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Abstract

Understanding the physical processes responsible for accelerating the solar wind requires detailed mea-
surements of the collisionless plasma in the extended solarcorona. Some key clues about these processes
have come from instruments that combine the power of an ultraviolet (UV) spectrometer with an occulted
telescope. This combination enables measurements of ion emission lines far from the bright solar disk,
where most of the solar wind acceleration occurs. Although the UVCS instrument onSOHOmade several
key discoveries, many questions remain unanswered becauseits capabilities were limited. This white paper
summarizes these past achievements and also describes whatcan be accomplished with next-generation
instrumentation of this kind.

1. Background and Motivation

The hot, ionized outer atmosphere of the Sun is a unique testbed for the study of magnetohydrodynamics
(MHD) and plasma physics, with ranges of parameters that areinaccessible on Earth. Although considerable
progress has been made during the last few decades, we still do not know the basic physical processes
responsible for heating the million-degree solar corona and accelerating the solar wind. Identifying these
processes is important not only for understanding the origins and impacts of space weather (e.g., Schwenn
2006; Eastwood 2008), but also for establishing a baseline of knowledge about a well-resolved star that is
directly relevant to other astrophysical systems.

In order to construct and test theoretical models, a wide range of measurements of relevant plasma pa-
rameters must be available. In the low-density, open-field regions that reach into interplanetary space, more
parameters need to be measured (in comparison to collision-dominated regions) because the plasma becomes
collisionless. In other words, individual particle species—e.g., protons, electrons, helium, and minor ions—
can exhibit different properties from one another. Such differences in particle velocity distributions are
valuable probes of “microscopic” processes of heating and acceleration. In interplanetary space, such kinetic
properties have been measured for decades byin situ particle instruments (e.g., Marsch 1999, 2006; Kasper
et al. 2008). However, measurements in the near-Sun regionsthat are being actively heated and accelerated
have been more limited in scope.

Remote-sensing measurements of plasma properties in the so-called “extended solar corona” (above
about 1.5R⊙ measured from Sun-center) are difficult to make because the photon emission at large heights
is fainter by many orders of magnitude than the emission fromthe solar disk. Standard telescopes, that
do not explicitly block out the solar disk, typically contain enough scattered light from the disk to totally
mask the faint off-limb emission. Because the corona is highly ionized, the dominant spectral features are at
wavelengths accessible only from space. For these reasons,a series of Ultraviolet Coronagraph Spectrometer
(UVCS) instruments have been built and flown on rockets, on a Shuttle-deployedSpartanpayload, and as
an instrument on theSolar and Heliospheric Observatory(SOHO) spacecraft; see, e.g., Kohl et al. (1978,
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Figure 1: CombinedSOHO image of the solar
corona from 17 August 1996, showing the
solar disk in Fe XII 195 Å intensity from EIT
(yellow inner image) and the extended corona
in O VI 1032 Å intensity from UVCS (red
outer image). A typical UVCS observational
line of sight is shown in green. Axisymmetric
field lines are from the solar-minimum model of
Banaszkiewicz et al. (1998), and O VI emission
line profiles (bottom) are from various UVCS
observations atr > 2R⊙ in 1996–1997 (Kohl et
al. 1997).

1994, 1995, 1997, 2006). In these instruments, the coronagraphic blocking of bright light from the solar
disk is done efficiently with a pair of occulters: one external to the telescope and one internal. Figure 1
illustrates UVCS/SOHOobservations of the extended corona.

By measuring off-limb emission lines formed both by collisional excitation and by the scattering of
solar-disk photons, UV spectroscopy provides a multi-faceted characterization of the kinetic properties of
atoms, ions, and free electrons (e.g., Withbroe et al. 1982;Kohl et al. 2006). The Doppler-broadened shapes
of emission lines are direct probes of line-of-sight (LOS) particle velocity distributions (i.e., essentially
providing T⊥ when the off-limb magnetic field is∼radial). Red/blue Doppler shifts reveal bulk flows
along the LOS. Integrated intensities of resonantly scattered lines can be used to constrain the solar wind
velocity and other details about the velocity distributionin the radial direction (e.g.,u‖ and T‖); this is
the so-called “Doppler dimming/pumping” diagnostic (e.g., Noci et al. 1987). Intensities of collisionally
dominated lines—especially when combined into an emissionmeasure distribution—can constrain electron
temperatures, densities, and elemental abundances in coronal plasma. Even departures from Maxwellian
and bi-Maxwellian velocity distributions are detectable with spectroscopic measurements having sufficient
sensitivity and spectral resolution.

In the fast solar wind, UVCS/SOHOmeasured outflow speeds that become supersonic much closer
to the Sun than previously believed. In coronal holes, heavyions (e.g., O+5) were found to flow faster
than the protons, to be heated hundreds of times more strongly than protons and electrons, and to have
anisotropic temperatures withT⊥ > T‖ (Kohl et al. 1997, 1998, 1999; Cranmer et al. 1999b). Specifically,
the anisotropic and super-heated oxygen velocity distributions (withT⊥ > 108 K) have guided theorists to
discard some candidate physical processes and further investigate others. Hollweg & Isenberg (2002) stated
in a review paper that “We have seen that the information provided by UVCS has been pivotal in defining
how research has proceeded during the past few years.”1

Figure 2 gives more information about how the temperatures of protons, electrons, and an example
minor ion species (O+5 in the corona, O+6 in situ) differ from one another in the high-speed solar wind.
Although the measured kinetic temperatures for protons areof order 2–3.5 MK, these are combinations
of random thermal motions and “nonthermal” broadening due to Alfvén waves or other unresolved line-

1More recently, these results were highlighted in Chapter 3 of the 2010 report of the APS-sponsored Workshop on Opportunities
in Plasma Astrophysics (WOPA); see http://www.pppl.gov/conferences/2010/WOPA/
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Figure 2: Radial dependence of temperatures in polar coronal holes and fast wind streams. Mean plasma temperature
from a turbulence-driven coronal heating model (solid black curve; Cranmer et al. 2007).Te from off-limb SUMER
measurements made by Wilhelm (2006) (dark blue bars) and Landi (2008) (light blue bars).Tp from UVCS data
assembled by Cranmer (2004) (red symbols). Perpendicular O+5 ion temperatures (green circles) from Landi &
Cranmer (2009) (r < 1.1R⊙) and Cranmer et al. (2008) (r > 1.5R⊙). In situ values ofTp and Te (red and blue
dot-dashed curves) atr > 60R⊙ are from Cranmer et al. (2009), and thein situ range for O+6 (light green region)
is inferred from, e.g., Collier et al. (1996). Ion heating theories assuming high-k⊥ waves (magenta solid curve) and
high-k‖ waves (orange dashed curve) both appear to succeed in modeling the O+5 data.

of-sight motions. In Figure 2 we attempted to remove the contribution of waves to show the true proton
temperatures. The resultingTp does not show as clear a signal of preferential heating (relative to Te) as one
would have seen from just the kinetic temperature. Althoughone can still marginally see thatTp > Te, the
existing measurements ofTp andTe do not overlap with one another in radius. Improved measurements are
needed in order to better constrain the proton and electron heating rates in the corona. The green points in
Figure 2 indicate the key measurements of preferential O+5 heating in polar coronal holes. The magenta
and orange curves show a subset of the many theoretical models that have been constructed to explain these
data.

At solar minimum, UVCS/SOHOfound that theslow solar wind flows mostly along the outer edges of
bright streamers, near locations with measured abundance patterns matching those of thein situ slow wind
(Raymond et al. 1997; Strachan et al. 2002; Abbo et al. 2010).The closed-field “core” regions of streamers,
however, exhibit heavy element abundances only 3% to 30% of those seen at 1 AU, indicating gravitational
settling (e.g., Raymond 1999; Vásquez & Raymond 2005) or complex flux-tube geometries (Noci et al.
1997). UVCS observed the transition from a high-density collision-dominated plasma at low heights in
streamers to a low-density collisionless plasma at large heights, the latter exhibiting high ion temperatures
and anisotropies that suggest similar physics as in the fastwind (Frazin et al. 2003). UVCS has also been
used to measure plasma properties of coronal mass ejections(CMEs) and put useful constraints on their
reconnection rates, 3D flow velocities, energy budgets, magnetic helicities, and shock compression ratios
(see, e.g., Raymond 2002; Kohl et al. 2006).
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2. Next-Generation Capabilities Are Needed

Despite the advances outlined above, the diagnostic capabilities of UVCS were limited to what was
foreseen before theSOHOera (when only H I Lyα had been observed). Thus, we are still severely limited
in our ability to answer the fundamental questions by our lack of knowledge of the plasma properties in the
solar wind’s acceleration region. The following enhancements in measurement capability are needed to be
able to conclusively identify and characterize the processes that energize the solar wind.

a. The key UVCS discovery of preferential ion heating and anisotropic ion velocity distributions near the
Sun was essentially limited to just one ion (O+5). If the kinetic properties ofadditional minor ions
were to be measured in the extended corona (i.e., a wider sampling of charge/mass combinations) we
could much better determine the nature of the dominant collisionless heating process. Specifically, these
measurements would provide an improved empirical description of kinetic waves and turbulence in the
corona, with which we could conclusively identify the type of fluctuations (such as ion cyclotron waves,
kinetic Alfvén waves, or other nonlinear turbulent modes) as well as their means of dissipation (Hollweg
& Isenberg 2002; Cranmer 2002, 2009). Sampling as broad a range as possible in the ion charge-to-
mass ratio (Z/A) provides a sensitive probe of the heating; e.g., S+5 (933 Å,Z/A = 0.16). Ca+9 (557 Å,
Z/A = 0.22), Si+8 (296 Å,Z/A = 0.28), O+5 (1032 Å,Z/A = 0.31), Mg+9 (610 Å,Z/A = 0.37), and Si+11

(499 Å, Z/A = 0.39). With these ions, the two models shown in Figure 2 (which use either high-k⊥ or
high-k‖ waves) would be clearly distinguished from one another; seealso Leamon et al. (2000). Our
confidence in the uniqueness of a successful model increasesas the number of ions observed increases.

b. UVCS provided new constraints on the heating of minor ions, but not so much on the heating of the
primary proton–electron plasma. Observationally, the biggest missing piece is theelectron temperature
above∼1.5 R⊙. Direct measurements ofTe from, e.g., the broad Thomson-scattered component of H I
Lyα, would allow us to determine the bulk-plasma heating rate indifferent solar wind regions, as well
as the partitioning of energy between protons and electrons. This partitioning is a key diagnostic of
turbulence models (e.g., Matthaeus et al. 2003; Howes 2010)as well as a driver of the stability of helmet
streamers (e.g., Endeve et al. 2004). The downward conduction of electron thermal energy—from the
corona to the transition region—sets the base pressure and thus the mass flux of the solar wind (Withbroe
1988; Lie-Svendsen et al. 2002), thus making measurements of Te(r) especially important. Improved
observations of proton temperatures are also important, since the measured rates of proton heating can be
compared directly with the energy available to protons in ion cyclotron waves (as constrained by future
measurements of additional minor ions; see item [a] above) to reveal the relative importance of resonant
wave heating to the primary plasma.

c. In addition to protons and electrons,helium also plays a major role in the “primary” plasma of the solar
wind. Helium may regulate the wind’s mass flux (Hansteen et al. 1994) and set a lower limit on its
outflow speed (Kasper et al. 2007). Preferential heating of alpha particles may even dominate the coronal
heating close to the Sun and control how much heat is receivedby the protons (Liewer et al. 2001; Li
2003). Observations of the He II 304 Å and He I 584 Å lines can beused to measure the coronal helium
abundance, departures from ionization equilibrium, and the amount of preferential alpha-particle heating.

d. Space-based observations byHinodeandSDO, as well as ground-based eclipse observations, have high-
lighted the importance ofgreater spatial and temporal resolution to the direct identification of MHD
waves with periods between about 0.1 and 10 minutes (De Pontieu et al. 2007; Pasachoff et al. 2002;
Singh et al. 2009). The predicted amplitudes of most MHD waves grow significantly as they propagate
up to the extended corona, thus making a UVCS-type instrument with greater sensitivity and resolution
ideal for detecting both compressive waves (via intensity oscillations) and Alfvén waves (via Doppler
shifts). Measuring the frequency and wavenumber dependence of these waves would open new windows
on our understanding of coronal turbulence (e.g., Matthaeus et al. 1999). Greater spatial and temporal
resolution also allows improved characterization of small-scale inhomogeneities between neighboring
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flux tubes in coronal holes and streamers. Precise measurements of cross-field density gradients can put
firm constraints on models of coronal heating via drift instabilities (e.g., Mecheri & Marsch 2008) and
MHD discontinuities in the solar wind (Feldman et al. 1997; Borovsky 2008).

e. Recent analysis ofin situ data shows that the combinedelemental abundances and charge states of
solar wind ions can be used to effectively probe the origin ofheliospheric wind streams in closed or open
flux tubes (Zurbuchen 2007). There have been some isolated comparisons of ion composition between
UVCS andin situ measurements (e.g., Ko et al. 2006), but higher resolution and greater sensitivity to
more ions is needed to produce corona-heliosphere “mappings” of abundances and charge states that are
detailed enough to test models of coronal gravitational settling and ion drag (Lenz 2004; Li et al. 2006)
and the first ionization potential (FIP) effect (e.g., Laming 2004, 2009). It is also important to measure
a broader range of low-FIP and high-FIP ions in order to better map out the way the solar atmosphere
becomes fractionated.

f. Measuringnon-Maxwellian velocity distributions of electrons and positive ions would provide even
more stringent tests of specific models of MHD turbulence, cyclotron resonance, and velocity filtration.
An instrument with greater sensitivity than UVCS/SOHOcould detect subtle departures from Gaussian
line shapes that signal the presence of specific non-Maxwellian distributions (e.g., Cranmer 1998, 2001).

New capabilities such as these would be enabled by greater photon sensitivity, an expanded wavelength
range, and the use of measurements that heretofore have beenutilized only in a testing capacity (e.g.,
Thomson-scattered H I Lyα to obtainTe). These would allow the relative contributions of different physical
processes to the heating and acceleration of all solar wind plasma components to be determined directly.

3. Synergy with Other Instrumentation and Missions

UV coronagraph spectroscopy has been a key asset to a large number of multi-instrument and multi-
mission observation campaigns (e.g., Galvin & Kohl 1999). For example, coordinated observations taken at
times whenSOHOandUlyssescould track the same plasma parcels from the Sun to the outer heliosphere
led to new methods of mapping field lines over long distances in the solar wind (Suess et al. 2000; Poletto et
al. 2002). Next-generation UVCS-type measurements would also provide key context for the regions of the
inner heliosphere thatSolar Probe Plus(SPP) andSolar Orbiterwill fly through, and they would provide
direct measurements of coronal regions inaccessible even to SPP(i.e., r < 9R⊙).

Measurements from other instruments also can enhance the ability of UV coronagraph spectroscopy to
determine coronal plasma parameters. Although UV emissionlines can be used to measure the coronal
electron density (e.g., Noci et al. 1997; Antonucci et al. 2004), the most straightforward method to obtain
ne has been the analysis of polarized brightness measured by a white-light coronagraph. The combination
of a UVCS-type instrument and a white-light imaging coronagraph provides useful diagnostics that extend
beyond what is possible with either instrument in isolation.

There are several possible mission concepts for next-generation UV coronagraph spectrometers. Sub-
orbital rockets are useful for demonstrating the capabilities of this kind of instrument, as well as being able
to obtain useful scientific results (see § 4.1 of Kohl et al. 2006). Studies have also shown that a standard
Low-Earth orbit (350–600 km altitude at 28◦ latitude) can provide adequate observation time, low UV
optical depth from the Earth’s atmosphere, and negligible contamination to enable the full range of required
UV coronagraph spectroscopy. A polar, Sun-synchronous orbit would of course be an improvement over
a low-latitude orbit because of the lack of diurnal solar occultation by the Earth. Another possibility is to
position the spacecraft at theEarth-Sun L5 point (see also Vourlidas et al. 2010) which eliminates issues
of atmospheric absorption and orbital night. This locationalso positions the prime off-limb field of view
(i.e., the “plane of the sky”) close to the Earth-Sun line, sothat geoeffective solar wind streams and CMEs
can be measured directly.
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Figure 3: Spacecraft concept for a large-aperture UV coronagraph with an external occulter at the end of a 13 m
boom. The inset shows a diagram of an advanced LAUVCS instrument (see Kohl et al. 2006).

4. Instrumentation and Costs

The UV spectroscopic observations required to produce detailed empirical descriptions of solar wind
source regions can be accomplished with a large-aperture ultraviolet coronagraph spectrometer (LAUVCS).
The large aperture is needed to provide the sensitivity to observe relatively weak spectral lines with the
required range of charge-to-mass ratios. The large aperture can be realized with a remote external occulter
supported by a deployable mast (see Figure 3). Such an instrument would accommodate a much larger tele-
scope area than UVCS/SOHOthat is both shielded from direct solar disk rays and also hasan unobstructed
view of the coronal heights of interest. When equipped with state-of-the-art reflection coatings, high ruling
efficiency diffraction gratings, and array detectors, suchan instrument exceeds the sensitivity and stray light
suppression needed to make all required coronal observations in both streamers and coronal holes up to
at least 5R⊙ and often higher. It is also possible to achieve the large aperture with an internally occulted
coronagraph where the solar-disk radiation impinges directly on the telescope primary. The sensitivity
is just as good as that of the externally occulted instrument, but the stray light characteristics only allow
observations up to∼ 2R⊙ in coronal holes and∼ 3R⊙ in streamers. Compared to UVCS, either instrument
would make a tremendous step forward in describing solar wind source regions and identifying the physical
processes that heat and accelerate the solar wind (and CMEs2).

Both externally occulted and internally occulted LAUVCS type instruments can be built with existing
technology. Deployable masts to support the remote external occulter, such as the one baselined for the
NuSTARmission, are commercially available. There is also “in space” performance data that demonstrates
the ATK ADAM mast exceeds the specifications required for theexternally occulted LAUVCS. Intensified

2The ability of next-generation UV coronagraph spectroscopy to answer fundamental questions about how CMEs and solar
energetic particles (SEPs) are produced will be described in a separate white paper.
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CCD (ICCD) detectors similar to those used onXMM and Swift can be used for a LAUVCS, and they
are capable of meeting all requirements for the solar wind science while maintaining the full instrument
sensitivity. The KBr-coated microchannel plates that are needed to meet the UV sensitivity requirements are
also available commercially, and they can be incorporated into an ICCD with an acceptable air exposure. To
achieve the LAUVCS science objectives for CMEs—without theneed to attenuate the associated high light
levels—it is highly desirable to use an intensified active pixel sensor (IAPS), which is the next step beyond
the ICCD. A laboratory model of such a device exists at the Mullard Space Science Laboratory (MSSL),
and it has been clocked at 66 MHz to achieve the desired maximum detection rate of 32 Hz per pixel with
less than a 10% dead time loss.

Both the solar wind and the baseline CME science objectives can be achieved with an ICCD detector
similar to those flown onXMM andSwift. The advanced technology IAPS detectors currently being devel-
oped at MSSL are showing great promise, and they could provide a dynamic range and maximum count rate
capability that would accommodate the bright CME emissionswithout the need for attenuators.

The cost (in FY 2011 dollars) of an externally occulted LAUVCS for a Class C mission with limited
redundancy, including design, development, calibration,environmental testing, and support for integration,
is approximately $45M including the cost of the deployable mast. The cost of the internally occulted
instrument would be about $15M less. These estimated costs do not include any reserve/contingency or
margin except for costed schedule reserve, and they do not include any Phase E mission operation and data
analysis costs.
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