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Abstract. We present an algorithm for phylogenetic reconstruction using quartets that returns the
correct topology for n taxa in O(n logn) time with high probability, in a probabilistic model where a
quartet is not consistent with the true topology of the tree with constant probability, independent of
other quartets. Our incremental algorithm relies upon a search tree structure for the phylogeny that is
balanced, with high probability, no matter what the true topology is. Our experimental results show that
our method is comparable in runtime to the fastest heuristics, while still offering consistency guarantees.
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1 Introduction

Incremental phylogenetic reconstruction algorithms add new taxa to a topology until all n taxa have been
added. They optimize a greedy objective at all n insertions, much as agglomerative algorithms (like neighbour
joining or UPGMA) optimize an objective at all n− 1 agglomerations. Such algorithms can be quite efficient.
If each addition requires O(f(n)) time, the overall runtime is O(nf(n)).

We give an algorithm where each insertion requires O(log n) runtime with high probability, and where the
probability that any insertion is incorrect is o(1) in a simple error model. Thus, our randomized algorithm has
runtime O(n log n) with high probability (regardless of the true topology) and o(1) probability of producing
an incorrect topology. We believe it is the first O(npoly log n)-runtime algorithm with such guarantees. Any
o(n log n)-runtime algorithm cannot return all topologies, so our algorithm is asymptotically optimal.

We present a review of related work, give basic definitions, and then give the algorithm in the case
of error-free data. Then, we extend the algorithm to the case of data containing noise. Finally, we give
some experimental results on real and simulated data. Our error-tolerant algorithms offer the possibility of
producing a phylogenetic tree in runtime smaller than that of producing even the input matrix to a distance
method like neighbour joining, while still having high probability of reconstructing the true tree.

2 Related work

Phylogenetic quartet methods reconstruct trees from sets of four taxa and combine these phylogenies into
the overall tree. Quartet puzzling [18] is one of the first algorithms in this line of research. Many heuristic
algorithms also operate on this principle (e.g. [15,16]).

Some quartet algorithms find the correct phylogeny with high probability under a certain model of evolu-
tion. Erdös et al. [7] give an O(n4 log n) algorithm that reconstructs the phylogeny with 1− o(1) probability
assuming that the sequences evolve according to the Cavender-Farris model of evolution, for sufficiently long
sequences. The runtime of their algorithm is O(n2) for most trees. Csűros [4] provided a practical O(n2)
algorithm with similar performance guarantees. Recent papers [10,5] give similar algorithms to identify parts
of the tree that can be reconstructed. These approaches choose queries so that, in the assumed model of
evolution, all queries are correct with high probability.

The only sub-quadratic time algorithm with guarantees on reconstruction accuracy is by King et al. [13].
The running time is O(n2 log logn

logn ) provided that the sequences are long enough.

Wu et al. [19] gave a simple error model where each quartet query independently errs with fixed probability
p. They gave an O(n4 log n) algorithm that errs with constant probability under this model. This model has
also been used for evaluating algorithms for maximum quartet consistency [20].

We improve on Wu et al. in runtime and accuracy with an O(n log n) algorithm that errs with probability
o(1). To our knowledge, it is the first provably error-tolerant, substantially sub-quadratic time algorithm for
phylogenetic reconstruction. (Recently, an O(n1.5) heuristic algorithm has been proposed [14].)

Fast algorithms have been proposed for error-free data. Kannan et al. [11] use error-free rooted triples in
an O(n log n) algorithm. Rooted triples reduce to quartets if we pick one taxon as an outgroup and always
ask quartet queries for sets with that taxon, so that algorithm works for error-free quartets.

Our algorithm uses ideas from work on noisy binary search in which comparisons have fixed error proba-
bility, by Feige et al. [8] and Karp and Kleinberg [12].

3 Definitions

We begin with definitions about the two trees we will focus on: the phylogeny we are reconstructing and the
search tree that allows us to do the insertions.

A phylogeny T is an unrooted binary tree with n leaves in 1-to-1 correspondence with a set S of taxa.
Removing internal node v, and its incident edges, from a phylogeny yields three subtrees, ti(T, v) for i = 1, 2, 3.
The tree ti(T, v) joined with its edge to v is the child subtree ci(T, v). Phylogeny T ′ is consistent with T if
its taxa are a subset of those of T , and T ′ is formed by the union of all paths in T between taxa in T ′, with
internal nodes of degree 2 removed. A border node of subtree T ′ in T is any internal node of T that is a leaf
in T ′.

A quartet is a phylogeny of four taxa. A quartet query q(a, b, c, d), returns one of three possible quartet
topologies: ab|cd, ac|bd and ad|bc, where in ab|cd, if we remove the internal edge, we disconnect {a, b} from
{c, d}. We assume a quartet query can be done in O(1) time. In Section 5 our error model considers how
often quartet queries for four taxa of T are inconsistent with T . A node query N(T, v, x) for internal node v



of phylogeny T and new taxon x is a quartet query q(x, a1, a2, a3), where ai is a leaf of T in ti(T, v). Such a
query identifies the ci(T, v) where taxon x belongs, if it is consistent with the true topology.

3.1 Search tree

A natural algorithm to add taxon x to phylogeny T begins at an internal node v and uses node query N(T, v, x)
to identify the ti(T, v) where taxon x belongs. We move to the neighbour of v in that subtree, and repeat the
process until the subtree into which x is to be placed is only one edge e, which we break into two edges and
hang x onto; see Figure 1. We follow the path from v to an endpoint of e and identify the other endpoint
with one more query. The number of node queries equals this path length plus one. For a balanced tree with
diameter Θ(log n), this gives a Θ(n log n) incremental phylogeny algorithm. But for trees like a caterpillar
tree, with Θ(n) diameter, this algorithm requires Θ(n2) queries.

π1 π2 π3π4π5 π6 π1 π2 π3π4π5 π6π7

Fig. 1. Natural incremental algorithm: start at root and search to find place for new taxon π7 by asking queries down
the path. Break an edge to insert the new taxon.

We give a search tree structure to manage the expected number of queries on the search path, regardless
of the underlying tree topology.

Definition 1. A search tree Y (T ) for a phylogeny T is a rooted ternary tree satisfying the following condi-
tions:

1. Each node y in Y (T ) is associated with a distinct subtree r(y) of T .
2. The root of Y (T ) is associated with the full tree T .
3. For each internal node y in Y (T ), there exists an internal node s(y) in T such that the three subtrees

associated with the children of y are the intersections between r(y) and the three child subtrees of the node
s(y) in T . There are also three nonempty lists `i(y) stored at each internal node y; each element of `i(y)
is a taxon in ti(T, y).

4. For each node y in Y (T ), r(y) has at most two border nodes in T

Y (T ) is complete if each leaf in Y (T ) is associated with a single edge of T , and each edge of T has a
corresponding leaf in Y (T ). For a given node y in the search tree, its associated node s(y) in T may be picked
so the three child subtrees are reasonably balanced; this gives expected O(log n) insertion time. See Figure 2
for an example.

4 An algorithm for error-free data
Using our search tree structure gives a straightforward incremental phylogeny algorithm if quartets are all
consistent with T , the true topology.

We pick a random permutation π of the taxa, and start with the unique topology T3 for {π1, π2, π3}, and
a search tree Y (T3) with four nodes: a root w with r(w) = T3 and s(w) the internal node of T3, and with one
leaf for each edge of T3. We also store `i(w) = {πi}; we also use `i(w) to represent the unique member of this
set. This fits our requirements for a complete search tree of T3.

Now, assuming Ti is consistent with T , and Y (Ti) is a valid search tree for Ti, we add πi+1, to produce
Ti+1 and Y (Ti+1). We start at the root w of Y (Ti) and ask the node query N(Ti, s(w), πi+1) using the quartet
q(πi+1, `1(w), `2(w), `3(w)); this tells us which child of w we should move to next. We continue until we reach
a leaf y of Y (Ti); this corresponds to the edge e of Ti where the new taxon πi+1 belongs. We break edge e
into two parts, creating a new node u and a new edge from u to the new leaf πi+1. The new tree is Ti+1.

To update Y (Ti), we create three edges from y to a new node for each of the three newly created edges
and let `1(y) be {πi+1}, and set `2(y) and `3(y) to contain the taxon closest to πi+1 in the final quartet query



y
r(y)

Fig. 2. A search tree for a seven-taxon phylogeny. Directed search tree edges are shown in solid lines; the underlying
phylogeny is in dotted lines. The search tree node y corresponds to the region r(y) of the phylogeny indicated by the
cloud.

πi

Fig. 3. Inserting into a search tree. To insert π8 into the phylogeny, we follow the path through the search tree indicated
with double arrows. We find the correct edge to break to add π8 to the tree, and modify the search tree locally to
accommodate the change.

and one of the two taxa that was not closest to πi+1 in that query. Since node y was a leaf in Y (Ti), these
nodes are in proper configuration with respect to y in Ti+1. See Figure 3.

Assuming the quartet queries all are consistent with the true topology T , we discover in this way the
proper place in the tree to insert each new taxon and maintain the invariants required for a complete search
tree. In particular, the only subtrees whose border nodes need to be considered are those created by the new
node addition, and as they are all either single edges or derived from a single edge in Y (Ti), they continue to
have at most two border nodes.

Theorem 1. If all quartet queries made by this algorithm are consistent with T , then this algorithm returns
T . Its runtime is O(n log n) with probability 1− o(1).

Proof. We have seen that the algorithm returns T . In the next subsection, we show that inserting taxon πi
requires O(log n) queries with high probability, each of which requires O(1) time; the work to create a new
edge requires constant time. The overall runtime is O(n log n) with high probability.

4.1 The height of the search tree
To prove Theorem 1, we need to know the height of the search tree Y (T ). We will show that this tree is
almost surely balanced, using several lemmas.

Lemma 1. For any phylogeny T , with n taxa, there exist two disjoint child subtrees A and B of the form
ti(T, v) with at least n/6 and at most n/3 taxa.

Proof. We first show there exists a node u where all ti(T, u) have at most n/2 taxa. Pick an internal node u
in T ; if all ti(T, u) have at most n/2 taxa, we are done. Otherwise, move to the its neighbour in the ti(T, u)
with the most taxa. This process terminates at a node u satisfying the property. Let n1 ≤ n2 ≤ n3 be the
numbers of taxa in the trees ti(T, u) at some step. If n1 >

n
2 , we move to the neighbour u∗ of u in T1; trees

Ti(T, u
∗) have n11, n12 and n2 + n3 taxa respectively where n11, n12 are the numbers of taxa in the subtrees



T11, T12 of T1 created by removing u∗. Since n2 +n3 <
n
2 , the component with size over n

2 must be either T11
or T12, which are smaller than T1 since they are its subtrees.

Now, consider the node u we have found by this process, and let t1 and t2 be the two largest ti(T, u)
subtrees, both of which have between n/4 and n/2 taxa. If t1 has more than n/3 taxa, consider the three
child subtrees in t1 of the neighbour of u in t1; one has zero taxa, so the larger must have at least n/6 taxa.
If this tree has at most n/3 taxa, we have found our subtree A; if not, we move one step more away from u
until we find a subtree small enough. We analogously find B as a subtree of t2.

Lemma 2. The number of node queries asked by the phylogeny algorithm to assign taxon πi+1 to its place in
the tree is at most 37(log6/5 i) ≈ 203 ln i, with probability 1−o(1/i4), and at most 37(log6/5 n) with probability

1− o(1/n4).

Proof. Consider the process of adding πi+1 to the tree. We consider a sequence y1 . . . yk of nodes in the search
tree Y , each corresponding to a subtree r(yj) of the existing phylogeny. We divide the yj into phases: phase

t corresponds to the period in which r(yj) contains between 5
6

t
i and 5

6

t−1
i leaves; after log6/5 i phases, the

algorithm has found where to put πi. We show that the distribution of the length of each phase is bounded
above by the sum of three geometrically-distributed random variables.

Each phase corresponds to taking a subtree and shrinking it by a factor of 5/6. This happens either if the
largest of the three subtrees of the phylogeny descendant from the current search tree node yj has at most
5/6 of the number of taxa we had at the beginning of the current phase, or if πi belongs in a tree with fewer
than that many taxa. We concern ourselves only with the first of these ways of ending a phase, so we upper
bound the length of a phase.

The queries asked include taxa found in r(yj), in the order that they occur in permutation π. In particular,
we will ask a node query including a node of A with probability at least 1/6 at step, independently, until we
finally do ask a query of a node from A. (Since our queries always include at least 5/6 of the taxa, and we have
not queried any members of A, we always have all members of A available.) After querying a member of A,
for the phase to continue, we must choose the subtree containing all of B. Now, we ask queries corresponding
to the current subtree, until we see a taxon from B, which will happen with probability 1/6 or greater at
each step. Now, we arrive in a state where the current subtree of the phylogeny includes border nodes inside
A and B, since we must have cut off parts of A and of B, but cannot have cut off all of either without ending
the phase. Now, we ask queries until we see a node from neither A nor B; this happens with probability at
least 1/3 at each step. Then, the current search tree node yj must correspond to a node on the edge from A
to B in the phylogeny, since otherwise one of its subtrees would have three border nodes.

Thus, the length of a phase is at most the sum of three geometric random variables, with expectations
6, 6 and 3; we then move to a new tree with at most 5/6n taxa. However, it may have two border nodes as
well; we label these with a taxon from their neighbouring subtrees (thereby adding two taxa to the current
subtree) and perform a single quartet query (removing at least two taxa). This gives a new subtree in which
we can perform the next phase.

Thus, if G(i) are independent geometric random variables with mean i, then the length of one phase is
bounded above by G(6)+G(6)+G(3)+1, and the expected total number of queries is at most 19(log6/5 i)+1,
where for simplicity, we let the G(i) all have mean 6.

Moreover, this variable is rarely above 37 log6/5 i. In particular, let Q(n, r) be the negative binomial
random variable that is the sum of n geometrically distributed variables with mean r. Then Pr[Q(n, r) >
knr] = Pr[B(knr, 1/r) < n], where B(n, p) is a binomial random variable that results from the sum of n
independent Bernoulli trials, each with mean p. By standard Chernoff methods ([6], p. 6), this probability is

bounded above by exp(−kn(1−1/k)
2

2r ). So, Pr[Q(3 log6/5 i, 6) > 36 log6/5 i] ≤ i−4, meaning that the probability

we use more than 37 log6/5 i queries for taxon πi+1 is o(1/i4); similarly, the probability that we use more than

37 log6/5 n queries for taxon πi+1 is o(1/n4).

We emphasize that Y (T ) is almost surely balanced regardless of the topology of T . Even if the diameter
of T is Θ(n), its corresponding search tree almost surely has height O(log n). We conjecture that the actual
values of the constants are much smaller than mentioned in the above lemma.

5 Accounting for errors
Our search tree algorithm adapts to the case of error-prone quartets where each quartet query independently
errs with probability p > 0. We assume that (1 − p)3 > 0.5 + ε for some ε > 0; we relax this assumption at
the end of the section.



5.1 Random walk in the search tree
Let Y (T ′) be a complete search tree for T ′ and let x be a taxon not in T ′. We will perform a random walk
on Y (T ′) to place x into its proper place in T ′, where each step of the random walk is determined by at most
3 quartet queries.

Let yi be the location of the random walk after i steps, with y0 the root of Y (T ′). If y(i) is not a leaf
node, query the border nodes of r(yi). If any border node queries gives answer x /∈ r(yi), go to the parent
node of yi. If all border nodes give answers consistent with x ∈ r(yi), query the node yi and descend to the
child of yi indicated.

If yi is a leaf, corresponding to an edge of T ′, let it have counter variable c initially set to 0. Query its
border nodes as before; if each is consistent with x ∈ r(y), increment c. Otherwise, decrement it if it is greater
than 0; if c = 0, move to the parent node of y. After a number of queries we will soon compute, we are at a
node in Y (T ′): if it is a leaf, add x to that node of the search tree as for the insertion algorithm with error-free
data. If not, signal failure.

The algorithm finds the proper place in the tree with high probability. Let yx be the leaf in the search
tree where we should insert taxon x. After i steps in the random walk, let the random variable di be the
distance in the search tree between yi and yx. Let the random variable gi have value −c if yx = yi, di + c if
yx 6= yi and yi is a leaf of Y (T ′), and di if yi is not a leaf. If gi ≤ 0, then the current node of the random
walk is the correct place to put x. The following simple observation is essential to proving the correctness of
our algorithm.

Lemma 3. Consider the random variables gi defined above.

1. E[gi] ≤ d0 + (1− 2(1− p)3)i.

2. If i > −d0

1−2(1−p)3 , then Pr[yi 6= yx] < exp(−(d0+i(1−2(1−p)3)2
2i )

Proof. At each step of the random walk, there are at most two border nodes, so at most three queries. If
each gives a correct answer, gi decreases by 1; if any incorrect queries occur gi increases by at most one,
though it might still decrease by 1. In the worst case, the probability that gi decreases is at least (1− p)3, so
E[g(i+ 1)− g(i)] ≤ −(1−p)3 + (1− (1−p)3) = 1−2(1−p)3. The result follows from linearity of expectation,
since g0 = d0. The second claim follows from the Chernoff bound, as the queries are independent.

Now, we have a straightforward taxon insertion algorithm. For each taxon πi+1, we run the random walk
long enough to handle the case that g0 = 203 ln i. To make the error probability at most (1/i2), we require

that the random walk have j steps, where exp(−(203 ln i+j(1−2(1−p)3))2
2j ) ≤ 1

i2 . The minimum value of j to make

this guarantee is j ≥ k lnn, for k =
−203(1−2(1−p)3)+2+2

√
1−203((1−2(1−p)3)

(1−2(1−p)3)2 .

We can now state the taxon insertion procedure in detail.

Algorithm 1 InsertTaxon(x, T, Y (T ))

Initialize the random walk at the root of Y (T ).
for i = 1 to k logn do

Simulate the next step of the random walk.
end for
Let yk logn be the current node of the random walk.
if yk logn is a leaf then

Attach x to r(yk logn) in T and update Y (T ).
else

return Failure.
end if

Assuming that the tree Ti−1 is correct, then, this algorithm adds a new taxon in O(log i) queries, with
error or failure probability O(1/i2).

5.2 Finding quartets to ask
We must ensure that we can always find a quartet that has not been queried before in O(1) time. This requires
two separate conditions to hold: first, that enough such quartets exist, and second, that we can find them in
O(1) time.



The first of these is easy, as long as we start with a constant-sized guide tree TS on a set S of at least m
taxa, where m is the smallest number such that k logm < m− 2, with k equal to the multiple of log i found
using the formula in the previous section. In each insertion phase, we use at most k log i quartets at any node
of the search tree; the extreme case is where the three child subtrees of the current tree T have 1, 1, and i− 2
taxa in them.

The latter is more complicated. Assume that for each node y in Y , `j(y) is the list of all taxa in the child
subtree tj(r(y), s(y)) (for j = 1, 2, 3). To find the next quartet in O(1) time, we must fetch the next taxon
in tj(T, s(y)) in O(1) time. We first enumerate taxa in `j(y). Once all taxa in `j(y) have been used, we pick
the border node bj(y) of y in tj(T, s(y)) (if it exists). The node bj(y) is associated with some ancestor y1 of y
and we have r(y) ⊆ ti(r(y1), bj(y)) for some i. Taxa in `(i+1)mod3(y1) ∪ `(i+2)mod3(y1) are also in tj(T, s(y))
so we enumerate them. Once they have been used, we find border nodes of r(y1) such that two of their taxa
lists contain taxa in tj(T, s(y)) that have not been used so far. Once all taxa from a node yi have been used,
we look at border nodes of r(yi). This process can be thought of as breadth first search on a directed graph
where an arc denotes the relationship of being a border node. We leave details to the longer version of this
paper.

Now, we give the complete algorithm. First, pick a constant-sized set S ⊂ S of m taxa and find the
phylogeny for S consistent with the most quartets. Then iteratively add taxa to the tree using the procedure
InsertTaxon described above.

Algorithm 2 Reconstruct(S,m)

Pick a subset S ⊂ S with m taxa
Find phylogeny T on S consistent with the most quartets by exhaustive search.
Build a search tree Y (T ) for T .
for all s ∈ S\S do

insertTaxon(s,T,Y(T))
end for

The running time of this algorithm is O(n log n) with high probability. The error probability can be
bounded by µ(m) +

∑n
i=m

1
i2 , where µ(m) is the probability that the maximum quartet compatibility tree

on a random set of m taxa is not consistent with T . This quantity is constant for constant m; in the next
section we show how to make the total error probability o(1) as n grows.

The remaining case where (1 − p)3 ≤ 1
2 can be solved by redefining node queries. Each node query is

now implemented by asking cp queries and returning the majority direction, with constants cp and C chosen
appropriately. We defer details to the longer version of this paper.

6 Shrinking the error probability to o(1)

The algorithm presented in the previous section errs with constant probability, since it starts with a constant-
sized tree that may have errors, and since the additions to this tree also have constant probability of error.

If we start with a non-constant-sized guide tree, we can reduce the error probability. The main lemma is
in the next subsection.

Theorem 2. The algorithm Reconstruct(S,max(dlog log ne,m) both returns the correct tree and runs in
O(n log n) time with probability 1− o(1).

Proof. The exhaustive search step requires enumerating all O((log log n)4) quartets, on all O((log log n)! log n)
topologies on log log n taxa; the product of these is O((log logn)4+log logn log n), which is sublinear in n. We
have already shown that the rest of the algorithm requires O(n log n) time with high probability.

We will show below that µ(log log n), the failure probability of the guide tree algorithm, is o(1). The failure
probability of the insertion procedure is at most

∑n
i=log logn

1
i2 , which is O( 1

log logn ), and so o(1). As such, the

overall failure probability is o(1), as desired.

We note that the guide tree could have more or fewer than log log n taxa; we merely require that the brute
force guide tree construction requires O(n log n) time and has o(1) error probability.



6.1 Maximum quartet consistency is consistent
Here, we show that the maximum quartet consistency approach is consistent for our error model. This result
(which may be of independent interest, as our error model has been studied before [20]), shows that µ(n)→ 0
as n grows.

Theorem 3. Let Tmqc be the phylogeny compatible with the most quartet queries for a set of n taxa and let
T ∗ be the true phylogeny. If each quartet query errs independently with probability p, then µ(n) = Pr[Tmqc 6=
T ∗] = o(1) as n→∞.

To prove this theorem, we first show a few properties of quartets.

Definition 2. The quartet distance dQ(T, T ′) of phylogenies T and T ′ on the same set of taxa is the number
of quartets on which T and T ′ differ.

This distance was studied in [2,3] among others.

Lemma 4. The quartet distance between distinct phylogenies is at least n− 3.

Proof. Let T and T ′ be distinct phylogenies. Let (S1, S2) be a split in T not present in T ′. Let (S′1, S
′
2) be a

split in T ′ not present in T where none of the sets A = S1 ∩ S′1, B = S1 ∩ S′2, C = S2 ∩ S′1, D = S2 ∩ S′2 is
empty; such a split exists since T and T ′ are distinct. Choose taxa a, b, c, d from sets A,B,C,D, respectively.
The quartet induced by T is ab|cd, whereas in T ′ it is ac|bd. This gives φ = |A||B||C||D| conflicting quartets;
φ is at least n − 3 since |A| + |B| + |C| + |D| = n, and the product is minimized when |A| = n − 3 and
|B| = |C| = |D| = 1.

The number of trees with small quartet distance from a fixed tree T is small.

Definition 3. A taxon reinsertion (TR) operation consists of deleting a taxon from a phylogeny and attaching
it to a remaining edge, creating three new edges.

Lemma 5. Let T and T ′ be phylogenies such that dQ(T, T ′) < n log2 n. The number of TR operations required
to transform T into T ′ is at most c log4 n for some constant c.

Proof. Let (S1, S2) be a split of T not present in T ′. Let (S′1, S
′
2) be some split in T ′ that is not present in T

that minimizes φ = |A||B||C||D| as defined earlier. Without loss of generality, assume that A is the largest
of the sets. Observe that each of the sets B,C,D must have at most log2 n taxa: otherwise φ > n log2 n, so
dQ(T, T ′) > n log2 n. We delete all taxa in B and C from both T and T ′ to create trees T (1) and T ′(1). By
Lemma 4, this erases at least n− 3 conflicting quartets. We pick splits (S1, S2) and (S′1, S

′
2) in T (1) and T ′(1)

as we previously did for the original trees and repeat the process to obtain trees T (2) and T ′(2), this time
removing at least n− 2 log2 n− 3 discordant quartets.

We iterate the process until T (i) = T ′(i) for some i, which is O(log2 n) since the total number of conflicting
quartets is at most n log2 n, and each iteration erases Ω(n). The sets B and C have at most log2 n taxa at
each step of the algorithm. Therefore, at most O(log4 n) taxa are deleted from both trees.

Let R be the taxa removed. The restrictions of both T and T ′ to S − R are the same. To transform T
to T ′, we move all nodes in R to a new side of the tree T , and then move each to the proper place in T ′ in
O(log4 n) TR operations.

Corollary 1. For any phylogeny T , the number of phylogenies T ′ such that dQ(T, T ′) < n log2 n is at most

nb log
4 n for a large enough constant b.

Proof. Each T ′ with distance from T at most n log2 n can be obtained from T by c log4 n TR operations.
For any tree, the number of ways to perform a TR operation is less than 2n2 since we can choose any of the
n taxa and reinsert it at any of the 2n − 5 edges other than the one at which it was before the operation.
This gives fewer than (2n2)c log

4 n phylogenies that can be created by repeating the operation c log4 n times.
Taking b = 4c finishes the proof.

Now we can prove the maximum quartet compatibility consistency theorem.

Proof. Suppose some tree T ′ is consistent with more quartets than T ∗, and dQ(T ′, T ∗) = q. At least half of the
q quartets where T ∗ and T ′ differ must be erroneous; since they are independent errors, this has probability

at most exp(−q( (1−2p)2
2 )) by the Chernoff bound.



Let T0 be the set of all incorrect phylogenies with quartet distance from T ∗ less than n log2 n . Then
|T 0| ≤ nb log

4 n, and for trees in T0, Lemma 4 gives that q ≥ n − 3. The probability that any tree in T0 is

consistent with more queries than T ∗ is bounded by nb log
4 n exp(−(n− 3)( (1−2p)2

2 )), which is o(1) as n grows.

Now, consider the incorrect phylogenies T1 that are not in T0. There are fewer than 2nn! < 2n(1+logn)

such topologies, and for each, dq(T, T ∗) ≥ n log2 n. The probability that any tree in T 1 is consistent with

more quartets than T ∗ is bounded above by 2n(1+logn) exp(−n log2 n( (1−2p)2
2 )), which is o(1) as n grows.

So the probability that any incorrect tree is consistent with more quartets than T ∗ converges to 0 as n
grows.

7 Experiments

We have developed a prototype implementation of our algorithm to investigate its running time and properties.
We have tested the algorithm in three scenarios. First, we tested the performance of the algorithm for the
case with no errors. Second, we tested the performance of the random walk algorithm when the data was
generated according to the model with independent errors. Finally, we ran the random walk algorithm on
real biological datasets.

The tree topologies used in the synthetic data sets were chosen at random from the uniform distribution.
In the iid error case, every quartet query gave one of the two possible wrong answers with probability p. In
our experiments, we set p = 0.1.

The algorithm for error-free data is very fast even for reasonably large phylogenies. For data sets having
10000 taxa or less, constructing the tree takes less than a second. For 20000 taxa, it takes roughly 2 seconds.

The random walk algorithm is roughly 5 times slower than the algorithm for error-free data. Constructing
a tree having 10000 taxa takes about 5 seconds, whereas a tree with 20000 taxa requires 9 seconds.

Table 1. The running times of the algorithm for the error-free and iid data sets

Algorithm 1000 5000 10000 20000

Error-free < 1s < 1s < 1s 2s

Random walk < 1s 2s 5s 9s

We ran the algorithm on several protein families from the Pfam database [1]. Quartet queries were answered
with the Four-Point method [9] based on estimated evolutionary distances between sequences. Distances were
estimated based on pairwise BLOSUM62 scores using a method by Sonnhammer and Hollich [17]. We used
neighbor-joining trees on a subset of 150 sequences (chosen at random from the whole set of sequences) as our
initial guide trees. Our prototype implementation was able to process a dataset of around 12000 sequences in
about 16 minutes (see Table 2).

Table 2. The running times of the algorithm for several Pfam families

Protein family Sequences Average length running time

Maf(PF02545) 1980 189.60 38s

2Oxoacid dh(PF00198) 3701 225.10 1m49s

PALP(PF00291) 11815 294.40 15m42s

In all our experiments, the height of search trees constructed by the algorithm was less than 40. This
supports our view that the constants in Lemma 2 can be improved.

8 Conclusion

We have presented a fast algorithm that is guaranteed to reconstruct the correct phylogeny with high prob-
ability under an error model where each quartet query errs with a fixed probability, independently of others.



The algorithm runs in O(n log n) time, which is the lower bound for any phylogeny reconstruction algorithm.
Our prototype implementation seems reasonably fast on both real and simulated datasets.

This work could be extended in many directions. From a theoretical perspective, it is interesting whether
there exist fast algorithms that offer similar performance guarantees under commonly studied models of
sequence evolution, such as Jukes-Cantor or Cavender-Farris.

From a practical perspective, it would be interesting to compare the results of our algorithm to others.
We plan to extend our algorithm to make use of additional information such as the length of the middle
edge in reconstructed quartets. This would enable the algorithm to distinguish between more credible and
less credible queries, which may lead to an overall performance improvement. Another way to improve the
algorithm is by improving the procedure of finding new quartets to ask so as to minimize the correlation
between errors.
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