Hardy inequality and heat semigroup estimates for Riemannian manifolds with singular data

M. van den Berg, P. Gilkey, A. Grigor'yan, ${ }^{\dagger}$ K. Kirsten ${ }^{\ddagger}$
School of Mathematics, University of Bristol
University Walk, Bristol BS8 1TW, UK
M.vandenBerg@bris.ac.uk
Mathematics Department, University of Oregon
Eugene, OR 97403, USA
gilkey@uoregon.edu
Fakultät für Mathematik, Universität Bielefeld
Postfach 100131, D-33501 Bielefeld, Germany
grigor@math.uni-bielefeld.de
Department of Mathematics, Baylor University
Waco, Texas, TX 76798, USA
Klaus_Kirsten@baylor.edu

5 November 2010

Abstract

Upper bounds are obtained for the heat content of an open set D in a geodesically complete Riemannian manifold M with Dirichlet boundary condition on ∂D, and non-negative initial condition. We show that these upper bounds are close to being sharp if (i) the Dirichlet-Laplace-Beltrami operator acting in $L^{2}(D)$ satisfies a strong Hardy inequality with weight δ^{2}, (ii) the initial temperature distribution, and the specific heat of D are given by $\delta^{-\alpha}$ and $\delta^{-\beta}$ respectively, where δ is the distance to ∂D, and $1<\alpha<2,1<\beta<2$.

Mathematics Subject Classification (2000): 58J32; 58J35; 35K20.
Keywords: Hardy inequality, heat content, singular data.

[^0]
1 Introduction

Let D be a smooth, connected, m - dimensional Riemannian manifold and let Δ be the Laplace-Beltrami operator on D. It is well known (see [11], [14]) that the heat equation

$$
\begin{equation*}
\Delta u=\frac{\partial u}{\partial t}, \quad x \in D, \quad t>0 \tag{1}
\end{equation*}
$$

has a unique minimal positive fundamental solution $p(x, y ; t)$ where $x \in D$, $y \in D, t>0$. This solution, the Dirichlet heat kernel for D, is symmetric in x, y, strictly positive, jointly smooth in $x, y \in D$ and $t>0$, and it satisfies the semigroup property

$$
\begin{equation*}
p(x, y ; s+t)=\int_{D} p(x, z ; s) p(z, y ; t) d z \tag{2}
\end{equation*}
$$

for all $x, y \in D$ and $t, s>0$, where $d z$ is the Riemannian measure on D. Equation (1) with the initial condition

$$
\begin{equation*}
u\left(x ; 0^{+}\right)=\psi(x), \quad x \in D \tag{3}
\end{equation*}
$$

has a solution

$$
\begin{equation*}
u_{\psi}(x ; t)=\int_{D} p(x, y ; t) \psi(y) d y \tag{4}
\end{equation*}
$$

for any function ψ on D from a variety of function spaces like $C_{b}(D)$ or $L^{p}(D)$, $1 \leq p \leq \infty$. Note that $u_{\psi} \in C_{b}(D)$ if $\psi \in C_{b}(D)$ or that $u_{\psi} \in L^{p}(D)$ if $\psi \in L^{p}(D)$. Initial condition (3) is understood in the sense that $u_{\psi}(\cdot ; t) \rightarrow \psi(\cdot)$ as $t \rightarrow 0^{+}$where the convergence is appropriate for the function space of initial conditions. For example, if $\psi \in C_{b}(D)$ then the convergence is locally uniform, or if $\psi \in L^{p}(D), 1 \leq p \leq \infty$ then the convergence is in the norm of $L^{p}(D)$. In general, (4) is not the unique solution of (1)-(3). However, it has the following distinguished property: if $\psi \geq 0$ then u_{ψ} is the minimal non-negative solution of that problem (and if ψ is signed then $u_{\psi}=u_{\psi_{+}}-u_{\psi_{-}}$). If D is an open subset of another Riemannian manifold M and if the boundary ∂D of D in M is smooth then the minimality property of u_{ψ} implies that, for any $t>0$,

$$
\begin{equation*}
\lim _{x \rightarrow \partial D} u_{\psi}(x ; t)=0 \tag{5}
\end{equation*}
$$

If ∂D is non-smooth then (5) can still be understood in a weak sense. Expression (4) makes sense for any non-negative measurable function ψ on D, provided the value $+\infty$ is allowed for u_{ψ}. It is known that if $u_{\psi} \in L_{l o c}^{1}\left(D \times \mathbb{R}_{+}\right)$then u_{ψ} is a smooth function in $D \times \mathbb{R}_{+}$and it solves (1) (see p. 201 in [14]. For any two non-negative measurable functions ψ_{1}, ψ_{2} on D, we define for $t>0$

$$
\begin{equation*}
Q_{\psi_{1}, \psi_{2}}(t)=\iint_{D \times D} d x d y p(x, y ; t) \psi_{1}(x) \psi_{2}(y) \tag{6}
\end{equation*}
$$

Using the properties of the Dirichlet heat kernel we have for $0<s<t$

$$
\begin{equation*}
Q_{\psi_{1}, \psi_{2}}(t)=\int_{D} u_{\psi_{1}}(x ; s) u_{\psi_{2}}(x ; t-s) d x \tag{7}
\end{equation*}
$$

Assuming that D is an open subset of a complete Riemannian manifold M, $Q_{\psi_{1}, \psi_{2}}(t)$ has the following physical interpretation: it is the amount of heat in
D at time t if D has initial temperature distribution ψ_{1}, and a specific heat ψ_{2}, while the ∂D is kept at fixed temperature 0 .

This function has been subject of a thorough investigation. Its asymptotic behavior for small t is well understood if D has compact closure with C^{∞} boundary, and both ψ_{1} and ψ_{2} are C^{∞} on the closure \bar{D} of D. In that case $Q_{\psi_{1}, \psi_{2}}(t)$ has an asymptotic series in $t^{1 / 2}$, and its coefficients are computable in terms of local geometric invariants $[2,12]$. No such series are known if D is unbounded, or if either the initial data or ∂D are non-smooth.

In this paper we will obtain upper bounds for the heat content $Q_{\psi_{1}, \psi_{2}}(t)$ under quite general assumptions on D and on ψ_{1} and ψ_{2}.

We are particularly interested in the situation where D is a open subset of another manifold M, and where $\psi_{1}(x)$ and $\psi_{2}(x)$ blow up as $x \rightarrow \partial D$. In order to guarantee finite heat content for $t>0$, sufficient cooling at ∂D needs to take place. This will be guaranteed by a condition on D, that is formulated in terms of a Hardy inequality. Note that in this setting $Q_{\psi_{1}, \psi_{2}}(t)$ may be unbounded as $t \rightarrow 0^{+}$, and one of the interesting points of this study is to obtain the rate of convergence of $Q_{\psi_{1}, \psi_{2}}(t)$ to $+\infty$ as $t \rightarrow 0^{+}$.

Given a positive measurable function h on a manifold D, we say that the Dirichlet Laplacian acting in $L^{2}(D)$ satisfies a strong Hardy inequality with weight h if, for all $w \in C_{c}^{\infty}(D)$,

$$
\begin{equation*}
\int_{D}|\nabla w|^{2} \geq \int_{D} \frac{w^{2}}{h} . \tag{8}
\end{equation*}
$$

Here, and in what follows, we put $\int_{D} f=\int_{D} f(x) d x$ if this does not cause confusion. We also put $|D|=\int_{D} 1$, and $\|f\|_{p}=\left(\int_{D}|f|^{p}\right)^{1 / p}$. A typical example of a Hardy inequality is when D is an open subset of another manifold M, and

$$
\begin{equation*}
h(x)=c^{2} \delta(x)^{2} \tag{9}
\end{equation*}
$$

where $c \geq 2$ is a constant, δ is the distance to the boundary,

$$
\delta(x)=\min \{d(x, y): y \in \partial D\}
$$

and $d(x, y)$ is the geodesic distance from x to y on M. Both the validity and applications of Hardy inequalities with weight (9) have been investigated extensively [1], [7], [9], [10], [11], [4]. For example, inequality (8) holds with weight (9) with $c=4$ if D is simply connected with non-empty boundary in \mathbb{R}^{2}, with $c=2$ if D is convex in \mathbb{R}^{m}, and for some $c \geq 2$ if D is bounded with smooth boundary in \mathbb{R}^{m}.

In [3] it was shown that if D has finite measure and satisfies the Hardy inequality with weight h, and if ψ is a non-negative measurable function on D, such that, for some $q>1$,

$$
\begin{equation*}
\left\|\psi h^{1 / q}\right\|_{q /(q-1)}<\infty \tag{10}
\end{equation*}
$$

then, for all $t>0$,

$$
Q_{\psi, 1}(t) \leq\left(\frac{q^{2}}{4(q-1)}\right)^{1 / q}\left\|\psi h^{1 / q}\right\|_{q /(q-1)}\left(|D|-Q_{1,1}(t)\right)^{1 / q} t^{-1 / q}
$$

where $Q_{1,1}$ is defined by (6) for $\psi_{1}=\psi_{2}=1$, that is,

$$
Q_{1,1}(t)=\int_{D} u_{1}(x ; t) d x=\iint_{D \times D} d x d y p(x, y ; t)
$$

A similar estimate holds for arbitrary open sets $D \subset \mathbb{R}^{m}$, satisfying the Hardy inequality with weight h. If ψ is a non-negative measurable function on D such that, for some $q>1$,

$$
\begin{equation*}
\left\|\max \{\psi, 1\} h^{1 / q}\right\|_{q /(q-1)}<\infty \tag{11}
\end{equation*}
$$

then, for all $t>0$,

$$
\begin{equation*}
Q_{\psi, 1}(t) \leq a(q)\left\|\psi h^{1 / q}\right\|_{q /(q-1)}\left\|h^{1 /(q(q-1))}\right\|_{q} t^{-1 /(q-1)} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
a(q)=4^{-1 / q}\left(\frac{q}{q-1}\right)^{(2 q-1) /(q(q-1))} \tag{13}
\end{equation*}
$$

Below we give a sufficient condition for the finiteness of $Q_{\psi_{1}, \psi_{2}}(t)$ for all $t>0$, and reduce the problem of finding upper bounds for $Q_{\psi_{1}, \psi_{2}}(t)$ to the case $\psi_{1}=\psi_{2}$.

Theorem 1. Let ψ_{1} and ψ_{2} be non-negative and Borel measurable on a manifold D.
(i) If $Q_{\psi_{i}, \psi_{i}}(t)<\infty, i=1,2$, for all $t>0$, then $Q_{\psi_{1}, \psi_{2}}(t)<\infty$ for all $t>0$, and

$$
\begin{equation*}
Q_{\psi_{1}, \psi_{2}}(t) \leq\left(Q_{\psi_{1}, \psi_{1}}(t) Q_{\psi_{2}, \psi_{2}}(t)\right)^{1 / 2}, t>0 \tag{14}
\end{equation*}
$$

(ii) If $Q_{\psi_{i}, 1}(t)<\infty, i=1,2$, for all $t>0$, and if

$$
c_{t}:=\sup _{x \in D} p(x, x ; t)<\infty, \quad t>0
$$

then

$$
Q_{\psi_{1}, \psi_{2}}(t) \leq c_{t / 3} Q_{\psi_{1}, 1}(t / 3) Q_{\psi_{2}, 1}(t / 3)<\infty, t>0 .
$$

Our main results are the following three theorems, in which we assume that D is a Riemannian manifold that satisfies the Hardy inequality with some weight h, and ψ is a non-negative measurable function on D.

Theorem 2. If $|D|<\infty$, and if there exists $1<q \leq 2$ such that

$$
\begin{equation*}
\left\|\psi h^{1 / q}\right\|_{q /(q-1)}<\infty \tag{15}
\end{equation*}
$$

then, for all $t>0$,

$$
\begin{equation*}
Q_{\psi, \psi}(t) \leq \frac{q^{(4-q) / q}}{(2(q-1))^{2 / q}}\left\|\psi h^{1 / q}\right\|_{q /(q-1)}^{2}\left\|1-u_{1}(\cdot ; t)\right\|_{1}^{(2-q) / q} t^{-2 / q} \tag{16}
\end{equation*}
$$

Theorem 3. Suppose there exists $1<q \leq 2$ such that (15) holds and that

$$
\left\|h^{1 / q}\right\|_{q /(q-1)}<\infty
$$

Then, for all $t>0$,

$$
\begin{equation*}
Q_{\psi, \psi}(t) \leq b(q)\left\|\psi h^{1 / q}\right\|_{q /(q-1)}^{2}\left\|h^{1 / q}\right\|_{q /(q-1)}^{(2-q) /(q-1)} t^{-1 /(q-1)} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
b(q)=2^{(4-3 q) /(q(q-1))}\left(\frac{q}{q-1}\right)^{\left(q^{2}-4 q+2\right) /(q(1-q))} \tag{18}
\end{equation*}
$$

Theorem 4. Suppose there exist $0 \leq r \leq 2$, and $1<q \leq 2$ such that

$$
\left\|\psi^{r}\right\|_{q}<\infty
$$

and

$$
\left\|\psi^{2-r} h^{1 / q}\right\|_{(q-1) / q}<\infty .
$$

Then, for all $t>0$,

$$
\begin{equation*}
Q_{\psi, \psi}(t) \leq\left(\frac{q}{4(q-1)}\right)^{1 / q}\left\|\psi^{r}\right\|_{q}\left\|\psi^{2-r} h^{1 / q}\right\|_{q /(q-1)} t^{-1 / q} \tag{19}
\end{equation*}
$$

In Theorem 5 in Section 3 we use the bounds of Theorems 2 and 4 together with (14) to obtain an upper bound for the heat content of D, when D satisfies a Hardy inequality with weight (9), and $\psi_{1}(x)=\delta(x)^{-\alpha}$ and $\psi_{2}(x)=\delta(x)^{-\beta}$, where $\alpha, \beta \in(1,2)$. Even though the bounds in e.g. 2 and 4 look very different, both of them are needed to cover the maximal range of α and β in Theorem 5 .

Theorem 2 has a curious consequence. We claim that if a manifold D has finite measure $|D|$, and is stochastically complete then no Hardy inequality holds on D (which confirms the philosophy that the Hardy inequality corresponds to cooling that comes from the boundary). Indeed, stochastic completeness means that $u_{1} \equiv 1$. In this case, $\left\|1-u_{1}(\cdot ; t)\right\|_{1}=0$ so that we obtain from (16) that $Q_{\psi, \psi}(t)=0$ whenever function ψ satisfies the condition (15) for some $q \in(1,2)$. However, if h is finite then it is easy to construct a non-trivial function ψ that satisfies (15): choose any measurable set S with finite positive measure such that h is bounded on S, and let $\psi=1_{S}$. Then (15) holds with any $q>1$ while $Q_{\psi, \psi}(t)>0$ so that we obtain contradiction. Of course, without the finiteness of $|D|$, the Hardy inequality may hold on stochastically complete manifolds like $\mathbb{R}^{m} \backslash\{0\}$.

This paper is organized as follows. In Section 2 we will prove Theorems 1, 2,3 and 4. In Section 3 we will state and prove Theorem 5. Finally in Section 4 we obtain very refined asymptotics in the special case of the ball in \mathbb{R}^{3} with $\psi_{1}(x)=\delta(x)^{-\alpha}, \alpha<2, \psi_{2}(x)=\delta(x)^{-\beta}, \beta<2$, and $\alpha+\beta>3$ (Theorem 7). This special case shows that the bound obtained in Theorem 5 is close to being sharp. Moreover it suggests formulae for the first few terms in the asymptotic series of a compact Riemannian manifold D with the singular data above.

2 Proofs of Theorems 1, 2, 3 and 4

Proof of Theorem 1. In both parts, it suffices to prove the claims for nonnegative functions ψ_{1}, ψ_{2} from $L^{2}(D)$. Arbitrary non-negative measurable functions ψ_{1}, ψ_{2} can be approximated by monotone increasing sequences of nonnegative functions from $L^{2}(D)$, whence the both claims follow by the monotone convergence theorem.

To prove part (i) we use symmetry and the semigroup property, and obtain by (7) for $s=t / 2$ that

$$
\begin{aligned}
Q_{\psi_{1}, \psi_{2}}(t) & =\int_{D} u_{\psi_{1}}(x ; t / 2) u_{\psi_{2}}(x ; t / 2) d x \\
& \leq\left(\int_{D} u_{\psi_{1}}^{2}(x ; t / 2) d x\right)^{1 / 2}\left(\int_{D} u_{\psi_{2}}^{2}(x ; t / 2) d x\right)^{1 / 2} \\
& =\left(Q_{\psi_{1}, \psi_{1}}(t) Q_{\psi_{2}, \psi_{2}}(t)\right)^{1 / 2}
\end{aligned}
$$

It follows from (2) that

$$
\begin{equation*}
p(x, y ; t) \leq(p(x, x ; t) p(y, y ; t))^{1 / 2} \leq c_{t} \tag{20}
\end{equation*}
$$

To prove part (ii) we have by (20) that

$$
\begin{align*}
p(x, y ; t) & =\iint_{D \times D} d z_{1} d z_{2} p\left(x, z_{1} ; t / 3\right) p\left(z_{1}, z_{2} ; t / 3\right) p\left(z_{2}, y ; t / 3\right) \\
& \leq c_{t / 3} u_{1}(x ; t / 3) u_{1}(y ; t / 3) \tag{21}
\end{align*}
$$

This together with definition (6) completes the proof.
For the proofs of Theorems $2,3,4$, choose a sequence $\left\{D_{n}\right\}$ that consists of precompact open subsets of D with smooth boundaries such that $\bar{D}_{n} \subset D_{n+1}$ and $\bigcup_{n} D_{n}=D$. Obviously, Hardy inequality (8) remains true in any D_{n} with the same weight h, because $C_{c}^{\infty}\left(D_{n}\right) \subset C_{c}^{\infty}(D)$. Moreover, we claim that (8) holds for any function $w \in C\left(\bar{D}_{n}\right) \cap C^{1}\left(D_{n}\right)$ that satisfies the boundary condition $\left.w\right|_{\partial D_{n}}=0$. Indeed, if $\int_{D_{n}}|\nabla w|^{2}=\infty$ then (8) is trivially satisfied. If $\int_{D_{n}}|\nabla w|^{2}<\infty$ then w belongs to the Sobolev space $W^{1,2}\left(D_{n}\right)$. Extend function w to D_{n+1} by setting $w=0$ in $D_{n+1} \backslash \bar{D}_{n}$. Due to the boundary condition $\left.w\right|_{\partial D_{n}}=0$, we obtain that $w_{n} \in W^{1,2}\left(D_{n+1}\right)$. Since w is compactly supported in D_{n+1}, it follows that $w \in W_{0}^{1,2}\left(D_{n+1}\right)$ where $W_{0}^{1,2}(\Omega)$ is the closure $C_{c}^{\infty}(\Omega)$ in $W^{1,2}(\Omega)$. Since the Hardy inequality (8) holds for functions from $C_{c}^{\infty}\left(D_{n+1}\right)$, passing to the limit in $W^{1,2}\left(D_{n+1}\right)$ and using Fatou's lemma, we obtain that w also satisfies (8).

Assume for a moment that the statements of the theorems have been proved in each domain D_{n}. Then one can take the limit in (16), (17), (19) as $n \rightarrow \infty$, and obtain the statements for D. Indeed, the left hand side of these inequalities is $Q_{\psi, \psi}^{D_{n}}(t)=\iint_{D_{n} \times D_{n}} d x d y p_{D_{n}}(x, y ; t) \psi(x) \psi(y)$, where $p_{D_{n}}$ is the Dirichlet heat kernel for D_{n}. This converges to $Q_{\psi, \psi}^{D}(t)$ as $n \rightarrow \infty$. The right hand sides of (16), (17), (19) contain various $L^{p}\left(D_{n}\right)$-norms that can be estimated from above by the $L^{p}(D)$-norms. The only exception is the term $\left\|1-\int_{D_{n}} d y p_{D_{n}}(\cdot, y ; t)\right\|_{1}$ in (16) that is decreasing as $n \rightarrow \infty$. If $|D|<\infty$ then $1 \in L^{1}(D)$ so that the passage to the limit is justified by the dominated convergence theorem.

Hence, it suffices to prove each of the statements for D_{n} instead of D. Renaming D_{n} back to D, we assume in all three proofs that D is a precompact open domain with smooth boundary in another manifold.

Another observation is that all inequalities (16), (17), (19) survive the increasing monotone limits in ψ. So it suffices to prove them when ψ is bounded and has a compact support in D, which will be assumed below. Furthermore, since all the statements of Theorems 2, 3, 4 are homogeneous with respect to ψ, we can assume that $0 \leq \psi \leq 1$. If $\psi \equiv 0$ then there is nothing to prove; hence, we assume that ψ is non-trivial. Then $u_{\psi}(x ; t)$ is smooth and bounded in $\bar{D} \times(0,+\infty)$ and positive in $D \times(0,+\infty)$.

Proof of Theorem 2. Let ν be the outwards normal vector field on ∂D. Using the Green's formula, we obtain

$$
\begin{align*}
-\frac{d}{d t} \int_{D} u_{\psi}^{q} & =-q \int_{D} u_{\psi}^{q-1} \frac{\partial u_{\psi}}{\partial t} \\
& =-q \int_{D} u_{\psi}^{q-1} \Delta u_{\psi} \\
& =-q \int_{\partial D} u_{\psi}^{q-1} \frac{\partial u_{\psi}}{\partial \nu}+q \int_{D}\left(\nabla u_{\psi}^{q-1}, \nabla u_{\psi}\right) \\
& =q(q-1) \int_{D} u_{\psi}^{q-2}\left|\nabla u_{\psi}\right|^{2} \tag{22}
\end{align*}
$$

where we have used that $q>1$ and, hence $u_{\psi}^{q-1}=0$ on ∂D. Observing that $u_{\psi}^{q / 2} \in C(\bar{D}) \cap C^{1}(D)$,

$$
\left|\nabla u_{\psi}^{q / 2}\right|^{2}=\frac{q^{2}}{4} u_{\psi}^{q-2}\left|\nabla u_{\psi}\right|^{2}
$$

and applying the Hardy inequality (8) to $u^{q / 2}$, we obtain that

$$
\begin{equation*}
-\frac{d}{d t} \int_{D} u_{\psi}^{q}=\frac{4(q-1)}{q} \int_{D}\left|\nabla\left(u_{\psi}^{q / 2}\right)\right|^{2} \geq \frac{4(q-1)}{q} \int_{D} \frac{u_{\psi}^{q}}{h} . \tag{23}
\end{equation*}
$$

By Hölder's inequality we have that

$$
\begin{align*}
Q_{\psi, \psi}(t) & =\int_{D} u_{\psi} \psi \\
& \leq\left(\int_{D}\left(\frac{u_{\psi}}{h^{1 / q}}\right)^{q}\right)^{1 / q}\left(\int\left(\psi h^{1 / q}\right)^{\frac{q}{q-1}}\right)^{\frac{q-1}{q}} \\
& =\left(\int_{D} \frac{u_{\psi}^{q}}{h}\right)^{1 / q}\left\|\psi h^{1 / q}\right\|_{q /(q-1)} \tag{24}
\end{align*}
$$

By (23) and (24) we conclude that

$$
\begin{equation*}
-\frac{d}{d t} \int_{D} u_{\psi}^{q} \geq \frac{4(q-1)}{q}\left\|\psi h^{1 / q}\right\|_{q /(q-1)}^{-q}\left(Q_{\psi, \psi}(t)\right)^{q} \tag{25}
\end{equation*}
$$

Note that the function $t \mapsto Q_{\psi, \psi}(t)=\left\|u_{\psi}(\cdot ; t / 2)\right\|_{2}^{2}$ is decreasing in t, which, for example, follows from (22) with $q=2$. Integrating differential inequality
(25) with respect to t over the interval $[t, 2 t]$ gives that

$$
\begin{equation*}
\int_{D} u_{\psi}^{q} \geq \frac{4(q-1)}{q}\left\|\psi h^{1 / q}\right\|_{q /(q-1)}^{-q}\left(Q_{\psi, \psi}(2 t)\right)^{q} t \tag{26}
\end{equation*}
$$

On the other hand, using $1<q \leq 2$ and the Hölder inequality, we obtain

$$
\int_{D} u_{\psi}^{q}=\int_{D} u_{\psi}^{2-q} u_{\psi}^{2 q-2} \leq\left(\int_{D} u_{\psi}\right)^{2-q}\left(\int_{D} u_{\psi}^{2}\right)^{q-1}
$$

that is,

$$
\begin{equation*}
\int_{D} u_{\psi}^{q} \leq\left(Q_{\psi, 1}(t)\right)^{2-q}\left(Q_{\psi, \psi}(2 t)\right)^{q-1} \tag{27}
\end{equation*}
$$

Combining (26) and (27) yields

$$
\begin{equation*}
Q_{\psi, \psi}(2 t) \leq \frac{q}{4(q-1)}\left\|\psi h^{1 / q}\right\|_{q /(q-1)}^{q}\left(Q_{\psi, 1}(t)\right)^{2-q} t^{-1} \tag{28}
\end{equation*}
$$

Estimating $Q_{\psi, 1}$ by (1), we obtain

$$
Q_{\psi, \psi}(2 t) \leq \frac{q^{(4-q) / q}}{(4(q-1))^{2 / q}}\left\|\psi h^{1 / q}\right\|_{q /(q-1)}^{2}\left\|1-u_{1}(\cdot ; t)\right\|_{1}^{(2-q) / q} t^{-2 / q}
$$

which completes the proof.
Proof of Theorem 3. Since $\psi \leq 1$, the condition (11) is satisfied, and we obtain by (12) and (28) that

$$
Q_{\psi, \psi}(2 t) \leq \frac{q}{4(q-1)} a(q)^{2-q}\left\|\psi h^{1 / q}\right\|_{q /(q-1)}^{2}\left\|h^{1 / q}\right\|_{q /(q-1)}^{(2-q) /(q-1)} t^{-1 /(q-1)}
$$

This completes the proof of Theorem 3 since, by (13) and (18),

$$
2^{1 /(q-1)} \frac{q}{4(q-1)} a(q)^{2-q}=b(q)
$$

Proof of Theorem 4. By the arithmetic-geometric mean inequality, we have

$$
\psi(x) \psi(y) \leq \frac{1}{2}\left(\psi(x)^{r} \psi(y)^{2-r}+\psi(x)^{2-r} \psi(y)^{r}\right)
$$

By non-negativity and symmetry of the Dirichlet heat kernel

$$
\begin{equation*}
Q_{\psi, \psi}(t) \leq \int_{D} u_{\psi^{r}} \psi^{2-r} \tag{29}
\end{equation*}
$$

Next, Hölder's inequality yields

$$
\begin{equation*}
\int_{D} u_{\psi^{r}} \psi^{2-r} \leq\left(\int_{D} u_{\psi^{r}}^{q} \frac{1}{h}\right)^{1 / q}\left\|\psi^{2-r} h^{1 / q}\right\|_{q /(q-1)} \tag{30}
\end{equation*}
$$

By (23) we have

$$
\begin{equation*}
-\frac{d}{d t} \int_{D} u_{\psi^{r}}^{q} \geq \frac{4(q-1)}{q} \int_{D} u_{\psi^{r}}^{q} \frac{1}{h} \tag{31}
\end{equation*}
$$

Combining (29), (30), (31) we obtain that

$$
\left(Q_{\psi, \psi}(t)\right)^{q} \leq-\frac{q}{4(q-1)} \frac{d}{d t}\left(\int_{D} u_{\psi^{r}}^{q}\right)\left\|\psi^{2-r} h^{1 / q}\right\|_{q /(q-1)}^{q}
$$

Since the function $t \mapsto Q_{\psi, \psi}(t)$ is decreasing in t, we obtain by integrating the differential inequality (31) with respect to t over the interval $[0, t]$ that

$$
t\left(Q_{\psi, \psi}(t)\right)^{q} \leq \frac{q}{4(q-1)}\left(\int_{D} \psi^{r q}\right)\left\|\psi^{2-r} h^{1 / q}\right\|_{q /(q-1)}^{q}
$$

and (19) follows.

3 Singular initial temperature and singular specific heat

Below we make some further hypothesis on the geometry of D, and obtain an upper bound for the heat content for a wide class of geometries using Theorems 2 and 4 , and (14), if the initial temperature distribution and specific heat are given by $\delta^{-\alpha}, 1<\alpha<2$, and $\delta^{-\beta}, 1<\beta<2$ respectively.

Theorem 5. Let D be an open set in a smooth complete m-dimensional Riemannian manifold M, and suppose that
i. The Ricci curvature on M is non-negative.
ii. For $x \in D$,

$$
\psi_{\alpha}(x)=\delta(x)^{-\alpha}
$$

iii. There exist constants $\kappa_{D}<\infty$ and $d \in[m-1, m)$ such that

$$
\begin{equation*}
\int_{\{x \in D: \delta(x)<\epsilon\}} 1 \leq \kappa_{D} \epsilon^{m-d}, 0<\epsilon \leq \rho_{D}, \tag{32}
\end{equation*}
$$

where $\rho_{D}=\sup \{\delta(x): x \in D\}$ is the inradius of D.
iv. The strong Hardy inequality (8) holds with (9) for some $c \geq 2$.

If $1<\alpha<2,1<\beta<2$, and if $\epsilon>0$ is sufficiently small then

$$
\begin{equation*}
Q_{\psi_{\alpha}, \psi_{\beta}}(t)=O\left(t^{-4 \epsilon+(m-d-\alpha-\beta) / 2}\right), t \rightarrow 0 \tag{33}
\end{equation*}
$$

Proof. By (14) it suffices to prove (33) in the special case $\alpha=\beta$ with $1<\alpha<2$. In order to estimate $\left\|1-u_{1}(\cdot ; t)\right\|_{1}$ in Theorem 2 we rely on the following lower bound for u_{1} (Lemma 5 in [5]).
Lemma 6. Let M be a smooth, geodesically complete Riemannian manifold with non-negative Ricci curvature, and let D be an open subset of M with boundary ∂D. Then for $x \in D, t>0$

$$
u_{1}(x ; t) \geq 1-2^{(2+m) / 2} e^{-\delta(x)^{2} /(8 t)}
$$

To prove (33) we first consider the case

$$
\begin{equation*}
(2+m-d) / 2<\alpha<2 \tag{34}
\end{equation*}
$$

This set of α 's is non-empty since $d \in[m-1, m)$. By (9) we have that

$$
\begin{equation*}
\left\|\psi_{\alpha} h^{1 / q}\right\|_{q /(q-1)}=c^{2 / q}\left(\int_{D} \delta^{(2-q \alpha) /(q-1)}\right)^{(q-1) / q} \tag{35}
\end{equation*}
$$

Denote the left hand side of (32) by $\omega_{D}(\epsilon)$. Then we can write the right hand side of (35) as

$$
\begin{equation*}
c^{2 / q}\left(\int_{\mathbb{R}^{+}} \omega_{D}(d \epsilon) \epsilon^{(2-q \alpha) /(q-1)}\right)^{(q-1) / q} \tag{36}
\end{equation*}
$$

An integration by parts, using (34) shows that (36) is finite for

$$
\begin{equation*}
q<\frac{2-m+d}{\alpha-m+d} \tag{37}
\end{equation*}
$$

Because of (34) the right hand side of (37) is in (1,2]. We now choose $\epsilon>0$ such that

$$
\begin{equation*}
q=\frac{2-m+d}{\alpha-m+d}-\epsilon \in(1,2] . \tag{38}
\end{equation*}
$$

By Lemma 6 and (32) we have that for $t \rightarrow 0$

$$
\begin{equation*}
\left\|1-u_{1}(\cdot ; t)\right\|_{1}=O\left(t^{(m-d) / 2}\right) \tag{39}
\end{equation*}
$$

By Theorem 2 and (35)-(39) we find that for all α satisfying (34) and all $\epsilon>0$ satisfying (38)

$$
\begin{equation*}
Q_{\psi_{\alpha}, \psi_{\alpha}}(t)=O\left(t^{-4 \epsilon+(m-d-2 \alpha) / 2}\right), t \rightarrow 0 . \tag{40}
\end{equation*}
$$

Next consider the case

$$
\begin{equation*}
1<\alpha<(2+m-d) / 2 \tag{41}
\end{equation*}
$$

This set of α 's is again non-empty since $d \in[m-1, m$). By (32) we have that

$$
\begin{equation*}
\left\|\psi^{r}\right\|_{q}=\left(\int_{\mathbb{R}+} \omega_{D}(d \epsilon) \epsilon^{-\alpha r q}\right)^{1 / q}<\infty \tag{42}
\end{equation*}
$$

for

$$
\begin{equation*}
\alpha r q<m-d \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\psi^{2-r} h^{1 / q}\right\|_{q /(q-1)}=\left(\int_{\mathbb{R}^{+}} \omega_{D}(d \epsilon) \delta^{(2-\alpha(2-r) q) /(q-1)}\right)^{(q-1) / q}<\infty \tag{44}
\end{equation*}
$$

for

$$
\begin{equation*}
\frac{\alpha q(2-r)-2}{q-1}<m-d \tag{45}
\end{equation*}
$$

The optimal choice for r is henceforth given by

$$
\begin{equation*}
r=2(\alpha q-1) \alpha^{-1} q^{-2} \tag{46}
\end{equation*}
$$

By (41) we also have that $\alpha>1$. Hence $r \in(0,2)$. The requirements under (43) and (45) become with this choice of r that

$$
\begin{equation*}
q<2(2 \alpha+d-m)^{-1} \tag{47}
\end{equation*}
$$

Because of (41) the right hand side of (47) is in (1,2). We now choose $\epsilon>0$ such that

$$
\begin{equation*}
q=2(2 \alpha+d-m)^{-1}-\epsilon>1 \tag{48}
\end{equation*}
$$

By Theorem 4 and (42)-(47) we find that for all α satisfying (41) and all $\epsilon>0$ satisfying (48)

$$
Q_{\psi_{\alpha}, \psi_{\alpha}}(t)=O\left(t^{-2 \epsilon+(m-d-2 \alpha) / 2}\right), t \rightarrow 0
$$

To prove (33) for the limiting case $\alpha=\beta=(2+m-d) / 2:=\alpha_{c}$ we note that $Q_{\psi, \phi}(t)$ is bilinear and monotone on the positive cone of non-negative and measurable ψ and ϕ. Moreover for any $\eta \in(0,1 / 2)$ we have that $\alpha_{c}+\eta<2$, and

$$
\psi_{\alpha_{c}} \leq \psi_{\alpha_{c}+\eta}+1
$$

Hence for any $\eta \in(0,1 / 2)$

$$
\begin{align*}
Q_{\psi_{\alpha_{c}}, \psi_{\alpha_{c}}}(t) & \leq Q_{\psi_{\alpha_{c}+\eta}+1, \psi_{\alpha_{c}+\eta}+1}(t) \\
& \leq Q_{\psi_{\alpha_{c}+\eta}, \psi_{\alpha_{c}+\eta}}(t)+2 Q_{\psi_{\alpha_{c}+\eta}, 1}(t)+Q_{1,1}(t) . \tag{49}
\end{align*}
$$

The last term in the right hand side of (49) is bounded by the measure of D, and hence $O(1)$. Furthermore by (14)

$$
\begin{equation*}
Q_{\psi_{\alpha_{c}+\eta}, 1}(t) \leq\left(Q_{\psi_{\alpha_{c}+\eta}, \psi_{\alpha_{c}+\eta}}(t) Q_{1,1}(t)\right)^{1 / 2} \tag{50}
\end{equation*}
$$

For the first term in the right hand side of (49) we use (40) to obtain that for all $\epsilon \in(0,1 / 2)$ satisfying

$$
q=2\left(2 \alpha_{c}+2 \eta+d-m\right)^{-1}-\epsilon>1
$$

and all $\eta \in(0,1 / 2)$

$$
Q_{\psi_{\alpha_{c}+\eta}, \psi_{\alpha_{c}+\eta}}(t)=O\left(t^{-4 \epsilon+\left(m-d-2 \alpha_{c}-2 \eta\right) / 2}\right)=O\left(t^{-4 \epsilon-\eta-1}\right)
$$

By (50), $Q_{\psi_{\alpha_{c}+\eta}, 1}(t)=o\left(Q_{\psi_{\alpha_{c}+\eta}, \psi_{\alpha_{c}+\eta}}(t)\right)$ as $t \rightarrow 0$. This completes the proof of (40) in the critical case $\alpha=\alpha_{c}$, since both η and ϵ were positive, small, and arbitrary.

4 The special case calculation for a ball in \mathbb{R}^{3}

In this section we show by means of an example that the upper bound obtained in Theorem 5 is close to being sharp for $\alpha<2, \beta<2, \alpha+\beta>3$.

Theorem 7. Let $B_{a}=\left\{x \in \mathbb{R}^{3}:|x|<a\right\}$. If $\alpha<2, \beta<2, \alpha+\beta>3, J \in \mathbb{N}$ then there exist coefficients b_{0}, b_{1}, \cdots depending on α and β only such that for $t \rightarrow 0$

$$
\begin{align*}
& Q_{\psi_{\alpha}, \psi_{\beta}}(t)=4 \pi c_{\alpha, \beta} a^{2} t^{(1-\alpha-\beta) / 2}-4 \pi\left(c_{\alpha-1, \beta}+c_{\alpha, \beta-1}\right) a t^{(2-\alpha-\beta) / 2} \\
& \quad+4 \pi c_{\alpha-1, \beta-1} t^{(3-\alpha-\beta) / 2}+\sum_{j=0}^{J} b_{j} a^{3-j-\alpha-\beta} t^{j / 2}+O\left(t^{(J+1) / 2}\right) \tag{51}
\end{align*}
$$

where

$$
\begin{align*}
c_{\alpha, \beta}= & 2^{-\alpha-\beta} \pi^{-1 / 2} \Gamma((2-\alpha-\beta) / 2) \\
& \times \int_{0}^{1} d \rho\left(\rho^{-\alpha}+\rho^{-\beta}\right)\left((1-\rho)^{\alpha+\beta-2}-(1+\rho)^{\alpha+\beta-2}\right) \tag{52}
\end{align*}
$$

and

$$
\begin{align*}
& b_{0}=-8 \pi((\alpha+\beta-1)(\alpha+\beta-2)(\alpha+\beta-3))^{-1} \\
& b_{1}=0 \\
& b_{2}=8 \pi \alpha \beta((\alpha+\beta+1)(\alpha+\beta)(\alpha+\beta-1))^{-1} \\
& b_{3}=0 \tag{53}
\end{align*}
$$

We see that the leading term in (51) jibes with (33) since (9) holds for some $c \geq 2$ and (32) holds with $d=m-1$.

We conjecture that for any precompact D with smooth ∂D in M, and for $\alpha<2, \beta<2, \alpha+\beta>3$

$$
\begin{align*}
Q_{\psi_{\alpha}, \psi_{\beta}}(t)= & c_{\alpha, \beta} \int_{\partial D} t^{(1-\alpha-\beta) / 2}-2^{-1}\left(c_{\alpha-1, \beta}+c_{\alpha, \beta-1}\right) \int_{\partial D} L_{g g} t^{(2-\alpha-\beta) / 2} \\
& +\int_{\partial D}\left(c_{1} L_{g g} L_{h h}+c_{2} L_{g h} L_{g h}\right) t^{(3-\alpha-\beta) / 2}+O(1) \tag{54}
\end{align*}
$$

where c_{1} and c_{2} are constants depending on α and β only, and which satisfy

$$
4 c_{1}+2 c_{2}=c_{\alpha-1, \beta-1}
$$

and where $L_{g g}$ be the trace of the second fundamental form on the boundary of ∂D oriented by an inward unit vector field. Since $\int_{\partial B_{a}} 1=4 \pi a^{2}, \int_{\partial B_{a}} L_{g g}=8 \pi a$ and $\int_{\partial B_{a}}\left(c_{1} L_{g g} L_{h h}+c_{2} L_{g h} L_{g h}\right)=16 \pi c_{1}+8 \pi c_{2}$ we see that (54) holds for the ball in \mathbb{R}^{3}.

The proof of Theorem 7 rests on the following result (pp.237, 367-368 in [8]).
Lemma 8. Let B_{a} as in Theorem 7, and let the initial datum be radially symmetric i.e. $\psi_{1}(x)=f(r)$, where $r=|x|$. Then the solution of (1), (3), (5) is given by

$$
u(x ; t)=\left(4 \pi t r^{2}\right)^{-1 / 2} \int_{0}^{a} d r^{\prime} r^{\prime} f\left(r^{\prime}\right) \sum_{n \in \mathbb{Z}}\left(e^{-\left(2 n a-r+r^{\prime}\right)^{2} /(4 t)}-e^{-\left(2 n a+r+r^{\prime}\right)^{2} /(4 t)}\right)
$$

To prove Theorem 7 we have by Lemma 8 that

$$
\begin{align*}
Q_{\psi_{\alpha}, \psi_{\beta}}(t)= & (4 \pi / t)^{1 / 2} \int_{0}^{a} \int_{0}^{a} d r d r^{\prime} r r^{\prime}(a-r)^{-\alpha}\left(a-r^{\prime}\right)^{-\beta} \\
& \times \sum_{n \in \mathbb{Z}}\left(e^{-\left(2 n a-r+r^{\prime}\right)^{2} /(4 t)}-e^{-\left(2 n a+r+r^{\prime}\right)^{2} /(4 t)}\right) \tag{55}
\end{align*}
$$

Substitution of $a-r=p$ and $a-r^{\prime}=q$ in (55) gives that

$$
Q_{\psi_{\alpha}, \psi_{\beta}}(t)=A_{0}+A_{1}+A_{2}+B
$$

where

$$
\begin{gathered}
A_{0}=(4 \pi / t)^{1 / 2} a^{2} \int_{0}^{a} \int_{0}^{a} d p d q p^{-\alpha} q^{-\beta}\left(e^{-(p-q)^{2} /(4 t)}-e^{-(p+q)^{2} /(4 t)}\right) \\
A_{1}=-(4 \pi / t)^{1 / 2} a \int_{0}^{a} \int_{0}^{a} d p d q(p+q) p^{-\alpha} q^{-\beta}\left(e^{-(p-q)^{2} /(4 t)}-e^{-(p+q)^{2} /(4 t)}\right) \\
A_{2}=(4 \pi / t)^{1 / 2} \int_{0}^{a} \int_{0}^{a} d p d q p^{1-\alpha} q^{1-\beta}\left(e^{-(p-q)^{2} /(4 t)}-e^{-(p+q)^{2} /(4 t)}\right)
\end{gathered}
$$

and

$$
\begin{align*}
B=(4 \pi / t)^{1 / 2} & \int_{0}^{a} \int_{0}^{a} d p d q(a-p)(a-q) p^{-\alpha} q^{-\beta} \sum_{n \geq 1}\left(e^{-(2 n a+p-q)^{2} /(4 t)}\right. \\
& \left.+e^{-(2 n a+q-p)^{2} /(4 t)}-e^{-(2 n a+q+p)^{2} /(4 t)}-e^{-(2 n a-q-p)^{2} /(4 t)}\right) \tag{56}
\end{align*}
$$

We have the following.
Lemma 9. If $1<\alpha<2,1<\beta<2$ then for $t \rightarrow 0$

$$
\begin{equation*}
B=-8 \pi^{1 / 2} 3^{-1} a^{-\alpha-\beta} t^{3 / 2}+O\left(t^{2}\right) \tag{57}
\end{equation*}
$$

Proof. The integrand in (56) can be rewritten as

$$
\begin{align*}
& (a-p)(a-q) p^{-\alpha} q^{-\beta} \sum_{n \geq 1} e^{-(2 n a-p-q)^{2} /(4 t)} \\
& \times\left(\left(e^{(p-2 n a) q / t}+e^{(q-2 n a) p / t}\right)\left(1-e^{-p q / t}\right)-\left(1-e^{-2 p n a / t}\right)\left(1-e^{-2 q n a / t}\right)\right) . \tag{58}
\end{align*}
$$

The contribution from the terms with $n \geq 2$ in (58) is bounded in absolute value by

$$
2 a^{2} p^{1-\alpha} q^{1-\beta} t^{-1} \sum_{n \geq 2} e^{-a^{2}(n-1)^{2} / t}\left(1+2 n^{2} a^{2} t^{-1}\right)
$$

After integrating with respect to p and q we see that this term contributes at most $O\left(e^{-a^{2} /(2 t)}\right)$ to B. Next we will show that the main contribution from the term with $n=1$ in (58) comes from a neighbourhood of the point $(p, q)=(a, a)$. Let

$$
C_{1}(a)=\left\{(p, q) \in \mathbb{R}^{2}: a / 3<p<a, a / 3<q<a\right\}
$$

and

$$
C_{2}(a)=((0, a) \times(0, a)) \backslash C_{1}(a)
$$

On $C_{2}(a)$ we have that $2 a-p-q \geq 2 a / 3$. Hence the term with $n=1$ in (58) is bounded on $C_{2}(a)$ in absolute value by

$$
\begin{equation*}
2(a-p)(a-q) p^{1-\alpha} q^{1-\beta} t^{-1} e^{-a^{2} /(9 t)}\left(1+2 a^{2} t^{-1}\right) \tag{59}
\end{equation*}
$$

Integrating (59) over $C_{2}(a)$ gives a contribution which is bounded by
$O\left(e^{-a^{2} /(18 t)}\right)$. In order to calculate the contribution from the term with $n=1$ on $C_{1}(a)$ we use the expression under (56) instead. First we note that $2 a+p-q \geq$ $2 a / 3,2 a+q-p \geq 2 a / 3,2 a+p+q \geq 8 a / 3$. Hence the first three terms in the
summand of (56) with $n=1$ give after integration over $C_{1}(a)$ a contribution $O\left(e^{-a^{2} /(18 t)}\right)$. Putting all this together gives that

$$
\begin{aligned}
B= & -(4 \pi / t)^{1 / 2} \iint_{C_{1}(a)} d p d q(a-p)(a-q) p^{-\alpha} q^{-\beta} \\
& \times e^{-(2 a-q-p)^{2} /(4 t)}+O\left(e^{-a^{2} /(18 t)}\right)
\end{aligned}
$$

Noting that

$$
\begin{equation*}
p^{-\alpha} q^{-\beta}=a^{-\alpha-\beta}+O(a-p)+O(a-q) \tag{60}
\end{equation*}
$$

uniformly in p and q yields after a change of variables that

$$
\begin{aligned}
B= & -(4 \pi / t)^{1 / 2} a^{-\alpha-\beta} \iint_{(0, a / 3) \times(0, a / 3)} d p d q p q e^{-(p+q)^{2} /(4 t)} \\
& \times(1+O(p)+O(q))+O\left(e^{-a^{2} /(18 t)}\right),
\end{aligned}
$$

which agrees with the right hand side of (57).
By taking higher order terms of the form $(a-p)^{n_{1}}(a-q)^{n_{2}}$ in (60) into account one can determine the coefficient $t^{(j+3) / 2}, j=0,1,2, \cdots$ in the expansion of B.

To complete the proof of Theorem 7 we rewrite A_{0}, A_{1} and A_{2} respectively as follows.

$$
\begin{align*}
& A_{0}=(4 \pi / t)^{1 / 2} a^{2}\left(\int_{0}^{a} d p \int_{0}^{p} d q+\int_{0}^{a} d q \int_{0}^{q} d p\right) \\
& \times p^{-\alpha} q^{-\beta}\left(e^{-(p-q)^{2} /(4 t)}-e^{-(p+q)^{2} /(4 t)}\right) \\
&=(4 \pi / t)^{1 / 2} a^{2} \int_{0}^{a} d p p^{1-\alpha-\beta} \int_{0}^{1} d \rho\left(\rho^{-\alpha}+\rho^{-\beta}\right) \\
& \times\left(e^{-p^{2}(1-\rho)^{2} /(4 t)}-e^{-p^{2}(1+\rho)^{2} /(4 t)}\right) \\
&= 4 \pi a^{2} c_{\alpha, \beta} t^{(1-\alpha-\beta) / 2} \\
&-(4 \pi / t)^{1 / 2} a^{2} \int_{a}^{\infty} d p p^{1-\alpha-\beta} \int_{0}^{1} d \rho\left(\rho^{-\alpha}+\rho^{-\beta}\right) \\
& \times\left(e^{-p^{2}(1-\rho)^{2} /(4 t)}-e^{-p^{2}(1+\rho)^{2} /(4 t)}\right), \tag{61}\\
& A_{1}=-4 \pi a\left(c_{\alpha-1, \beta}+c_{\alpha, \beta-1}\right) t^{(2-\alpha-\beta) / 2}+(4 \pi / t)^{1 / 2} a \int_{a}^{\infty} d p p^{2-\alpha-\beta} \\
& \times \int_{0}^{1} d \rho\left(\rho^{1-\alpha}+\rho^{-\alpha}+\rho^{1-\beta}+\rho^{-\beta}\right)\left(e^{-p^{2}(1-\rho)^{2} /(4 t)}-e^{-p^{2}(1+\rho)^{2} /(4 t)}\right) \tag{62}
\end{align*}
$$

and

$$
\begin{align*}
A_{2} & =4 \pi c_{\alpha-1, \beta-1} t^{(3-\alpha-\beta) / 2}-(4 \pi / t)^{1 / 2} \int_{a}^{\infty} d p p^{3-\alpha-\beta} \\
& \times \int_{0}^{1} d \rho\left(\rho^{1-\alpha}+\rho^{1-\beta}\right)\left(e^{-p^{2}(1-\rho)^{2} /(4 t)}-e^{-p^{2}(1+\rho)^{2} /(4 t)}\right) \tag{63}
\end{align*}
$$

The terms to be evaluated in $(61),(62)$ and (63) are all of the form

$$
\begin{equation*}
(4 \pi / t)^{1 / 2} a^{2-j} \int_{a}^{\infty} d p p^{1+j-\alpha-\beta} \int_{0}^{1} d \rho \rho^{-\gamma}\left(e^{-p^{2}(1-\rho)^{2} /(4 t)}-e^{-p^{2}(1+\rho)^{2} /(4 t)}\right) \tag{64}
\end{equation*}
$$

where $j=0,1,2$ respectively. Following arguments similar to the proof of Lemma 9 we see that the contribution of the integral with respect to $\rho \in[0,1 / 2)$ in (64) is at most $O\left(e^{-a^{2} /(18 t)}\right)$. Furthermore

$$
\begin{equation*}
\left.(4 \pi / t)^{1 / 2} a^{2-j} \int_{a}^{\infty} d p p^{1+j-\alpha-\beta} \int_{1 / 2}^{1} d \rho \rho^{-\gamma} e^{-p^{2}(1+\rho)^{2} /(4 t)}\right)=O\left(e^{-a^{2} /(18 t)}\right) \tag{65}
\end{equation*}
$$

Hence the expression under (64) equals

$$
\begin{equation*}
(4 \pi / t)^{1 / 2} a^{2-j} \int_{a}^{\infty} d p p^{1+j-\alpha-\beta} \int_{1 / 2}^{1} d \rho \rho^{-\gamma} e^{-p^{2}(1-\rho)^{2} /(4 t)}+O\left(e^{-a^{2} /(18 t)}\right) \tag{66}
\end{equation*}
$$

Expanding $\rho^{-\gamma}$ about $\rho=1$ we obtain that

$$
\begin{align*}
& \mid \rho^{-\gamma}-1-\gamma(1-\rho)-2^{-1} \gamma(\gamma+1)(1-\rho)^{2} \\
& -6^{-1} \gamma(\gamma+1)(\gamma+2)(1-\rho)^{3} \mid \leq C(1-\rho)^{4}, 0 \leq \rho \leq 1 / 2 \tag{67}
\end{align*}
$$

where C depends on γ only. By (67) and (66) we obtain that (64) is equal to

$$
\begin{align*}
& 2 \pi(\alpha+\beta-j-1)^{-1} a^{3-\alpha-\beta}+4 \pi^{1 / 2} \gamma(\alpha+\beta-j)^{-1} a^{2-\alpha-\beta} t^{1 / 2} \\
& +2 \pi \gamma(\gamma+1)(\alpha+\beta-j+1)^{-1} a^{1-\alpha-\beta} t \\
& +8 \pi^{1 / 2} 3^{-1} \gamma(\gamma+1)(\gamma+2)(\alpha+\beta-j+2)^{-1} a^{-\alpha-\beta} t^{3 / 2}+O\left(t^{2}\right) \tag{68}
\end{align*}
$$

It remains to compute the coefficients b_{0}, b_{1} and b_{2} in Theorem 7. Altogether there are eight terms which contribute to the terms in (68):

$$
\begin{array}{lll}
j=0, & \gamma=\alpha, & \gamma=\beta \\
j=1, & \gamma=\alpha-1, & \gamma=\beta-1, \quad \gamma=\alpha, \quad \gamma=\beta \\
j=2, & \gamma=\alpha-1, & \gamma=\beta-1
\end{array}
$$

Summing these eight terms yield the expressions for b_{0}, b_{1} and b_{2} under (53). To calculate b_{3} we have that the above eight $\gamma(\gamma+1)(\gamma+2)$ terms in (68) cancel the contribution from (57). This completes the proof of Theorem 7.

References

[1] A. Ancona, On strong barriers and an inequality of Hardy for domains in \mathbb{R}^{n}, J. London Math. Soc. 34, 274-290 (1986).
[2] M. van den Berg, P. Gilkey Heat content asymptotics of a Riemannian manifold with boundary, J. Funct. Anal. 120, 48-71 (1994).
[3] M. van den Berg, Heat flow and Hardy inequality in complete Riemannian manifolds with singular initial conditions, J. Funct. Anal. 250, 114-131 (2007).
[4] M. van den Berg, P. Gilkey, Heat content and a Hardy inequality for complete Riemannian manifolds, Bull. London Math. Soc. 36, 577-586 (2004).
[5] M. van den Berg, Heat content and Hardy inequality for complete Riemannian manifolds, J. Funct. Anal. 233, 478-493 (2006).
[6] M. van den Berg, P. Gilkey, R. Seeley, Heat content asymptotics with singular initial temperature distributions, J. Funct. Anal. 254, 3093-3122 (2008).
[7] V. Burenkov, E. B. Davies, Spectral stability of the Neumann Laplacian, Journal of Differential Equations 186, 485-508 (2002).
[8] H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, Oxford (1992).
[9] E. B. Davies, A review of Hardy inequalities, Operator Theory Adv. Appl. 110, 55-67 (1999).
[10] E. B. Davies, Sharp boundary estimates for elliptic operators, Math. Proc. Camb. Phil. Soc. 129, 165-178 (2000).
[11] E. B. Davies, Heat kernels and spectral theory, Cambridge University Press, Cambridge (1989).
[12] P. Gilkey, Asymptotic Formulae in Spectral Geometry, Stud. Adv. Math., Chapman\& Hall/CRC, Boca Raton, FL (2004).
[13] A. Grigor'yan, Estimates of heat kernels on Riemannian manifolds, London Mathematical Society Lecture Note Series 273, 140-225 Cambridge University Press, Cambridge (1999).
[14] A. Grigor'yan, Heat kernel and Analysis on manifolds, AMS-IP Studies in Advanced Mathematics, 47, American Mathematical Society, Providence, RI; International Press, Boston, MA (2009).

[^0]: *Partially supported by Project MTM2009-07756 (Spain)
 ${ }^{\dagger}$ Partially supported by SFB701 (Germany)
 \ddagger Supported by National Science Foundation Grant PHY-0757791

