + Z2l,i (6)

where i is the time index,{Z1l,i}, {Zl,i} and {Z2l,i} are noise processes, independent and

identically distributed (i.i.d) with the components beingzero mean Gaussian random variables

with variancesσ2
1l, σ

2
l and σ2

2l respectively, forl = 1, . . . , L. For the subchannell, X1l,i and

X2l,i are the inputs from the source and relay nodes respectively.The parameterρ1l indicates

the ratio of the R-D link signal-to-noise (SNR) to the S-D link SNR andρ2l indicates the ratio

of the R-E link SNR to the S-E link SNR for subchannell respectively. The source and relay

input sequences are subject to separate power constraintsP1 andP2, i.e,

1

n

L
∑

l=1

n
∑

i=1

E[X2
1l,i] ≤ P1, (7)

1

n

L
∑

l=1

n
∑

i=1

E[X2
2l,i] ≤ P2. (8)

B. Lower Bound on the Perfect Secrecy Rate

For the parallel Gaussian relay-eavesdropper channel (6),we apply Theorem 2 to obtain a

lower bound on the perfect secrecy rate.1

Corollary 1: For the parallel Gaussian relay-eavesdropper channel (6),a lower bound on the

1The results established for the DM case can be readily extended to memoryless channels with discrete time and continuous

alphabets using standard techniques [12, Chapter 7].
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perfect secrecy rate is given by

Rlow
e = max∑

L

l=1
P1l≤P1,

∑
L

l=1
P2l≤P2,

0≤αl≤1, for l = 1, . . . , |A|

min







∑

l∈A

C







P1l + ρ1lP2l + 2
√
ᾱlρ1lP1lP2l

σ2
l







− C







P1l + ρ2lP2l + 2
√
ᾱlρ2lP1lP2l

σ2
2l






,
∑

l∈A

C







αlP1l

σ2
1l






− C







P1l + ρ2lP2l + 2
√
ᾱlρ2lP1lP2l

σ2
2l













+
∑

l∈Ac

C







P1l

σ2
l






+min







∑

l∈Ac

C







ρ1lP2l

P1l + σ2
l






,
∑

l∈Ac

C







ρ2lP2l

σ2
2l













−min







∑

l∈Ac

C







ρ1lP2l

P1l + σ2
l






,
∑

l∈Ac

C







ρ2lP2l

P1l + σ2
2l













−
∑

l∈Ac

C







P1l

σ2
2l






. (9)

Proof: The achievability follows by applying Theorem 2 with the choice Ul = constant,

V1l = X1l, V2l = X2l, X1l = X̃1l +
√

ᾱlP1l

P2l

X2l, ᾱl = 1 − αl, X̃1l ∼ N (0, αlP1l) independent

of X2l ∼ N (0, P2l), whereαl ∈ [0, 1] for l ∈ A; andX1l ∼ N (0, P1l) independent ofX2l ∼
N (0, P2l) for l ∈ Ac. Straightforward algebra which is omitted for brevity gives (9).

The parametersP1l andP2l indicate the source and relay power allocated for transmission over

the subchannell. In (9), after some straightforward algebra, the contribution to the equivocation

of information sent through NF (in setAc) can be condensed by observing that we only need to

considermin{∑l∈Ac I(X2l, Y2l),
∑

l∈Ac I(X2l, Yl)} =
∑

l∈Ac I(X2l, Y2l), to get higher secrecy

rate. A simplified expression forRlow
e is given by

Rlow
e = max∑

L

l=1
P1l≤P1,

∑
L

l=1
P2l≤P2,

0≤αl≤1, for l = 1, . . . , |A|

min







∑

l∈A



C







P1l + ρ1lP2l + 2
√
ᾱlρ1lP1lP2l

σ2
l







− C







P1l + ρ2lP2l + 2
√
ᾱlρ2lP1lP2l

σ2
2l











+

,
∑

l∈A



C







αlP1l

σ2
1l






− C







P1l + ρ2lP2l + 2
√
ᾱlρ2lP1lP2l

σ2
2l











+





+min











∑

l∈Ac



C







P1l + ρ1lP2l

σ2
l






− C







P1l + ρ2lP2l

σ2
2l











+

,
∑

l∈Ac



C







P1l

σ2
l






+ C







ρ2lP2l

σ2
2l







− C







P1l + ρ2lP2l

σ2
2l











+










. (10)
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Remark 2: The achievable perfect secrecy rate established in Corollary 1 can be larger than

the one obtained by coding separately over different parallel subchannels.

This remark is elucidated by the following example.

Example:We consider a deterministic parallel relay-eavesdropper channel with two subchan-

nels, i.e,L = 2, as shown in figure 2. For simplicity, we assume that the relayuses the same

scheme on all subchannels (either DF or NF). For subchannel 1, the link capacities to the relay,

legitimate receiver and eavesdropper are given byCr1,a = 4, Cr1,b = 3 andCe1 = 2 respectively.

For subchannel 2, the link capacities to the relay, legitimate receiver and eavesdropper are given

by Cr2,a = 5, Cr2,b = 7 andCe2 = 3 respectively. For this channel, achievable rate obtained by

coding across subchannels is given by

Re =min







2
∑

i=1

(Cri,a − Cei)
+,

2
∑

i=1

(Cri,b − Cei)
+







=min{4, 5} = 4. (11)

Similarly achievable rate obtained by coding independently over each subchannel is given by

Re =

2
∑

i=1

min{(Cri,a − Cei)
+, (Cri,b − Cei)

+}

=min{2, 1}+min{2, 4} = 3 (12)

which is clearly smaller than (11). This shows the usefulness of coding across subchannels.

C. Upper Bound on the Perfect Secrecy Rate

The following theorem provides an upper bound on the secrecyrate of the parallel Gaussian

relay-eavesdropper channel.

Theorem 3: For the parallel Gaussian relay-eavesdropper channel (6),an upper bound on the

secrecy rate is given by

Rup
e ≤ max

{KPl
∈KPl

}l=1...L

L
∑

l=1

I(X1lX2l; Yl)− I(X1lX2l; Y2l) (13)
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where the maximization is over[X1l, X2l] ∼ N (0,KPl) with KPl =







KPl : KPl =
[

P1l ψl
√
P1lP2l

ψl
√
P1lP2l P2l

]

,

−1 ≤ ψl ≤ 1







, for l = 1, . . . , L, with the covariance matricesE[X1[1,L]X
T
1[1,L]], E[X2[1,L]X

T
2[1,L]]

satisfying (7) and (8) respectively.

Proof: The proof follows from the rate-equivocation region established for the DM case

in Theorem 1. Taking the first term of minimization in the bound on the equivocation rate in

Theorem 1, we get

Rup
e ≤ max

L
∑

l=1

I(V1lV2l; Yl | Ul)− I(V1lV2l; Y2l | Ul) (14)

whereUl → (V1l, V2l) → (X1l, X2l) → (Yl, Y1l, Y2l), for l = 1, . . . , L. The rest of the proof uses

elements from related works in [3] and [5]. Continuing from (14), we obtain

Rup
e ≤

L
∑

l=1

I(V1lV2l; Yl | Ul)− I(V1lV2l; Y2l | Ul)

(a)

≤
L
∑

l=1

I(V1lV2l; Yl)− I(V1lV2l; Y2l)

≤
L
∑

l=1

I(V1lV2l; YlY2l)− I(V1lV2l; Y2l)

(b)
=

L
∑

l=1

[I(X1lX2l; YlY2l)− I(X1lX2l; YlY2l | V1lV2l)]

−[I(X1lX2l; Y2l)− I(X1lX2l; Y2l | V1lV2l)]

=

L
∑

l=1

[I(X1lX2l; YlY2l)− I(X1lX2l; Y2l)]

−[I(X1lX2l; YlY2l | V1lV2l)− I(X1lX2l; Y2l | V1lV2l)]

≤
L
∑

l=1

[I(X1lX2l; YlY2l)− I(X1lX2l; Y2l)]

=
L
∑

l=1

I(X1lX2l; Yl | Y2l) (15)

where (a) follows by noticing thatI(V1lV2l; Yl | Ul)− I(V1lV2l; Y2l | Ul) is maximized by setting

Ul = constant and (b) follows from the Markov chain condition(V1l, V2l) → (X1l, X2l) →
(Yl, Y1l, Y2l), for l = 1, . . . , L.
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We now tighten the upper bound (15) by using an argument previously used in [5], [6] in the

context of multi-antennas wiretap channel. More specifically, observing that, the original bound

(14) depends onp(yl, y2l|x1l, x2l) only through its marginalsp(yl|x1l, x2l) andp(y2l|x1l, x2l), the

upper bound (15) can be further tightened as

Rup
e ≤ max

p(x1l,x2l)

L
∑

l=1

min
p(y′

l
,y′

2l
|x1l,x2l)

I(X1lX2l; Y
′
l | Y ′

2l) (16)

where the joint conditionalp(y′l, y
′
2l|x1l, x2l) has the same marginals asp(yl, y2l|x1l, x2l), i.e.,

p(y′l|x1l, x2l) = p(yl|x1l, x2l) andp(y′2l|x1l, x2l) = p(y2l|x1l, x2l).
It can be easily shown that the bound in (16) is maximized whenthe inputs are jointly Gaussian,

i.e., [X1l, X2l] ∼ N (0,KPl), KPl ∈ KPl with KPl =







KPl : KPl =
[

P1l ψl
√
P1lP2l

ψl
√
P1lP2l P2l

]

,−1 ≤

ψl ≤ 1







, for l = 1, . . . , L with the covariance matricesE[X1[1,L]X
T
1[1,L]] andE[X2[1,L]X

T
2[1,L]]

satisfying (7) and (8) respectively [5], [6].

Next, using the specified Gaussian inputs, it can be shown that the evaluation of the upper

bound (16) minimized over all possible correlations between Y ′
l , Y

′
2l, for l = 1, . . . , L yields

Rup
e ≤ max

{KPl
∈KPl

}l=1...L

L
∑

l=1

I(X1lX2l; Yl)− I(X1lX2l; Y2l). (17)

This concludes the proof.

The computation of the upper bound is given in Appendix I

D. Special Case

We now study the case in which the S-R links are very noisy, i.e., the relay does not hear the

source.

Theorem 4: For the model (6) in which the relay does not hear the source, the secrecy capacity

is given by

Cs = min







max
L
∑

l=1

C





P1l + ρ1lP2l

σ2
l



−C





P1l + ρ2lP2l

σ2
2l



,max
L
∑

l=1

C





P1l

σ2
l



−C





P1l

σ2
2l + ρ2lP2l











(18)
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where the maximization is over{P1l, P2l}, for l = 1 . . . L, such that
∑L

l=1 P1l ≤ P1 and
∑L

l=1 P2l ≤ P2.

Proof:

Upper Bound: The bound given by the first term of the minimization in (18) follows from a

straightforward application of the result in Theorem 3 — taking independent source and relay

inputs since the relay does not hear the source transmissionin this case.

The bound given by the second term of the minimization in (18)can be established as follows.

Our approach borrows elements from an upper bounding technique that is used in [10], and can

be seen as an extension of it to the case of parallel relay-eavesdropper channels. Assume that

all links between the relay and the destination are noiseless, and the eavesdropper is constrained

to treat the relay’s signal as unknown noise. As mentioned in[10], any upper bound for this

model with full relay-destination cooperation and constrained eavesdropper, also applies to the

general model.

Now, for the model with full relay-destination cooperationand constrained eavesdropper, we

develop an upper bound on the secrecy capacity as follows. Inthis case, the destination can

remove the effect of the relay transmission (which is independent from the source transmission

as the relay does not hear the source), and the equivalent channel to the destination can be

written as

Y ′
l,i = X1l,i + Zl,i. (19)

For the constrained eavesdropper the relay’s transmissionacts as an interference, with the

worst case obtained with the GaussianX2l, for l = 1 . . . , L [10]. The equivalent output at

the eavesdropper in this case is given by

Y ′
2l,i = X1l,i +

√

ρ2lE[X2
2l,i] + Z2l,i. (20)

The rest of the proof follows by simply observing that the resulting model (with the worst

case relay transmission to the eavesdropper and full relay-destination cooperation) is, in fact, a

parallel Gaussian wiretap channel, the secrecy capacity ofwhich is established in [3], i.e,

Cs ≤ max

L
∑

l=1

I(X1l; Y
′
l )− I(X1l; Y

′
2l) (21)
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where the maximization is overX1l ∼ N (0, P1l), X2l ∼ N (0, P2l) for l = 1 . . . L, with
∑L

l=1 P1l ≤ P1 and
∑L

l=1 P2l ≤ P2.

Finally straightforward algebra which is omitted for brevity shows that the computation of

(21) gives the second term of the minimization in (18).

Lower Bound: The achievability follows by computing the lower bound in Theorem 2 with the

choices|Ac| := L, V1l := X1l, V2l := X2l, andX1l ∼ N (0, P1l) independent ofX2l ∼ N (0, P2l).

IV. A PPLICATION

In this section we apply the results which we established forthe Gaussian memoryless model

in section III to study a fading relay-eavesdropper channel.

For a fading relay-eavesdropper channel, the received signals at the relay, legitimate receiver

and eavesdropper are given by

Y1,i = hsr,iX1,i + Z1,i

Yi = hsd,iX1,i + hrd,iX2,i + Zi

Y2,i = hse,iX1,i + hre,iX2,i + Z2,i (22)

wherei is the time index,hsd,i, hrd,i, hse,i, hre,i andhsr,i are the fading gain coefficients associated

with S-D, R-D, S-E, R-E and S-R links, given by complex Gaussian random variables with zero

mean and unit variance respectively. The noise processes{Z1,i}, {Zi}, {Z2,i} are zero mean i.i.d

complex Gaussian random variables with variancesσ2
1 , σ2 andσ2

2 respectively. The source and

relay input sequences are subject to an average power constraint, i.e,
∑n

i=1 E[|X1,i|2] ≤ nP1,
∑n

i=1 E[|X2,i|2] ≤ nP2. We defineh̄i := [hsd,i hrd,i hse,i hre,i hsr,i] and assume that perfect

channel state information (CSI) is available at all nodes, i.e, each node has access to the

instantaneous CSI and its statistics. For a given fading state realizationh̄i, the fading relay-

eavesdropper channel is a Gaussian relay-eavesdropper channel. Therefore, for a given channel

state withL fading state realizations, i.e,̄h = {h̄i}Li=1, the fading relay-eavesdropper channel

can be seen as a parallel Gaussian relay-eavesdropper channel with L subchannels. The power

allocation vectors at the source and relay are denoted byP1(h̄) and P2(h̄) respectively. The

ergodic achievable secrecy rate of the fading relay-eavesdropper channel (22), which follows
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from (10) is given by

Rlow
e = max

E[P1(h̄)]≤P1,

E[P2(h̄)]≤P2,

0≤α(h̄)≤1

min







Eh̄∈A



2C







|hsd|2P1(h̄) + |hrd|2P2(h̄) + 2
√

ᾱ(h̄)|hsd|2P1(h̄)|hrd|2P2(h̄)

σ2







− 2C







|hse|2P1(h̄) + |hre|2P2(h̄) + 2
√

ᾱ(h̄)|hse|2P1(h̄)|hre|2P2(h̄)

σ2
2











+

,Eh̄∈A



2C







α(h̄)|hsr|2P1(h̄)

σ2
1







− 2C







|hse|2P1(h̄) + |hre|2P2(h̄) + 2
√

ᾱ(h̄)|hse|2P1(h̄)|hre|2P2(h̄)

σ2
2











+





+min







Eh̄∈Ac



2C







|hsd|2P1(h̄) + |hrd|2P2(h̄)

σ2






− 2C







|hse|2P1(h̄) + |hre|2P2(h̄)

σ2
2











+

,

Eh̄∈Ac



2C







|hsd|2P1(h̄)

σ2






+ 2C







|hre|2P2(h̄)

σ2
2






− 2C







|hse|2P1(h̄) + |hre|2P2(h̄)

σ2
2











+





. (23)

The upper bound for the fading relay-eavesdropper channel (22) follows directly from the upper

bound established for the parallel Gaussian relay-eavesdropper channel (30). Straightforward

algebra which is omitted here for brevity gives

Rup
e ≤ max

E[P1(h̄)]≤P1,

E[P2(h̄)]≤P2,

−1≤ψ(h̄)≤1

Eh̄







2C





|hsd|2P1(h̄) + |hrd|2P2(h̄) + 2ψ(h̄)
√

|hsd|2P1(h̄)|hrd|2P2(h̄)

σ2





− 2C





|hse|2P1(h̄) + |hre|2P2(h̄) + 2ψ(h̄)
√

|hse|2P1(h̄)|hre|2P2(h̄)

σ2
2











. (24)

V. NUMERICAL RESULTS

In this section we provide numerical examples to illustratethe performance of fading relay-

eavesdropper channel. We consider a fading relay-eavesdropper channel withL realizations of

fading state. It is assumed that perfect channel state information is available at all nodes. We can

consider this channel as a Gaussian relay-eavesdropper channel with L subchannels. We model

channel gain between nodei ∈ {s, r} and j ∈ {r, d, e} as distance dependent Rayleigh fading,

that is,hi,j = h′i,jd
−γ/2
i,j , whereγ is the path loss exponent,di,j is the distance between the node
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i andj, andh′i,j is a complex Gaussian random variable with zero mean and variance one. Each

subchannel is corrupted by additive white Gaussian noise with zero mean and variance one.

Furthermore, for each symbol transmission same subchannelis used on S-R and R-D links to

make the optimization tractable. The objective function for both lower and upper bounds are

optimized numerically using AMPL with a commercially available solver, for instance SNOPT.

To illustrate the system performance, we set the source and relay power to 64 Watt each. We

consider a network geometry in which the source is located atthe point (0,0), the relay is located

at the point (d,0), the destination is located at the point (1,0) and the eavesdropper is located at

the point (0,1), whered is the distance between the source and the relay. In all numerical results

we set path loss exponentγ:=2 andL := 64. For each subchannel the selection of the coding

scheme at the relay is based on the relative strength of the S-D link w.r.t the S-R link, i.e, we use

NF scheme (setAc) when |hsd|2 ≥ |hsr|2 and DF scheme (setA) when |hsd|2 < |hsr|2. Fig. 3

shows the power allocation for a fading channel with 64 subchannels where the relay is located

at (0.5,0), and marker ‘×’ denotes NF on a particular subchannel while marker ‘�’ denotes DF

on a particular subchannel. It can be seen from Fig. 3 that, achievable perfect secrecy rate is

zero for some subchannels. Roughly speaking, this happens when the condition|hrd|2 > |hre|2

is violated.

Fig. 4 compares the average perfect secrecy rate of the lowerbound, with optimized power

allocation and with uniform power allocation, i.e., allocating same power at the source and

relay for all subchannels in̄h ∈ A and in h̄ ∈ Ac. It can be seen that for separate source and

relay powers, optimized power allocation scheme outperforms uniform power allocation scheme.

This fact follows because optimized power allocation scheme maximizes the achievable perfect

secrecy rate and hence enhances the system performance.

Mode selection at the relay by only considering the relativestrength of the S-D and the S-R

link in the lower bound is suboptimal because the achievablesecrecy rate (23) also depends on

the gain of other link. We now consider the case in which the relay selects the scheme which

maximizes the rate for each subchannel. We plot the lower bound with this criteria and compare

it with the case in which same scheme is used on all subchannels. As a reference we consider

the case in which there is no relay i.e. a parallel wiretap channel. Fig. 5 shows the achievable

average perfect secrecy rate of different schemes. It can beseen that when the relay is close to

the source, DF scheme on all subchannels gives higher secrecy rate. Similarly when the relay is
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close to the destination, NF scheme on all subchannels offers better rate. The region when the

relay is between0.5 < d < 1.2 is of particular interest. In this region the relay selects between

DF scheme and NF scheme for each subchannel based on the relative strength of the S-D link

w.r.t the S-R link as mentioned above, and utilizes the gain from both schemes. It is interesting

to note that when the relay is close to the destination, use ofDF scheme on all subchannels

does not offer any gain because in this case the relay is unable to decode the source information

and hence the average secrecy rate decreases. The lower bound always perform better than the

wiretap channel which shows the usefulness of the relay.

In Fig. 6 we compare the lower bound obtained in Fig. 5, with the upper bound on the secrecy

capacity for the fading relay-eavesdropper channel. It canbe seen that when the relay is close

to the source, the lower and upper bound matches. This follows because of using DF scheme

on all subchannels.

VI. CONCLUSIONS

We studied the problem of secure communication over the parallel relay channel. Outer and

inner bounds on the rate-equivocation are established for the DM case. We established lower

and upper bound on the perfect secrecy rate for the Gaussian memoryless case. For the Gaussian

model, the case in which the relay does not hear the source, the lower and upper bound coincide

and secrecy capacity is established. We apply the results established for the Gaussian memoryless

model to a more practical fading relay-eavesdropper channel. Numerical examples showed that

power adjustment among parallel channels result in higher secrecy rate.

APPENDIX I

We compute the upper bound on secrecy rate for the parallel Gaussian relay-eavesdropper

channel as follows.

max
{KPl

∈KPl
}l=1...L

L
∑

l=1

I(X1lX2l; Yl)− I(X1lX2l; Y2l)

= max
{KPl

∈KPl
}l=1...L

L
∑

l=1

[h(Yl)− h(Yl | X1lX2l)− h(Y2l) + h(Y2l | X1lX2l)]

= max
{KPl

∈KPl
}l=1...L

L
∑

l=1

[h(Yl)− h(Zl)− h(Y2l) + h(Z2l)]. (25)
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The first term in (25) is computed as follows.

h(Yl) = h(X1l +
√
ρ1lX2l + Zl)

=
1

2
log(2πe)(P1l + ρ1lP2l + 2ψl

√

ρ1lP1lP2l + σ2
l ). (26)

Similarly the second, third and fourth term in (25) are computed as follows.

h(Zl) =
1

2
log 2πe(σ2

l ) (27)

h(Y2l) =
1

2
log(2πe)(P1l + ρ2lP2l + 2ψl

√

ρ2lP1lP2l + σ2
2l) (28)

h(Z2l) =
1

2
log 2πe(σ2

2l). (29)

Using (26)-(29) in (25) gives

Rup
e ≤ max∑

L

l=1
P1l≤P1,∑

L

l=1
P2l≤P2,

−1≤ψl≤1
for l = 1 . . . , L

L
∑

l=1

1

2
log



1 +
P1l + ρ1lP2l + 2ψl

√
ρ1lP1lP2l

σ2
l



− 1

2
log



1 +
P1l + ρ2lP2l + 2ψl

√
ρ2lP1lP2l

σ2
2l



.

(30)
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Fig. 4. Comparison of achievable perfect secrecy rate of thelower bound with optimized power allocation and with uniform
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