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Lefschetz trace formula for open adic spaces

Yoichi Mieda

Abstract. In this article, we discuss the Lefschetz trace for-
mula for an adic space which is separated smooth of finite type
but not necessarily proper over an algebraically closed non-
archimedean field. Under a certain condition on the absence
of set-theoretical fixed points on the boundary, we obtain a
fixed point formula. As an application, we can establish a
trace formula for some formal schemes, which is applicable to
the Rapoport-Zink tower for GSp(4). A partial generalization
of Fujiwara’s trace formula for contracting morphisms is also
given.

1 Introduction

In this paper, we consider the Lefschetz trace formula for open adic spaces over an
algebraically closed non-archimedean field. First recall the Lefschetz-Verdier trace
formula for schemes. LetX be a scheme which is separated smooth of finite type over
an algebraically closed field k, X −֒→ X a dense compactification and f : X −→ X a
k-morphism which induces a proper k-morphism f : X −→ X . Assume for simplicity
that the fixed scheme Fix f defined by the cartesian diagram

Fix f //

��

X

diagonal

��

X
f×id

// X ×X

is discrete. Then, for a prime ℓ which is invertible in k, the alternating sum of the
traces

∑

i(−1)
i Tr(f ∗;H i

c(X,Qℓ)) is equal to #Fix f +
∑

D∈π0(Fix f∩(X\X)) locD(f),

where #Fix f is the number of fixed points by f counted with multiplicity, π0(−)
denotes the set of connected components and locD(f) denotes the “local term at
D” (cf. [Fuj97, §1.2]). In particular, if Fix f ⊂ X then

∑

i(−1)
i Tr(f ∗;H i

c(X,Qℓ))
coincides with #Fix f , which gives a nice fixed point formula.

It seems natural to expect the similar formula for adic spaces. However, there is
an obvious counterexample. Let k be an algebraically closed non-archimedean field
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and D1 = Spa(k〈T 〉, k〈T 〉◦) the unit disk. We can compactify it by taking its closure
D1 in (A1)ad. Consider the isomorphism A1 −→ A1 given by T 7−→ T + 1, which
induces the isomorphisms f : D1 −→ D1 and f : D1 −→ D1. Since Fix f = Fix f = ∅,
we expect to have

∑

i(−1)
i Tr(f ∗;H i

c(D
1,Qℓ)) = 0. Nevertheless the left hand side

is equal to 1, and thus the analogue of the Lefschetz-Verdier trace formula do not
hold.

Actually, this phenomenon has already been observed by Fujiwara [Fuj97] and
Huber [Hub01]. Fujiwara proved his topological Lefschetz trace formula under the
condition that there exists no topological fixed point on the boundary. Huber es-
tablished a trace formula for open curves, which says that the alternating sum of
the traces on the cohomology of an open adic curve X is the sum of the number of
fixed points and the contribution at each set-theoretical fixed point on the boundary
Xc \X , where Xc denotes the universal compactification of X . Our main theorem
is also in this line. Here we will give a slightly simplified statement. As above, let k
be an algebraically closed non-archimedean field and ℓ a prime which is invertible in
the residue field of k. Let X be a purely d-dimensional adic space which is separated
smooth of finite type over k, X −֒→ X a dense compactification and f : X −→ X a
k-morphism which induces a proper k-morphism f : X −→ X .

Theorem 1.1 Assume that for every x ∈ X \ X , the points x and f(x) can be
separated by closed constructible subsets; namely, there exists closed constructible
subsets W1 and W2 of X such that x ∈ W1, f(x) ∈ W2 and W1 ∩W2 = ∅. Then we
have

Tr
(

f ∗;RΓc(X,Z/ℓnZ)
)

= #Fix f.

If moreover the characteristic of k is 0, then

2d
∑

i=0

(−1)i Tr
(

f ∗;H i
c(X,Qℓ)

)

= #Fix f.

Since we have no intersection theory for adic spaces yet (at least the author do
not know), we need to clarify the meaning of “the number of fixed points” #Fix f .
The definition is given by using cohomology theory (see Definition 2.6).

The statement above is similar to [Fuj97, Theorem 2.2.8], but our theorem is
valid for a non-algebraizable case. Our proof is very different from that in [Fuj97];
we use neither formal geometry nor the Lefschetz-Verdier trace formula for schemes.
Our proof is purely rigid-geometric. The first step of our proof is to observe that
why the proof of the Lefschetz-Verdier trace formula in [SGA5, Exposé III] cannot
be applied to the case of adic spaces; actually, the only obstruction is the failure of

the Künneth formula for push-forward (Rf∗F )
L
⊠ (Rg∗G) ∼= R(f × g)∗(F

L
⊠ G) (cf.

Remark 3.8). Therefore, our main strategy is to find a suitable isomorphism induced

by the Künneth homomorphism (Rf∗F )
L
⊠ (Rg∗G) −→ R(f × g)∗(F

L
⊠G) by using

the assumption in Theorem 1.1, so that the analogous proof as in [SGA5, Exposé
III] works. This idea is also useful for finding other trace formulas than Theorem
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1.1. For example, we will give another formula for open curves which is very similar
to the formula by Huber, and a partial generalization of Fujiwara’s trace formula
for contracting correspondences to the non-algebraizable case.

The author’s main motivation for this work is to establish the Lefschetz trace
formula which is applicable to the Rapoport-Zink towers. For a classical case, there
are such works by Faltings [Fal94] and Strauch [Str08]; the former is on the Drinfeld
tower and the latter is on the Lubin-Tate tower. As an application of Theorem
1.1, we will establish the Lefschetz trace formula for formal schemes (Theorem 4.5),
which is applicable to the Rapoport-Zink tower for GSp(4) considered in [IM10].
The author has a joint project with Matthias Strauch to investigate the cohomology
of this Rapoport-Zink tower by means of the trace formula in this paper. He also
hopes that there are a few more Rapoport-Zink towers to which our trace formula
can apply.

We sketch the outline of the paper. In Section 2, we will consider the action γ∗ of
a correspondence γ on the étale cohomology of adic spaces, and give the definition
of “the number of fixed points” #Fix γ. We also show that it is étale local and
compatible with the comparison functor. These properties justify our definition,
though it is cohomological and far from geometric. In Section 3, we will prove
our main theorem. First we discuss the Künneth formula for RΓ, which leads us
to a weaker form of the Lefschetz trace formula (Proposition 3.9). Next we refine
this weaker version by using our assumption on points of the boundary to get our
main theorem. We also remark on the trace formula for open curves. In Section 4,
we prove the Lefschetz trace formula for formal schemes and give some interesting
examples. In Section 5, we give a simple trace formula for a morphism which is
contracting near fixed points. It is a partial generalization of a result of Fujiwara
[Fuj97, Theorem 3.2.4].

Notation Let k be an algebraically closed non-archimedean field (cf. [Hub96, Def-
inition 1.1.3]) and denote its valuation ring by k+. Put S = Spa(k, k+). Fix a prime
ℓ which is invertible in k+ and put Λ = Z/ℓnZ for an integer n ≥ 1.

Every sheaf and cohomology are considered in the étale topology. We simply
write f ! for the functor R+f ! introduced in [Hub96, Theorem 7.1.1].

2 Correspondences on adic spaces

2.1 Trace maps and Gysin maps

Let X be a purely d-dimensional adic space which is separated, locally of finite
type and taut over S. Assume that X is generically smooth over S, namely, the
dimension of the singular locus Z of X is strictly less than d. We will construct the
trace map TrX : H2d

c (X,Λ(d)) −→ Λ for such X .

Note that the complement U of Z is taut [Hub96, Lemma 5.1.4 i)], thus we may
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define the compactly supported cohomology of X , Z and U . By the exact sequence

H2d−1
c

(

Z,Λ(d)
)

−→ H2d
c

(

U,Λ(d)
)

−→ H2d
c

(

X,Λ(d)
)

−→ H2d
c

(

Z,Λ(d)
)

and the vanishing H2d−1
c (Z,Λ(d)) = H2d

c (Z,Λ(d)) = 0 ([Hub96, Proposition 5.5.8,
Corollary 1.8.8]), the canonical homomorphism H2d

c (U,Λ(d)) −→ H2d
c (X,Λ(d)) is

an isomorphism.
On the other hand, since U is smooth over S, the trace map TrU : H

2d
c (U,Λ(d)) −→

Λ has already been constructed in [Hub96, Theorem 7.3.4]. We will define TrX as
the composite

H2d
c

(

X,Λ(d)
) ∼=
←−− H2d

c

(

U,Λ(d)
) TrU−−→ Λ.

Since H i
c(X,Λ(d)) = 0 for i > 2d, TrX induces the map RΓc(X,Λ(d)[2d]) −→ Λ,

which is also denoted by TrX .

Proposition 2.1 Let X , X ′ be purely d-dimensional adic spaces which are sepa-
rated, locally of finite type, generically smooth and taut over S. Let π : X ′ −→ X
be an étale S-morphism between them. Then the composite H2d

c (X ′,Λ(d))
π∗−−→

H2d
c (X,Λ(d))

TrX−−→ Λ is equal to TrX′ .

Proof. First assume that X is smooth over S. Then the claim follows from the
characterizing properties of the trace morphisms ((Var 3) and (Var 4) in [Hub96,
Theorem 7.3.4]). In the general case, let Z (resp. Z ′) be the singular locus of X
(resp. X ′) and put U = X \Z (resp. U ′ = X ′ \Z ′). Note that we have π−1(U) ⊂ U ′,
for π is étale. Thus we have the following commutative diagram:

H2d
c

(

X ′,Λ(d)
)

H2d
c

(

U ′,Λ(d)
)∼=oo

TrU′
// Λ

H2d
c

(

X ′,Λ(d)
)

π∗

��

H2d
c

(

π−1(U),Λ(d)
)

π∗

��

(∗)
oo

Tr
π−1(U)

//

OO

Λ

H2d
c

(

X,Λ(d)
)

H2d
c

(

U,Λ(d)
)∼=oo

TrU
// Λ.

Here the homomorphism (∗) is an isomorphism, since the closed subscheme π−1(Z) of
X ′, which is étale over Z, has dimension less than d. Therefore the claim immediately
follows from the diagram above.

Proposition 2.2 Let X be a purely d-dimensional scheme which is separated of
finite type over k and Xad = X ×Spec k S the associated adic space. Assume that X
is generically smooth over k. Then the composite of the canonical comparison map
H2d

c (X,Λ(d)) −→ H2d
c (Xad,Λ(d)) and TrXad : H2d

c (Xad,Λ(d)) −→ Λ is equal to the
trace map TrX : H2d

c (X,Λ(d)) −→ Λ for X , whose definition is similar to that of
TrXad .
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First we consider the smooth case.

Proposition 2.3 Let f : X −→ Y be a separated smooth morphism of finite type
with relative dimension d between k-schemes of finite type. Let f ad : Xad −→ Y ad

be the induced morphism of adic spaces. Denote the natural morphisms of sites
(Xad)ét −→ Xét and (Y ad)ét −→ Yét by ε. Then the following diagram is commuta-
tive:

ε∗Rf!Λ(d)[2d]
ε∗ Trf

//

��

Λ

Rf ad
! Λ(d)[2d]

ε∗ Tr
fad

// Λ.

The left vertical arrow is defined in [Hub96, Theorem 5.7.2].

Proof. By using [SGA4, Exposé XVIII, Lemme 2.2] and [Hub96, Lemma 7.3.5], we
have only to consider the case where X = Am

Y or the case where f is étale. The
former case immediately follows from the construction of Trfad ([Hub96, proof of
Theorem 7.3.4]). For the latter case, every morphism is defined by the adjointness

and the commutativity is formal.

Proof of Proposition 2.2. Let Z be the singular locus of X and put U = X \ Z.
Then, by Proposition 2.3, the following diagram is commutative:

H2d
c

(

X,Λ(d)
)

��

H2d
c

(

U,Λ(d)
)

��

∼=oo
TrU // Λ

H2d
c

(

Xad,Λ(d)
)

H2d
c

(

Uad,Λ(d)
)(∗)

oo
Tr

Uad
// Λ.

Since the dimension of Zad is less than d, the map (∗) is an isomorphism. More-
over, in the same way as Proposition 2.1, we can prove that the composite of

H2d
c (Xad,Λ(d))

∼=
←−− H2d

c (Uad,Λ(d))
Tr

Uad
−−−→ Λ coincides with TrXad . Thus we have

the desired compatibility.

LetX (resp. Y ) be a purely d-dimensional (resp. d′-dimensional) adic space which
is separated, locally of finite type and taut over S. Put c = d−d′. Assume X (resp.
Y ) is smooth (resp. generically smooth) over S. Let f : Y −→ X be an S-morphism
between them. Let us denote the structure map of X (resp. Y ) by a : X −→ S
(resp. b : Y −→ S). By the construction above, we have TrX : Ra!Λ(d)[2d] −→ Λ
and TrY : Rb!Λ(d

′)[2d′] −→ Λ. By the adjointness, these correspond to the maps
Gysa : Λ −→ a!Λ(−d)[−2d] and Gysb : Λ −→ b!Λ(−d′)[−2d′]. Since a is smooth,
Gysa is an isomorphism ([Hub96, Theorem 7.5.3]). Therefore we have an isomor-
phism b!Λ(−d′)[−2d′] = f !a!Λ(−d′)[−2d′] ∼= f !Λ(c)[2c], and finally we obtain a map
Gysf : Λ −→ f !Λ(c)[2c], which is called the Gysin map associated with f . Since
Hom(Λ, f !Λ(c)[2c]) = H2c(Y, f !Λ(c)), it gives an element of H2c(Y, f !Λ(c)).
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If moreover f is proper, then f is naturally decomposed as Y
f ′

−−→ f(Y )
i
−−→ X ,

where f ′ is proper and i is a closed immersion (here f(Y ) := (X, f(Y )) is a pseudo-
adic space; cf. [Hub96, §1.10]). Thus we have the map

H2c
(

Y, f !Λ(c)
)

= H2c
(

f(Y ), Rf ′
! f

′!i!Λ(c)
)

adj
−−→ H2c

(

f(Y ), i!Λ(c)
)

= H2c
f(Y )

(

X,Λ(c)
)

.

We denote the image of Gysf under this map by cl(f), and call it the cohomology
class associated with f .

Proposition 2.4 In the setting above (we do not assume that f is proper), consider
the following commutative diagram:

Y ′
g

//

π′

��

X ′

π

��

Y
f

// X,

where π and π′ are étale. Then the image of Gysf under the map

π∗ : H2c
(

Y, f !Λ(c)
) π′∗

−−→ H2c
(

Y, π′∗f !Λ(c)
)

= H2c
(

Y, g!Λ(c)
)

coincides with Gysg. If moreover the diagram above is cartesian and f is proper, then
the image of cl(f) under the map π∗ : H2c

f(Y )(X,Λ(c)) −→ H2c
g(Y ′)(X

′,Λ(c)) coincides

with cl(g).

Proof. First we will prove π∗Gysf = Gysg. Denote the structure map of X ′ (resp.
Y ′) by a′ (resp. b′). By Proposition 2.1 and the adjointness, we have the following
commutative diagrams:

Λ
Gysa′

∼=
// a′!Λ(−d)[−2d]

π∗Λ
π∗ Gysa

∼=
// π∗a!Λ(−d)[−2d],

Λ
Gysb′ // b′!Λ(−d′)[−2d′]

π′∗Λ
π′∗ Gysb // π′∗b!Λ(−d′)[−2d′].

Namely, we have Gysa′ = π∗Gysa and Gysb′ = π′∗Gysb. On the other hand, by
the definition, Gysf = f !Gys−1

a (c)[2c] ◦ Gysb and Gysg = g!Gys−1
a′ (c)[2c] ◦ Gysb′ .

Therefore we have

π∗Gysf = π∗f !Gys−1
a (c)[2c] ◦ π∗Gysb = g!π′∗Gys−1

a (c)[2c] ◦ π∗Gysb

= g!Gys−1
a′ (c)[2c] ◦Gysb′ = Gysg,

as desired.
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Assume that the diagram in the proposition is cartesian and f is proper. To prove
π∗ cl(f) = cl(g), it suffices to observe the commutativity of the diagram below:

H2c
(

Y, f !Λ(c)
)

//

π′∗

��

H2c
f(Y )

(

X,Λ(c)
)

π∗

��

H2c
(

Y ′, g!Λ(c)
)

// H2c
g(Y ′)

(

X ′,Λ(c)
)

.

Let Y ′ g′

−−→ g(Y ′)
i′
−−→ X be the factorization of g. Note that the following diagram

is cartesian due to [Hub94, Lemma 3.9 (i)]:

Y ′

π′

��

g′
// g(Y ′) i′ //

π

��

X ′

π

��

Y
f ′

// f(Y )
i // X.

For every object L of D+(f(Y ),Λ), it is straightforward to check the commutativity
of the diagram below:

Rf ′
! f

′!L
adj

//

adj
��

L

adj

��

Rπ∗π
∗Rf ′

!f
′!L

adj
//

OO

∼= base change
��

Rπ∗π
∗L

Rπ∗Rg′!π
′∗f ′!L

Rπ∗Rg′!g
′!π∗L

adj
// Rπ∗π

∗L.

Setting L = i!Λ(c) and taking H2c(f(Y ),−), we obtain the desired commutativity.

Next we will prove a comparison result for the Gysin maps and the cohomology
classes associated with proper morphisms. LetX (resp. Y ) be a purely d-dimensional
(resp. d′-dimensional) scheme which is separated of finite type over k. Assume X
(resp. Y ) is smooth (resp. generically smooth) over k and put c = d − d′. Let
f : Y −→ X be a morphism of finite type over k. Then, by the same way as above,
we may define the Gysin map Gysf : Λ −→ f !Λ(c)[2c]. If moreover f is proper, we
can also define the cohomology class cl(f) ∈ H2c

f(Y )(X,Λ(c)) associated with f . Let

f ad : Y ad −→ Xad be the morphism of adic spaces associated with f and denote the
natural morphisms of locally ringed spaces Xad −→ X and Y ad −→ Y by ε. Note
that Xad, Y ad and f ad satisfy all the assumptions above, thus we may define the
Gysin map Gysfad , and the class cl(f ad) if f is proper.
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Proposition 2.5 The image of Gysf under the map

H2c
(

Y, f !Λ(c)
) ε∗
−−→ H2c

(

Y, ε∗f !Λ(c)
) ∼=
−−→
(∗)

H2c
(

Y, f ad!ε∗Λ(c)
)

= H2c
(

Y, f ad!Λ(c)
)

coincides with Gysfad (for the construction of the isomorphism (∗), see [Mie10b,
Proposition 4.37]). If moreover f is proper, the image of cl(f) under the canonical
map ε∗ : H2d

f(Y )(X,Λ(d)) −→ H2d
fad(Y ad)(X

ad,Λ(d)) coincides with cl(f ad) (note that

f ad(Y ad) = ε−1(f(Y )) due to [Hub94, Lemma 3.9 (ii)]).

Proof. First we will observe ε∗Gysf = Gysfad . Let us denote the structure morphism
of X (resp. Y ) by a (resp. b). By Proposition 2.2 and the adjointness, we have the
commutativity of the left diagram below. On the other hand, by the definition of
Gysb, the right diagram below is also commutative.

ε∗Λ
Gys

bad //

adj

��

bad!ε∗Λ(−d′)[−2d′]

bad!Rbad! ε∗Λ
OO

∼= b.c.
��

bad!ε∗Rb!Λ
bad!ε∗Trb// bad!ε∗Λ(−d′)[−2d′],

ε∗Λ
ε∗ Gysb //

adj

��

ε∗b!Λ(−d′)[−2d′]

ε∗b!Rb!Λ
ε∗b!Trb //

∼= b.c.
��

ε∗b!Λ(−d′)[−2d′]

∼= b.c.
��

bad!ε∗Rb!Λ
bad!ε∗Trb// bad!ε∗Λ(−d′)[−2d′].

Moreover, it is easy to show that the following diagram is commutative:

ε∗Λ
adj

//

adj

��

bad!Rbad! ε∗Λ

ε∗b!Rb!Λ
b.c. // bad!ε∗Rb!Λ.

b.c.

OO

By these three commutative diagrams, we have the following commutative diagram:

ε∗Λ
Gys

bad // ε∗b!Λ

b.c.
��

ε∗Λ
ε∗ Gysb // bad!ε∗Λ.

Namely, we have Gysbad = ε∗Gysb. Similarly we have Gysaad = ε∗Gysa. Therefore,
in the same way as in the proof of Proposition 2.4, we can obtain ε∗Gysf = Gysfad .

Assume that f is proper. To prove ε∗ cl(f) = cl(f ad), it suffices to show the
commutativity of the diagram below:

H2c
(

Y, f !Λ(c)
)

//

ε∗

��

H2c
f(Y )

(

X,Λ(c)
)

ε∗

��

H2c
(

Y ad, f ad!Λ(c)
)

// H2c
fad(Y ad)

(

Xad,Λ(c)
)

.

8
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Put Z = f(Y ) and endow it with the structure of a reduced closed subscheme of X .

Then f factors as Y
f ′

−−→ Z
i
−֒→ X . As we mentioned above, a closed subset f ad(Y ad)

of Xad coincides with Zad. Therefore, by [Hub96, Corollary 2.3.8], iad : Zad −֒→ Xad

induces an equivalence between the étale topos of Zad and that of f ad(Y ad). Hence
the diagram above can be identified with the following diagram:

H2c
(

Y, f !Λ(c)
)

//

ε∗

��

H2c
(

Z, i!Λ(c)
)

ε∗

��

H2c
(

Y ad, f ad!Λ(c)
)

// H2c
(

Zad, iad!Λ(c)
)

.

Now we can show the commutativity in the same way as in the proof of Proposition
2.4. This completes the proof.

2.2 Correspondences

Let X and Γ be purely d-dimensional adic spaces which are separated, locally of
finite type and taut over S. Assume that X (resp. Γ) is smooth (resp. generically
smooth) over S. Let γ : Γ −→ X ×S X be a morphism over S and put γi = pri ◦γ.

Then we may apply the construction in the previous subsection and have the
cohomology class Gysγ ∈ H2d(Γ, γ!Λ(d)). Using it, we will define “the number of
points fixed by γ”.

Definition 2.6 Consider the following cartesian diagram in which δ : X −→ X×SX
denotes the diagonal morphism:

Fix γ
γ0

//

��

X

δ
��

Γ
γ

// X ×S X.

Let D be an open and closed subset of Fix γ which is proper over S, and denote the
open and closed immersion D −֒→ Fix γ by j. Put j0 = γ0 ◦ j. Then we have the
canonical maps

H2d
(

Γ, γ!Λ(d)
) δ∗
−−→ H2d

(

Fix γ, γ!
0Λ(d)

)

−→ H2d
(

D, j∗γ!
0Λ(d)

)

= H2d
(

D, j!0Λ(d)
)

= H2d
c

(

X,Rj0!j
!
0Λ(d)

) adj
−−→ H2d

c

(

X,Λ(d)
) Tr
−−→ Λ.

We denote the image of Gysγ under these maps by #FixD γ. If D = Fix γ, we write
#Fix γ for #FixD γ.

Remark 2.7 Assume that γ is proper. Then #Fix γ can be calculated from cl(γ)
as follows. Denote the inverse image of γ(Γ) under δ by ∆X ∩ γ(Γ). Since we are

9
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implicitly assuming that Fix γ is proper over S, the pseudo-adic space (X,∆X∩γ(Γ))
is proper over S. Thus we have the following natural maps:

H2d
γ(Γ)

(

X ×S X,Λ(d)
) δ∗
−−→ H2d

∆X∩γ(Γ)

(

X,Λ(d)
)

−→ H2d
c

(

X,Λ(d)
) TrX−−→ Λ.

The image of cl(γ) under these maps coincides with #Fix γ.

Remark 2.8 Obviously the construction of #Fix γ is compatible with a change of
Λ. Namely, if we denote #Fix γ for Λ = Z/ℓnZ by #ℓnFix γ, then (#ℓnFix γ)n≥1

gives an element of Zℓ = lim
←−n

Z/ℓnZ. We also denote it by #Fix γ.

Example 2.9 Let f : X −→ X be a morphism over S. Then γf = f × id : X −→
X ×S X lies in the situation above. In this case, Fix γf is a closed adic subspace of
X . We simply write Fix f , #FixD f and #Fix f for Fix γf , #FixD γf and #Fix γf ,
respectively. Denote the image of γf by Γf ; note that it has the natural structure
of a closed adic subspace of X ×S X since γf is a closed immersion.

By the results in the previous subsection, we can prove that the number #FixD γ
is étale local and compatible with the comparison functor:

Proposition 2.10 Let γ : Γ −→ X ×S X be as above and γ′ : Γ′ −→ X ′ ×S X ′ be
another morphism satisfying the conditions above. Let π : Γ′ −→ Γ and π′ : X ′ −→
X be étale morphisms over S such that γ ◦π = (π′×π′)◦γ′. Let D (resp. D′) be an
open and closed subset of Fix γ (resp. Fix γ′) which is proper over S. Assume that
π induces an isomorphism from D′ to D. Then we have #FixD γ = #FixD′ γ′.

Proof. We have the following commutative diagram:

H2d
(

Γ, γ!Λ(d)
) δ∗ //

π∗

��

H2d
(

Fix γ, γ!
0Λ(d)

)

//

π∗

��

H2d
(

D, j!0Λ(d)
)

π∗

��

H2d
(

Γ′, γ′!Λ(d)
) δ′∗ // H2d

(

Fix γ′, γ′!
0Λ(d)

)

// H2d
(

D′, j′!0Λ(d)
)

.

Thus, by Proposition 2.1 and Proposition 2.4, it suffices to show the commutativity
of the diagram below:

H2d
(

D, j!0Λ(d)
)

π∗

��

H2d
c

(

X,Rj0!j
!
0Λ(d)

)

// H2d
c

(

X,Λ(d)
)

H2d
(

D′, j′!0Λ(d)
)

H2d
c

(

X ′, Rj′0!j
′!
0Λ(d)

)

// H2d
c

(

X ′,Λ(d)
)

.

π′
∗

OO

By the commutative diagram

D′
j′0 //

∼= π

��

X ′

π′

��

D
j0

// X,

10
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we can construct the map π∗ : H
2d(D′, j′!0Λ(d)) −→ H2d(D, j!0Λ(d)) as the composite

H2d
(

D′, j′!0Λ(d)
)

= H2d
(

D, π!j
′!
0Λ(d)

)

= H2d
(

D, π!j
′!
0π

′!Λ(d)
)

= H2d
(

D, π!π
!j!0Λ(d)

) adj
−−→ H2d

(

D, j!0Λ(d)
)

.

The commutativity of the following diagram is immediate:

H2d
(

D, j!0Λ(d)
)

H2d
c

(

X,Rj0!j
!
0Λ(d)

)

// H2d
c

(

X,Λ(d)
)

H2d
(

D′, j′!0Λ(d)
)

π∗

OO

H2d
c

(

X ′, Rj′0!j
′!
0Λ(d)

)

// H2d
c

(

X ′,Λ(d)
)

.

π′
∗

OO

Thus it suffices to show that π∗ ◦ π
∗ : H2d(D, j!0Λ(d)) −→ H2d(D, j!0Λ(d)) is the

identity map. This map is induced from the composite of j!0Λ
adj
−−→ Rπ∗π

∗j!0Λ =

π!π
!j!0Λ

adj
−−→ j!0Λ, which is the identity map since Rπ∗ = π! is the quasi-inverse of

π∗ = π! by the assumption that π : D′ −→ D is an isomorphism. Now the proof is
complete.

Proposition 2.11 Let X and Γ be purely d-dimensional schemes which are sep-
arated of finite type over k, Assume that X (resp. Γ) is smooth (resp. generically
smooth) over k. Let γ : Γ −→ X ×k X be a morphism over k.

For an open and closed subset D of Fix γ := Γ ×X×kX X which is proper over
k, we can define #FixD(γ) in the same way as in Definition 2.6. Then we have
#FixDad(γad) = #FixD(γ). In particular, if Fix γ is proper over k, then #Fix(γad)
coincides with the number of points fixed by γ in the usual (intersection-theoretic)
sense.

Proof. We denote the natural morphism Fix γ −→ X by γ0, the open and closed
immersion D −֒→ Fix γ by j, and put j0 = γ0 ◦ j. Then the proposition is clear from
Proposition 2.5 and the following commutative diagrams:

H2d
(

Γ, γ!Λ(d)
) δ∗ //

ε∗

��

H2d
(

Fix γ, γ!Λ(d)
) j∗

//

ε∗

��

H2d
(

D, j∗γ!Λ(d)
)

ε∗

��

H2d
(

Γad, γad!Λ(d)
) δad∗ // H2d

(

Fix γad, γad!Λ(d)
) jad∗

// H2d
(

Dad, jad∗γad!Λ(d)
)

,

H2d
(

D, j∗γ!Λ(d)
)

ε

��

H2d
c

(

X,Rj0!j
!
0Λ(d)

) adj
//

ε∗

��

H2d
c

(

X,Λ(d)
) TrX //

ε∗

��

Λ

H2d
(

Dad, jad∗γad!Λ(d)
)

H2d
c

(

Xad, Rjad0! j
ad!
0 Λ(d)

) adj
// H2d

c

(

Xad,Λ(d)
) Tr

Xad
// Λ.

11
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Remark 2.12 By Proposition 2.10 and Proposition 2.11, we may often calculate
#Fix γ. For example, we can apply the method in [Str08, §2.6] to calculate the
number of fixed points on some Rapoport-Zink spaces. Since the period space for
a Rapoport-Zink space M is an open adic subspace of an algebraic variety, we can
use Proposition 2.11 for counting fixed points on the period space. As the period
map from M to the period space is étale, Proposition 2.10 enables us to count fixed
points on M .

Definition 2.13 In the setting introduced at the beginning of this subsection, as-
sume moreover that γ1 is proper. We define the action γ∗ of γ on RΓc(X,Λ) as
follows:

γ∗ : RΓc(X,Λ)
γ∗
1−−→ RΓc(Γ,Λ)

Gysγ2−−−→ RΓc(Γ, γ
!
2Λ) = RΓc(X,Rγ2!γ

!
2Λ)

adj
−−→ RΓc(X,Λ).

Example 2.14 Let f : X −→ X be a proper morphism over S. Then γ∗
f (cf.

Example 2.9) obviously coincides with f ∗.

In the sequel we assume that X and Γ are quasi-compact and γ1 (and hence γ)
is proper. We will describe γ∗ by means of a compactification of γ : Γ −→ X ×S X .

Definition 2.15 A compactification of γ : Γ −→ X ×S X is a triple (X →֒ X,Γ →֒
Γ, γ), where X −֒→ X and Γ −֒→ Γ are dense open immersions into pseudo-adic
spaces which are proper over S and γ is a proper S-morphism which makes the
following diagram commutative:

Γ
γ

//

��

X ×S X

��

Γ
γ

// X ×S X.

For simplicity, we often write γ : Γ −→ X ×S X for (X →֒ X,Γ →֒ Γ, γ).

Remark 2.16 For a compactification γ : Γ −→ X ×S X , we have Γ = γ −1
1 (X).

Indeed, since γ1 is proper, the open immersion Γ −֒→ γ −1
1 (X) is proper. On the

other hand, since Γ is assumed to be dense in Γ, it is also dense in γ −1
1 (X). Thus

we have Γ = γ −1
1 (X). In other words, γ −1

1 (X) is contained in γ −1
2 (X).

Example 2.17 Let X −֒→ Xc and Γ −֒→ Γc be the universal compactifications of
X and Γ over S, respectively (cf. [Hub96, Definition 5.1.1, Theorem 5.1.5, Corollary
5.1.6]). Then the morphism γc : Γc −→ Xc ×S Xc over S is naturally induced from
γ, and gives a compactification of γ : Γ −→ X ×S X .

If γ : Γ −→ X ×S X can be extended to a morphism γ′ : Γ′ −→ X ′ ×S X ′ where
X ′ (resp. Γ′) is an adic space which is partially proper taut over S and contains X
(resp. Γ) as an open adic subspace, then we can construct another compactification
of γ. Let X (resp. Γ) be the closure of X (resp. Γ) in X ′ (resp. Γ′) and regard it as
a pseudo-adic space. Then X and Γ are proper over S and γ′ induces a morphism
γ : Γ −→ X ×S X. It gives a compactification of γ. This construction should be
more convenient for practical use.
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Take a compactification γ : Γ −→ X ×S X of γ and denote the open immersion
X −֒→ X by j. We denote the open immersions X×S X −֒→ X×S X , X×S X −֒→
X×SX by j×1, and X×SX −֒→ X×SX , X×SX −֒→ X×SX by 1×j. Consider
the natural isomorphisms

H2d
γ(Γ)

(

X ×S X, (j × 1)∗(1× j)!Λ(d)
) ∼=
−−→ H2d

γ(Γ)

(

X ×S X, (1× j)!Λ(d)
)

∼=
−−→ H2d

γ(Γ)

(

X ×S X,Λ(d)
)

.

Note that the first isomorphy is a consequence of Γ = γ −1
1 (X) = γ −1(X ×S X).

We also denote by cl(γ) the element of H2d
γ(Γ)

(X ×S X, (j × 1)∗(1× j)!Λ(d)) that is

mapped to cl(γ) by the homomorphism above. Since the projection formula gives

(j × 1)!Λ
L
⊗ (j × 1)∗(1× j)!Λ = (j × 1)!

(

Λ
L
⊗ (j × 1)∗(j × 1)∗(1× j)!Λ

)

= (j × j)!Λ,

the cup product with cl(γ) induces the map

RΓ
(

X ×S X, (j × 1)!Λ
)

−→ RΓ
(

X ×S X, (j × j)!Λ(d)[2d]
)

.

Proposition 2.18 The map γ∗ coincides with the composite below:

RΓc(X,Λ) = RΓ(X, j!Λ)
pr∗1−−→ RΓ(X ×S X, pr∗1 j!Λ) = RΓ

(

X ×S X, (j × 1)!Λ
)

∪ cl(γ)
−−−→ RΓ

(

X ×S X, (j × j)!Λ(d)[2d]
)

= RΓc

(

X ×S X,Λ(d)[2d]
)

Gyspr2−−−−→ RΓc(X ×S X, pr!2 Λ) = RΓc(X,R pr2! pr
!
2 Λ)

adj
−−→ RΓc(X,Λ).

Proof. We also denote the open immersion Γ −֒→ Γ by j. First let us prove the
commutativity of the following diagram:

RΓ
(

X ×S X, (j × 1)!Λ
) ∪ cl(γ)

//

γ∗

��

RΓ
(

X ×S X, (j × j)!Λ(d)[2d]
)

RΓ
(

Γ, γ∗(j × 1)!Λ
)

RΓ
(

X ×S X, (j × j)!Rγ!γ
!Λ(d)[2d]

)

adj

OO

RΓ(Γ, j!Λ)
j! Gysγ

// RΓ
(

Γ, j!γ
!Λ(d)[2d]

)

.

By the adjointness of (j × 1)! and (j × 1)∗, it suffices to show the commutativity of

13
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the following diagram, where γ′ := (1× j) ◦ γ:

Λ
cl(γ)

//

adj

��

(1× j)!Λ(d)[2d]

Rγ′
∗γ

′∗Λ (1× j)!Rγ!γ
!Λ(d)[2d]

adj

OO

Rγ′
∗Λ

Rγ′
∗ Gysγ

// Rγ′
∗γ

!Λ(d)[2d].

Here cl(γ) is regarded as an element of Hom(Λ, (1× j)!Λ(d)[2d]) by the maps

H2d
γ(Γ)(X ×S X,Λ(d))

∼=
←−− H2d

γ(Γ)(X ×S X, (1× j)!Λ(d))

−→ H2d(X ×S X, (1× j)!Λ(d)) = Hom
(

Λ, (1× j)!Λ(d)[2d]
)

.

By the construction, it is obtained by the composite

Λ
adj
−−→ Rγ′

∗γ
′∗Λ = Rγ′

∗Λ
Rγ′

∗ Gysγ
−−−−−→ Rγ′

∗γ
!Λ(d)[2d] = Rγ′

!γ
′!(1× j)!Λ(d)[2d]

adj
−−→ (1× j)!Λ(d)[2d].

Since it is easy to see that two maps

Rγ′
∗γ

!Λ = Rγ′
!γ

′!(1× j)!Λ
adj
−−→ (1× j)!Λ,

Rγ′
∗γ

!Λ = (1× j)!Rγ!γ
!Λ

adj
−−→ (1× j)!Λ

coincide, we have the desired commutativity.
Therefore, the composite of

RΓc(X,Λ) = RΓ(X, j!Λ)
pr∗1−−→ RΓ(X ×S X, pr∗1 j!Λ) = RΓ

(

X ×S X, (j × 1)!Λ
)

∪ cl(γ)
−−−→ RΓ

(

X ×S X, (j × j)!Λ(d)[2d]
)

= RΓc

(

X ×S X,Λ(d)[2d]
)

coincides with the composite of

RΓc(X,Λ)
γ∗
1−−→ RΓc(Γ,Λ)

Gysγ
−−−→ RΓc

(

Γ, γ!Λ(d)[2d]
)

= RΓc

(

X ×S X,Rγ!γ
!Λ(d)[2d]

)

adj
−−→ RΓc

(

X ×S X,Λ(d)[2d]
)

.

Therefore it suffices to show that the composite of

RΓc(Γ,Λ)
Gysγ
−−−→ RΓc

(

Γ, γ!Λ(d)[2d]
)

= RΓc

(

X ×S X,Rγ!γ
!Λ(d)[2d]

)

adj
−−→ RΓc

(

X ×S X,Λ(d)[2d]
) Gyspr2−−−−→ RΓc

(

X ×S X, pr!2 Λ
)

= RΓc

(

X,R pr2! pr
!
2 Λ

) adj
−−→ RΓc(X,Λ)

14
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is equal to the composite of

RΓc(Γ,Λ)
Gysγ2−−−→ RΓc(Γ, γ

!
2Λ) = RΓc(X,Rγ2!γ

!
2Λ)

adj
−−→ RΓc(X,Λ).

It is an easy consequence of Gysγ2 = γ!Gyspr2(d)[2d] ◦ Gysγ, which can be proved

directly from the construction of the Gysin maps.

3 Lefschetz trace formula for open adic spaces

3.1 Künneth formula

Lemma 3.1 LetX be a finite-dimensional pseudo-adic space which is quasi-separated
of weakly finite type over S. Let F be a Λ-sheaf on X and L a bounded complex of

Λ-modules. Then we have an isomorphism RΓ(X,F
L
⊗ LX) ∼= RΓ(X,F)

L
⊗ L.

Proof. We may assume L is a Λ-module. By [Hub96, Corollary 2.8.3, Corollary
1.8.8], the cohomological dimension of RΓ is finite. Therefore, by taking a free
resolution of L, we may reduce to the case where L is a free Λ-module. Then the
claim holds, since RΓ commutes with any direct sum if X is quasi-compact and
quasi-separated ([Hub96, Lemma 2.3.13 i)]).

Similarly, we can prove the following:

Lemma 3.2 Let X be a finite-dimensional pseudo-adic space which is separated,
locally of +-weakly finite type and taut over S. Let F be a Λ-sheaf on X and L a

bounded complex of Λ-modules. Then we have an isomorphism RΓc(X,F
L
⊗LX) ∼=

RΓc(X,F)
L
⊗ L.

Proof. Since RΓc has finite cohomological dimension ([Hub96, Proposition 5.5.8,
Corollary 1.8.8]) and commutes with any direct sum ([Hub96, Proposition 5.4.5 i)]),

the proof is exactly the same as the previous lemma.

Corollary 3.3 Let X be a finite-dimensional pseudo-adic space which is separated,
locally of +-weakly finite type and taut over S. Assume that H i

c(X,Λ) is a finitely
generated Λ-module for every i. Then RΓc(X,Λ) is a perfect Λ-complex.

In particular, if X is separated of finite type over S and |X| is a locally closed
constructible subset of X , then RΓc(X,Λ) is a perfect Λ-complex.

Proof. Since RΓc(X,Λ) is bounded with finitely generated cohomology, by [SGA41
2
,

[Rapport], Lemme 4.5.1] it suffices to show that RΓc(X,Λ) has finite tor-dimension.

Let M be a Λ-module. Then Lemma 3.2 says RΓc(X,Λ)
L
⊗M ∼= RΓc(X,MX). In

particular, the ith cohomology of RΓc(X,Λ)
L
⊗M vanishes unless 0 ≤ i ≤ 2 dimX .

This means that RΓc(X,Λ) has finite tor-dimension.
The latter part follows from the finiteness results due to Huber ([Hub98c, Corol-

lary 2.3], [Hub07, Corollary 5.4]).
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Let X and Y be finite-dimensional pseudo-adic spaces which are quasi-separated
of weakly finite type over S, and denote their structure maps by a : X −→ S and
b : Y −→ S. Denote the first (resp. second) projection by pr1 : X ×S Y −→ X
(resp. pr2 : X ×S Y −→ Y ). Let F be a sheaf on X and G a sheaf on Y . Put

F
L
⊠ G = pr∗1F

L
⊗ pr∗2 G. Then we have the canonical homomorphism

RΓ(X,F)
L
⊗ RΓ(Y,G) −→ RΓ(X ×S Y,F

L
⊠ G),

which is called the Künneth homomorphism.

Lemma 3.4 If the canonical map

F
L
⊗R pr1∗ pr

∗
2 G −→ R pr1∗(pr

∗
1F

L
⊗ pr∗2 G)

is an isomorphism, the Künneth homomorphism is also an isomorphism.

Proof. By the quasi-compact/generalizing base change theorem ([Hub96, Theorem
4.3.1]), we have R pr1∗ pr

∗
2 G
∼= RΓ(Y,G)X . Then by Lemma 3.4, we have an isomor-

phism

RΓ(X,F)
L
⊗ RΓ(Y,G) ∼= RΓ

(

X,F
L
⊗RΓ(Y,G)X

)

∼= RΓ
(

X,F
L
⊗ R pr1∗ pr

∗
2 G

)

∼=
−−→ RΓ

(

X,R pr1∗(pr
∗
1F

L
⊗ pr∗2 G)

)

∼= RΓ(X ×S Y,F
L
⊠ G).

It is easy to see that the isomorphism above is actually the Künneth homomor-
phism.

Proposition 3.5 In the case F = Λ, the Künneth homomorphism

RΓ(X,Λ)
L
⊗RΓ(Y,G) −→ RΓ(X ×S Y,Λ

L
⊠ G)

is an isomorphism.

Proof. Clear by Lemma 3.4.

Proposition 3.6 Let j : U −֒→ Y be a quasi-compact open immersion. If G = j!Λ,
then the Künneth homomorphism

RΓ(X,F)
L
⊗ RΓ(Y, j!Λ) −→ RΓ(X ×S Y,F

L
⊠ j!Λ)

is an isomorphism.
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Proof. By Lemma 3.4, we have only to prove that the natural map

(R pr2∗ pr
∗
1F)

L
⊗ j!Λ −→ R pr2∗(pr

∗
1F

L
⊗ pr∗2 j!Λ)

is an isomorphism. Put Z = (Y , |Y |\|U |) and denote the closed immersion Z −֒→ Y

of pseudo-adic spaces by i. By the distinguished triangle j!Λ −→ Λ −→ i∗Λ
+1
−−→

j!Λ[1], it suffices to prove that the natural map

(R pr2∗ pr
∗
1F)

L
⊗ i∗Λ −→ R pr2∗(pr

∗
1F

L
⊗ pr∗2 i∗Λ)

is an isomorphism.

Consider the following commutative diagram whose rectangles are cartesian:

X ×S Z
1×i

//

pr′2
��

X ×S Y
pr1 //

pr2
��

X

a

��

Z
i // Y

b // S.

By the quasi-compact/generalizing base change theorem, the base change map
i∗R pr2∗ pr

∗
1F −→ i∗b∗Ra∗F and R pr′2∗(1 × i)∗ pr∗1 F −→ i∗b∗Ra∗F are isomor-

phisms. Thus the base change map i∗R pr2∗ pr
∗
1F −→ R pr′2∗(1× i)∗ pr∗1F is also an

isomorphism. By this, we have

(R pr2∗ pr
∗
1F)

L
⊗ i∗Λ ∼= i∗i

∗R pr2∗ pr
∗
1F

∼=
−−→ i∗R pr′2∗(1× i)∗ pr∗1F

= R pr2∗(1× i)∗(1× i)∗ pr∗1F
∼= R pr2∗(pr

∗
1F

L
⊗ (1× i)∗Λ)

∼= R pr2∗(pr
∗
1F

L
⊗ pr∗2 i∗Λ),

which completes the proof.

Corollary 3.7 Let U ⊂ X and V ⊂ Y be quasi-compact open adic subspaces.
Denote the open immersions U −֒→ X , V −֒→ Y by j, j′ respectively. We write
j×1 for U×S V −֒→ X×S V and U×S Y −֒→ X×S Y , 1×j′ for U×S V −֒→ U×S Y

and X ×S V −֒→ X ×S Y . Since (j × 1)∗(j∗Λ
L
⊠ j′!Λ)

∼= (j × 1)∗ pr∗2 j
′
!Λ
∼= (1× j′)!Λ,

we have the canonical morphism j∗Λ
L
⊠ j′!Λ −→ (j × 1)∗(1× j′)!Λ which is denoted

by τ . Then the map

RΓ(X ×S Y, j∗Λ
L
⊠ j′!Λ) −→ RΓ

(

X ×S Y, (j × 1)∗(1× j′)!Λ
)

induced by τ is an isomorphism.
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Proof. Clear from Proposition 3.6 and the commutative diagram below:

RΓ
(

X ×S Y, j∗Λ
L
⊠ j′!Λ

) // RΓ
(

X ×S Y, (j × 1)∗(1× j′)!Λ
)

∼=

��

RΓ
(

U ×S Y, (1× j′)!Λ
)

RΓ(X, j∗Λ)
L
⊗ RΓ(Y, j′!Λ)

∼=

OO

∼= //
RΓ(U,Λ)

L
⊗RΓ(Y, j′!Λ).

∼=

OO

Remark 3.8 Unlike the case of schemes, the morphism τ itself is not an isomor-
phism in general. For example, put U = V = D1 and let X , Y be the closure D1

of D1 in (A1)ad. Take a continuous valuation | | : k −→ R≥0 on k and consider the
point x of (A1)ad corresponding to the valuation

k[T ] −→ R≥0 × Z;
∑

i

aiT
i 7−→ max

{

(|ai|, i)
}

(here we endow R≥0×Z with the lexicographic order). Then x lies in the closure of
D1 in (A1)ad but does not lie in D1 itself. In (A1)ad it has a unique generalization y
which is given by the following valuation:

k[T ] −→ R≥0;
∑

i

aiT
i 7−→ max{|ai|}.

It is easy to see that y belongs to D1.
By the diagonal map (A1)ad −→ (A2)ad, we regard x and y as points of (A2)ad.

Then x lies in D1 ×S D1 = pr−1
1 (D1) ∩ pr−1

2 (D1) and y is a unique generalization of
x in (A2)ad. Let j be the open immersion D1 −֒→ D1, which is quasi-compact. It

is clear that (j∗Λ
L
⊠ j′!Λ)x = 0. On the other hand, by [Hub96, Proposition 2.6.4]

and its proof, we have ((j × 1)∗(1 × j)!Λ)x = ((1 × j)!Λ)y = Λ. Thus τ is not an
isomorphism.

3.2 Unlocalized Lefschetz trace formula

In the remaining part of this section, we use the same notation as in §2.2; let
γ : Γ −→ X×SX be an S-morphism between purely d-dimensional adic spaces which
are separated of finite type over S, and assume that X (resp. Γ) is smooth (resp.
generically smooth) over S and γ1 is proper. Fix a compactification γ : Γ −→ X×SX
and denote the open immersion X −֒→ X by j.

As in §2, γ defines the element cl(γ) of H2d(X ×S X, (j × 1)∗(1 × j)!Λ(d)).

Moreover, by Corollary 3.7, the mapH2d(X×SX, j∗Λ
L
⊠j!Λ(d)) −→ H2d(X×SX, (j×

18
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1)∗(1×j)!Λ(d)) induced by the canonical morphism τ : j∗Λ
L
⊠j!Λ −→ (j×1)∗(1×j)!Λ

is an isomorphism. Therefore γ defines an element ofH2d(Y ×SY, (1×j)!(j×1)∗Λ(d))
denoted by [γ]. The diagonal morphism δ : X −→ X ×S X induces the pull-back

map δ
∗
: H2d(X ×S X, j∗Λ

L
⊠ j!Λ(d)) −→ H2d(X, j!Λ(d)) = H2d

c (X,Λ(d)).

Proposition 3.9 In the situation above, we have the equality

Tr
(

γ∗;RΓc(X,Λ)
)

= TrX
(

δ
∗
[γ]

)

.

The proof of this proposition is similar to that in the scheme case. However, we
will include it for the completeness. Let us consider the following diagram:

RΓ
(

X,Λ(d)[2d]
) L
⊗ RΓc(X,Λ)

∼=
��

∼= // RHom
(

RΓc(X,Λ),Λ
) L
⊗ RΓc(X,Λ)

��

RΓ
(

X ×S X, j∗Λ
L
⊠ j!Λ(d)[2d]

)

��

δ
∗

++

RΓ
(

X ×S X, (j × 1)∗(1× j)!Λ(d)[2d]
) (∗)

// RHom
(

RΓc(X,Λ), RΓc(X,Λ)
)

Tr

��

RΓc

(

X,Λ(d)[2d]
) TrX // Λ.

Here (∗) is the map induced by

RΓc(X,Λ)
L
⊗ RΓ

(

X ×S X, (j × 1)∗(1× j)!Λ(d)[2d]
)

pr∗1 ⊗ id
−−−−→ RΓ

(

X ×S X, (j × 1)!Λ
) L
⊗ RΓ

(

X ×S X, (j × 1)∗(1× j)!Λ(d)[2d]
)

∪
−−→ RΓ

(

X ×S X, (j × 1)!(1× j)!Λ(d)[2d]
)

= RΓc

(

X ×S X,Λ(d)[2d]
)

pr2∗−−→ RΓc

(

X,Λ
)

,

where pr2∗ is the composite of

RΓc

(

X ×S X,Λ(d)[2d]
) Gyspr2−−−−→ RΓc

(

X ×S X, pr!2 Λ
)

= RΓc(X,R pr2! pr
!
2 Λ)

adj
−−→ RΓc(X,Λ),

or equivalently, the composite of

RΓc

(

X ×S X,Λ(d)[2d]
)

= RΓc

(

X,R pr2! Λ(d)[2d]
) Trpr2−−−→ RΓc(X,Λ).
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Since RΓc(X,Λ) is a perfect Λ-complex (Corollary 3.3), we may define the map

Tr: RHom(RΓc(X,Λ), RΓc(X,Λ)) −→ Λ

([SGA6, Expose I]). It is a unique map such that the composite

RHom
(

RΓc(X,Λ),Λ
) L
⊗ RΓc(X,Λ)

∼=
−−→ RHom

(

RΓc(X,Λ), RΓc(X,Λ)
) Tr
−−→ Λ

coincides with the evaluation map ev.
By Proposition 2.18, (∗) maps cl(γ) to γ∗. Thus the proposition follows from

the commutativity of the lower part of the diagram above, i.e., the commutativity
of the diagram below:

RΓ
(

X ×S X, j∗Λ
L
⊠ j!Λ(d)[2d]

)

��

δ
∗

// RΓc

(

X,Λ(d)[2d]
)

TrX

��

RΓ
(

X ×S X, (j × 1)∗(1× j)!Λ(d)[2d]
)

(∗)
��

RHom
(

RΓc(X,Λ), RΓc(X,Λ)
) Tr // Λ.

To show it, it is sufficient to show the commutativities of the upper part and the
outer part of the diagram above. We will divide their proofs into two propositions:

Proposition 3.10 The following diagram is commutative:

RΓ
(

X,Λ(d)[2d]
) L
⊗ RΓc(X,Λ)

∼=
��

∼= // RHom
(

RΓc(X,Λ),Λ
) L
⊗ RΓc(X,Λ)

ev

��

RΓ
(

X ×S X, j∗Λ
L
⊠ j!Λ(d)[2d]

)

δ
∗

��

RΓc

(

X,Λ(d)[2d]
) TrX // Λ.

Proof. Notice that the composite of the left vertical arrows is nothing but the cup
product. Thus the lemma follows from the next lemma, which is easy to see.

Lemma 3.11 Let K (resp. L) be an object of D+(Λ) (resp. D−(Λ)) and Φ: K
L
⊗

L −→ Λ a map. We have a natural map Φ′ : K −→ RHom(L,Λ) induced from Φ.
Then the following diagram is commutative:

K
L
⊗ L

Φ′⊗id
//

Φ
!!D

D
D

D
D

D
D

D
RHom(L,Λ)

L
⊗ L

ev
xxqqqqqqqqqqqq

Λ.
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Proposition 3.12 The following diagram is commutative:

RΓ
(

X,Λ(d)[2d]
) L
⊗ RΓc(X,Λ)

∼=
��

∼= // RHom
(

RΓc(X,Λ),Λ
) L
⊗ RΓc(X,Λ)

��

RΓ
(

X ×S X, j∗Λ
L
⊠ j!Λ(d)[2d]

)

��

RΓ
(

X ×S X, (j × 1)∗(1× j)!Λ(d)[2d]
) (∗)

// RHom
(

RΓc(X,Λ), RΓc(X,Λ)
)

.

Proof. Recall that by the definition the morphism (∗) is decomposed as

RΓ
(

X ×S X, (j × 1)∗(1× j)!Λ(d)[2d]
)

−→ RHom
(

RΓc(X,Λ), RΓc(X ×S X,Λ(d)[2d])
)

−→ RHom
(

RΓc(X,Λ), RΓc(X,Λ)
)

,

where the second arrow is induced from pr2∗ : RΓc(X×SX,Λ(d)[2d]) −→ RΓc(X,Λ).
Hence we may divide the diagram above into two parts:

RΓ
(

X,Λ(d)[2d]
) L
⊗RΓc(X,Λ)

∼=
��

(†)
// RHom

(

RΓc(X,Λ), RΓc(X,Λ(d)[2d])
L
⊗RΓc(X,Λ)

)

∼=

��

RΓ
(

X ×S X, j∗Λ
L
⊠ j!Λ(d)[2d]

)

��

RΓ
(

X ×S X, (j × 1)∗(1× j)!Λ(d)[2d]
)

// RHom
(

RΓc(X,Λ), RΓc(X ×S X,Λ(d)[2d])
)

and

RΓ
(

X,Λ(d)[2d]
) L
⊗ RΓc(X,Λ) //

(†)
��

RHom
(

RΓc(X,Λ),Λ
) L
⊗RΓc(X,Λ)

��

RHom
(

RΓc(X,Λ), RΓc(X,Λ(d)[2d])
L
⊗ RΓc(X,Λ)

)

��

TrX ⊗ id
// RHom

(

RΓc(X,Λ), RΓc(X,Λ)
)

RHom
(

RΓc(X,Λ), RΓc(X ×S X,Λ(d)[2d])
)

.

22eeeeeeeeeeeeeeeeeeeeeeeeeeeee

Here (†) is induced from

RΓc(X,Λ)
L
⊗RΓ(X,Λ(d)[2d])

L
⊗ RΓc(X,Λ)

∪⊗id
−−−→ RΓc(X,Λ(d)[2d])

L
⊗ RΓc(X,Λ).
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Let us prove the commutativity of the former. By the adjointness, this is equivalent
to the commutativity of the following:

RΓc(X,Λ)
L
⊗RΓ

(

X,Λ(d)[2d]
) L
⊗RΓc(X,Λ)

id⊗(∪◦(pr∗1 ⊗pr∗2))

��

∪⊗id
// RΓc(X,Λ(d)[2d])

L
⊗RΓc(X,Λ)

∼= ∪◦(pr∗1 ⊗ pr∗2)

��

RΓc(X,Λ)
L
⊗RΓ

(

X ×S X, j∗Λ
L
⊠ j!Λ(d)[2d]

)

��

RΓc(X,Λ)
L
⊗RΓ

(

X ×S X, (j × 1)∗(1× j)!Λ(d)[2d]
)

∪◦(pr∗1 ⊗ id)
// RΓc(X ×S X,Λ(d)[2d]).

It easily follows from the associativity of cup products.

Next we will prove the commutativity of the latter. The triangle is commutative,
since the trace map for a smooth morphism is compatible with base change. By the
adjointness, the commutativity of the rectangle is equivalent to that of the following:

RΓc(X,Λ)
L
⊗RΓ

(

X,Λ(d)[2d]
) L
⊗RΓc(X,Λ) //

∪⊗id
��

RΓc(X,Λ)
L
⊗RHom

(

RΓc(X,Λ),Λ
) L
⊗RΓc(X,Λ)

ev⊗id

��

RΓc

(

X,Λ(d)[2d]
) L
⊗RΓc(X,Λ)

TrX ⊗ id
// RΓc(X,Λ).

Since it is obtained from the diagram in Proposition 3.10 by taking tensor products
with RΓc(X,Λ), it is commutative.

Now the proof of Proposition 3.9 is complete.

3.3 Localization

Let the notation be the same as in the previous subsection. In this subsection, we
will prove the main theorem in this paper, whose statement is the following:

Theorem 3.13 Assume that for every z ∈ Γ \Γ, the points γ1(z) and γ2(z) can be
separated by closed constructible subsets; namely, there exists closed constructible
subsets W1 and W2 of X such that γ1(z) ∈ W1, γ2(z) ∈ W2 and W1∩W2 = ∅. Then
we have

Tr
(

γ∗;RΓc(X,Λ)
)

= #Fix γ.

Remark 3.14 The condition in Theorem 3.13 implies that γ −1(∆X \ ∆X) = ∅,
thus Fix γ = Fix γ. In particular, Fix γ is proper over S and #Fix γ makes sense.
Note also that ∆X ∩ γ(Γ) = ∆X ∩ γ(Γ), which will be used in the proof of Theorem
3.13.
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Lefschetz trace formula for open adic spaces

Remark 3.15 The underlying topological space |X| of a pseudo-adic spaceX which
is proper over S is spectral. Indeed, it is quasi-compact, quasi-separated and locally
pro-constructible in the locally spectral space (X)− (cf. [Hub93, Remark 2.1 (iv)]).
Therefore, a subset W of X is closed constructible if and only if X \W is quasi-
compact open (cf. [Hub93, Remark 2.1 (i)]).

We will begin the proof of Theorem 3.13. It suffices to compare the right hand
side of Proposition 3.9 with #Fix γ. The idea is to localize (or refine) the isomor-
phism

H2d
(

X ×S X, j∗Λ
L
⊠ j!Λ(d)

) ∼=
−−→ H2d

(

X ×S X, (j × 1)∗(1× j)!Λ(d)
)

used in the previous subsection. Although the element cl(γ) lies in the local coho-
mology H2d

γ(Γ)
(X ×S X, (j × 1)∗(1× j)!Λ(d)), the map

H2d
γ(Γ)

(

X ×S X, j∗Λ
L
⊠ j!Λ(d)

)

−→ H2d
γ(Γ)

(

X ×S X, (j × 1)∗(1× j)!Λ(d)
)

is not necessary an isomorphism (cf. Remark 3.8). Thus we will slightly enlarge the
closed subset γ(Γ) so that the morphism above becomes an isomorphism. For the
precise statement, see Proposition 3.20.

Before doing it, we need some preparation.

Lemma 3.16 Let U and V be quasi-compact open subsets of X . Then the map

RΓU×SV (X ×S X, j∗Λ
L
⊠ j!Λ) −→ RΓU×SV (X ×S X, (j × 1)∗(1× j)!Λ) induced by τ

is an isomorphism.

Proof. By easy observation, we have

(j∗Λ
L
⊠ j!Λ)|U×SV

∼= j′∗Λ
L
⊠ j′′! Λ,

(

(j × 1)∗(1× j)!Λ
)
∣

∣

U×SV
∼= (j′ × 1)∗(1× j′′)!Λ,

where j′ (resp. j′′) is the open immersion U ∩X −֒→ U (resp. V ∩X −֒→ V ). Hence
we have

RΓU×SV (X ×S X, j∗Λ
L
⊠ j!Λ) = RΓ

(

U ×S V, j′∗Λ
L
⊠ j′′! Λ

)

,

RΓU×SV

(

X ×S X, (j × 1)∗(1× j)!Λ
)

= RΓ
(

U ×S V, (j′ × 1)∗(1× j′′)!Λ
)

.

Note that U ∩X and V ∩X are also quasi-compact, since X is quasi-separated.
Therefore by Corollary 3.7, the canonical map

RΓ(U ×S V, j′∗Λ
L
⊠ j′′! Λ) −→ RΓ

(

U ×S V, (j′ × 1)∗(1× j′′)!Λ
)

is an isomorphism. Now the proof is complete.

23



Yoichi Mieda

Corollary 3.17 Let U1, . . . , Um, U
′
1, . . . , U

′
m be quasi-compact open subsets of X

and put V =
⋃m

i=1 Ui×SU
′
i . Then the map RΓV (X×SX, j′∗Λ

L
⊠j′′! Λ) −→ RΓV (X×S

X, (j × 1)∗(1× j)!Λ) induced by τ is an isomorphism.

Proof. Recall that the underlying topological space of Ui×SU
′
i is equal to pr−1

1 (Ui)∩
pr−1

2 (U ′
i). Therefore, for every subset I ⊂ {1, . . . , m}, we have

⋂

i∈I Ui ×S U ′
i =

(
⋂

i∈I Ui) ×S (
⋂

i∈I U
′
i). Then an easy Mayer-Vietoris argument we may reduce to

the case where m = 1, which is already proven in the previous lemma.

Corollary 3.18 Let V ⊂ X ×S X be an open subset of the type in the above

corollary. Put W = (X ×S X) \ V . Then the map RΓW (X ×S X, j∗Λ
L
⊠ j!Λ) −→

RΓW (X ×S X, (j × 1)∗(1× j)!Λ) induced by τ is an isomorphism.

Proof. Clear from the distinguished triangle

RΓV (X ×S X,−) −→ RΓ(X ×S X,−) −→ RΓW (X ×S X,−)
+1
−−→

and Corollary 3.17.

Corollary 3.19 Let W1, . . . ,Wm,W
′
1, . . . ,W

′
m be constructible closed subsets of X

and put Z =
⋃m

i=1Wi×SW
′
i . Then the map RΓZ(X×SX, j∗Λ

L
⊠j!Λ) −→ RΓZ(X×S

X, (j × 1)∗(1× j)!Λ) induced by τ is an isomorphism.

Proof. In the same way as in the proof of Corollary 3.17, we can reduce to the case
where m = 1. This is the special case of Corollary 3.18, since W1 ×S W ′

1 is the

complement of (W c
1 ×S X) ∪ (X ×S W ′c

1 ) (cf. Remark 3.15).

Now assume the condition in Theorem 3.13. Then, for every y ∈ γ(Γ)\(X×SX),
there exist closed constructible subsets Wy and W ′

y of X such that y ∈ Wy ×S W ′
y

and Wy ∩W
′
y = ∅. Since γ(Γ)\ (X×S X) is closed and Wy×S W

′
y is constructible in

X×SX , we may choose finitely many W1×SW
′
1, . . . ,Wm×SW

′
m among {Wy×SW

′
y}

so that they cover γ(Γ) \ (X ×S X). Indeed, if we endow X ×S X with the patch
topology, γ(Γ) \ (X ×S X) becomes compact and Wy ×S W ′

y becomes open (cf.
Remark 3.15, [Hoc69, §2]).

Put Z =
⋃m

i=1Wi ×S W ′
i . The following proposition is crucial for the proof of

Theorem 3.13:

Proposition 3.20 The map

RΓγ(Γ)∪Z(X ×S X, j∗Λ
L
⊠ j!Λ) −→ RΓγ(Γ)∪Z

(

X ×S X, (j × 1)∗(1× j)!Λ
)

induced by τ is an isomorphism.
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Proof. Put V = (X ×S X) \ Z. By the distinguished triangle

RΓZ(X ×S X,−) −→ RΓγ(Γ)∪Z(X ×S X,−) −→ RΓγ(Γ)\Z

(

(V, (−)|V
) +1
−−→

and Corollary 3.19, it suffices to show that the map

RΓγ(Γ)\Z

(

V, (j∗Λ
L
⊠ j!Λ)|V

)

−→ RΓγ(Γ)\Z

(

V, ((j × 1)∗(1× j)!Λ)|V
)

is an isomorphism. By the assumption on Z, γ(Γ) \ Z has an open neighborhood

V ∩ (X ×S X) on which τ : j∗Λ
L
⊠ j!Λ −→ (j× 1)∗(1× j)!Λ is an isomorphism. Thus

the map above is also an isomorphism.

We define the element [γ]Z of H2d
γ(Γ)∪Z

(X ×S X, j∗Λ
L
⊠ j!Λ(d)) as the image of

cl(γ) under the composite of following maps:

H2d
γ(Γ)

(

X ×S X,Λ(d)
)

∼= H2d
γ(Γ)

(

X ×S X, (j × 1)∗(1× j)!Λ(d)
)

−→ H2d
γ(Γ)∪Z

(

X ×S X, (j × 1)∗(1× j)!Λ(d)
)

∼=
←−− H2d

γ(Γ)∪Z

(

X ×S X, j∗Λ
L
⊠ j!Λ(d)

)

.

By the definition, the image of [γ]Z under the natural map

H2d
γ(Γ)∪Z

(

X ×S X, j∗Λ
L
⊠ j!Λ(d)

)

−→ H2d
(

X ×S X, j∗Λ
L
⊠ j!Λ(d)

)

coincides with [γ].
Since ∆X ∩Z = ∅, we have ∆X ∩ (γ(Γ)∪Z) = ∆X ∩ γ(Γ). Therefore δ induces

the maps

H2d
(

X ×S X, j∗Λ
L
⊠ j!Λ(d)

) δ
∗

−−→ H2d
∆X∩γ(Γ)

(

X, j!Λ(d)
) ∼=
−−→ H2d

∆X∩γ(Γ)

(

X,Λ(d)
)

.

We denote the image of [γ]Z under the maps above by δ
∗
([γ]Z).

Lemma 3.21 The image of δ
∗
([γ]Z) under the canonical mapH2d

∆X∩γ(Γ)(X,Λ(d)) −→

H2d
c (X,Λ(d)) coincides with δ

∗
[γ].

Proof. Clear from the following commutative diagram:

H2d
γ(Γ)∪Z

(

X ×S X, j∗Λ
L
⊠ j!Λ(d)

)

//

δ
∗

��

H2d
(

X ×S X, j∗Λ
L
⊠ j!Λ(d)

)

δ
∗

��

H2d
∆X∩γ(Γ)

(

X, j!Λ(d)
)

//

∼=
��

H2d
(

X, j!Λ(d)
)

H2d
∆X∩γ(Γ)

(

X,Λ(d)
)

// H2d
c

(

X,Λ(d)
)

.
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Lemma 3.22 The image of cl(γ) under the map δ∗ : H2d
γ(Γ)(X ×S X,Λ(d)) −→

H2d
∆X∩γ(Γ)(X,Λ(d)) coincides with δ

∗
([γ]Z).

Proof. Clear from the following commutative diagram:

H2d
γ(Γ)

(

X ×S X, (j × 1)∗(1 × j)!Λ(d)
)

|X×SX

∼=
//

��

H2d
γ(Γ)

(

X ×S X,Λ(d)
) δ∗ //

��

H2d
∆X∩γ(Γ)

(

X,Λ(d)
)

H2d
γ(Γ)∪Z

(

X ×S X, (j × 1)∗(1× j)!Λ(d)
)

|X×SX

// H2d
(X×SX)∩(γ(Γ)∪Z)

(

X ×S X,Λ(d)
) δ∗ // H2d

∆X∩γ(Γ)

(

X,Λ(d)
)

H2d
γ(Γ)∪Z

(

X ×S X, j∗Λ
L

⊠ j!Λ(d)
)

∼=

OO

δ
∗

// H2d
∆X∩γ(Γ)

(

X, j!Λ(d)
) |X

∼=
// H2d

∆X∩γ(Γ)

(

X,Λ(d)
)

.

Proof of Theorem 3.13. By Remark 2.7, #Fix γ is the image of cl(γ) under the
maps

H2d
γ(Γ)

(

X ×S X,Λ(d)
) δ∗
−−→ H2d

∆X∩γ(Γ)

(

X,Λ(d)
)

−→ H2d
c

(

X,Λ(d)
) TrX−−→ Λ.

By Lemma 3.21 and Lemma 3.22, it coincides with TrX(δ
∗
[γ]). Therefore by Propo-

sition 3.9, we conclude that #Fix γ = Tr(γ∗;RΓc(X,Λ)).

Remark 3.23 So far, we considered the case of torsion coefficient. However, at
least when the characteristic of k is 0 (cf. [Hub98a, Theorem 3.1]), we may obtain
the Lefschetz trace formula for ℓ-adic coefficient simply by taking projective limit.
For the definition of #Fix γ for the ℓ-adic case, see Remark 2.8.

3.4 Lefschetz trace formula for open adic curves

In this subsection, we will establish a Lefschetz trace formula for quasi-compact
smooth adic curve by using the same idea as in the proof of Theorem 3.13. Let
X be a 1-dimensional quasi-compact adic space which is separated and smooth
over S, and j : X −֒→ Xc the universal compactification over S. It is known that
∂X := Xc \ X is a finite discrete set ([Hub01, Lemma 5.12]). In particular, every
x ∈ ∂X is a constructible closed subset of Xc.

Let f : X −→ X be a proper morphism over S and f c : Xc −→ Xc the induced
morphism. Since f is proper and X is dense in Xc, we have (f c)−1(∂X) = ∂X .
We will use the notation in Example 2.9. Assume that Fix f is proper over S; thus
#Fix f can be defined. Put ∂Xfix := {x ∈ ∂X | f c(x) = x}. For x ∈ ∂Xfix, we will
define “the contribution from x” in the Lefschetz trace formula for X .
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Definition 3.24 Put Γ′ = Γf ∪
⋃

x∈∂X(f
c(x)×S x). Since x is a closed constructible

subset of Xc, the natural map

H2
Γ′

(

Xc ×S Xc, j∗Λ
L
⊗ j!Λ(1)

)

−→ H2
Γ′

(

Xc ×S Xc, (j × 1)∗(1× j)!Λ(1)
)

is an isomorphism (cf. Proposition 3.20). We denote by [f ]∂ the element ofH2
Γ′(Xc×S

Xc, j∗Λ
L
⊗ j!Λ(1)) that is mapped to

cl(γf) ∈ H2
Γf

(

X ×S X,Λ(1)
)

= H2
Γ′

(

Xc ×S Xc, (j × 1)∗(1× j)!Λ(1)
)

.

On the other hand, since Fix f is proper over S, it is a closed subset of Xc.
Therefore we have ∆Xc ∩ Γ′ = Fix f ∐

∐

x∈∂Xfix x as a topological space, and thus
H2

∆Xc∩Γ′(Xc, j!Λ(1)) = H2
Fix f(X

c, j!Λ(1))⊕
⊕

x∈∂Xfix H2
x(X

c, j!Λ(1)). For x ∈ ∂Xfix,
we define loc(x) as the image of [f ]∂ under the composite of

H2
Γ′

(

Xc ×S Xc, j∗Λ
L
⊠ j!Λ(1)

) (δc)∗

−−−→ H2
∆Xc∩Γ′

(

Xc, j!Λ(1)
)

= H2
Fix f

(

Xc, j!Λ(1)
)

⊕
⊕

x∈∂Xfix

H2
x

(

Xc, j!Λ(1)
)

−→ H2
x

(

Xc, j!Λ(1)
)

−→ H2
(

Xc, j!Λ(1)
)

= H2
c

(

X,Λ(1)
) TrX−−→ Λ,

where δc denotes the diagonal morphism for Xc.

The following is our Lefschetz trace formula for adic curves:

Theorem 3.25 In the setting above, we have

Tr
(

f ∗;RΓc(X,Λ)
)

= #Fix f +
∑

x∈∂Xfix

loc(x).

Proof. It is easy to see that the image of [f ]∂ under the composite of

H2
Γ′

(

Xc ×S Xc, j∗Λ
L
⊠ j!Λ(1)

) (δc)∗

−−−→ H2
∆Xc∩Γ′

(

Xc, j!Λ(1)
)

= H2
Fix f

(

Xc, j!Λ(1)
)

⊕
⊕

x∈∂Xfix

H2
x

(

Xc, j!Λ(1)
)

−→ H2
Fix f

(

Xc, j!Λ(1)
)

−→ H2
(

Xc, j!Λ(1)
)

= H2
c

(

X,Λ(1)
) TrX−−→ Λ

is equal to #Fix f (cf. the proof of Lemma 3.22). Therefore, the theorem immedi-

ately follows from Proposition 3.9.

Remark 3.26 The formula in Theorem 3.4 is very similar to Huber’s trace formula
for open curves ([Hub01, Theorem 6.3]). However, the definition of his local term is
different from ours; that is given by purely algebraic manner and depends only on
the homomorphism induced on the valuation ring corresponding to x ∈ ∂Xfix. The
author expects that these two local terms coincide, and will consider this problem
in his future work.
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4 Lefschetz trace formula for formal schemes

In this section, we deduce a Lefschetz trace formula for formal schemes from Theorem
3.13. For formal schemes, we will use the same notation as in [Mie10b, §4]. Let us
recall some of them.

Let R be a complete discrete valuation ring with separably closed residue field
and k an algebraic closure of the fraction field F of R. Put S = Spf R. Let X
be a quasi-compact special formal scheme which is separated over S. Then we can
associate X with the adic spaces t(X )a, t(X )η and t(X )η. The adic space t(X )a is an
open adic subspace of t(X ) consisting of analytic points of t(X ). It is quasi-compact.
The adic space t(X )η is the “generic fiber” of t(X ), which is locally of finite type,
separated and taut over Spa(F,R). The adic space t(X )η is the base change of t(X )η
from Spa(F,R) to S = Spa(k, k+). Note that t(X )η and t(X )η are not necessarily
quasi-compact. In the sequel, we write X , Xη and Xη for t(X )a, t(X )η and t(X )η,
respectively. On the other hand, we denote the special fiber of X (resp. X) by Xs

(resp. Xs).
Let T be a finite set equipped with a partial order and {Yα}α∈T a family of

closed formal subschemes of Xs indexed by T . We put Yα = t(Yα)a = t(Yα)×t(X )X .
We assume the following:

Assumption 4.1 i) Xs =
⋃

α∈T Yα.

ii) For α ∈ T , put Y(α) = Yα\
⋃

β>α Yβ. Then, for α, β ∈ T with α 6= β, Y(α)∩Y(β) =
∅.

Example 4.2 Let X be a scheme which is separated of finite type over SpecR and
{Yα}α∈T a family of closed subschemes of the special fiber Xs of X. Assume the
following conditions:

i) Xs =
⋃

α∈T Yα.

ii) For α ∈ T , put Y(α) = Yα \
⋃

β>α Yβ . Then, for α, β ∈ T with α 6= β,
Y(α) ∩ Y(β) = ∅.

iii) There exists the unique maximal element α0 in T .

Denote the completion of X along Yα0 by X and put Yα = Yα×X X for each α ∈ T .
Then X and {Yα}α∈T \{α0} satisfy the assumption above. Indeed, we have the natural
morphism of locally ringed spaces (X,OX) −→ X\Yα0 (cf. [Hub94, Remark 4.6 (iv)])
such that the inverse image of Yα \ Yα0 is equal to Yα.

Let us consider an isomorphism f : X
∼=
−−→ X over S. We also denote the induced

isomorphismX
∼=
−−→ X by the same symbol f . The induced isomorphismsXη

∼=
−−→ Xη

and Xη

∼=
−−→ Xη are denoted by fη and fη, respectively. We will make the following

assumption on f :
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Assumption 4.3 There exists an order-preserving bijection f : T
∼=
−−→ T and a

system of constructible open (resp. closed) subsets {Yα(n)}n≥1 (resp. {Y ◦
α (n)}n≥1)

of X for each α ∈ T satisfying the following:

i) Yα(n+ 1) ⊂ Y ◦
α (n) ⊂ Yα(n) for every n ≥ 1.

ii)
⋂

n≥1 Yα(n) = Yα.

iii) f(Yα(n)) = Yf(α)(n) and f(Y ◦
α (n)) = Y ◦

f(α)(n) for every α ∈ T and n ≥ 1.

iv) f(α) 6= α for every α ∈ T .

Remark 4.4 Later we will give some conditions for the existence of {Yα(n)}n≥1 and
{Y ◦

α (n)}n≥1 in Assumption 4.3. In fact, one of the following is sufficient (Proposition
4.18, Proposition 4.19):

– For every α ∈ T , the isomorphism f : X
∼=
−−→ X induces an isomorphism of

formal schemes Yα

∼=
−−→ Yf(α).

– For every α ∈ T , the isomorphism f : X
∼=
−−→ X induces a set-theoretic bijection

Yα

∼=
−−→ Yf(α). Furthermore, for every ideal of definition I of X , there exists an

integer N ≥ 1 such that fN ≡ id (mod I).

Now we can state our Lefschetz trace formula for X :

Theorem 4.5 In addition to Assumption 4.1 and Assumption 4.3, assume that
X is locally algebraizable ([Mie10b, Definition 3.18]) and Xη is partially proper
and smooth over Spa(F,R). Then RΓc(Xη,Λ) is a perfect Λ-complex, Fix fη (cf.
Example 2.9) is proper over S and we have

Tr
(

f ∗
η ;RΓc(Xη,Λ)

)

= #Fix fη.

In order to prove this theorem, we need some preparations. First we observe the
finiteness of the cohomology of Xη.

Proposition 4.6 Let X be a quasi-compact special formal scheme which is locally
algebraizable and separated over S. ThenH i

c(Xη,Λ) is a finitely generated Λ-module
for every i. Thus RΓc(Xη,Λ) is a perfect Λ-complex by Corollary 3.3. More gener-
ally, let L be a locally closed constructible subset of X . Then H i

c(Lη,Λ) is a finitely
generated Λ-module for every i, and RΓc(Lη,Λ) is a perfect Λ-complex.

Proof. We way assume that X is algebraizable. First we consider the case where
L is a quasi-compact open subset of X . Then there exists an admissible blow-up
X ′ −→ X and an open formal subscheme U ′ ⊂ X ′ such that L = t(U ′)a. Since U ′

is algebraizable (cf. [Mie07, Lemma 7.1.4]), replacing X by U ′, we may assume that
L = X . Moreover we may assume that X is affine, and thus pseudo-compactifiable
(cf. [Mie10b, Definition 4.21 i), Example 4.22 i)]). Therefore, by [Mie10b, Theorem
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4.32], we have H i
c(Xη,Λ) ∼= H i

c(Xred, RΨX ,cΛ). On the other hand, by [Mie10b,
Proposition 3.20], RΨX ,cΛ is constructible, and thus H i

c(Xred, RΨX ,cΛ) is a finitely
generated Λ-module. Hence H i

c(Xη,Λ) is also finitely generated, which concludes
the proof for a quasi-compact open L.

A general L can be expressed as L2\L1, where L1 and L2 are quasi-compact open
subsets of X with L1 ⊂ L2. Thus the proposition follows from the exact sequence

H i
c(L2,η,Λ) −→ H i

c

(

(L2 \ L1)η,Λ
)

−→ H i+1
c (L1,η,Λ).

Now we use the notation in Assumption 4.3.

Lemma 4.7 For every α ∈ T , {Yα(n)}n≥1 (or {Y ◦
α (n)}n≥1) form a fundamental

system of open neighborhoods of Yα with respect to the patch topology of X .

Proof. Let U be a subset of X containing Yα, which is open in the patch topology.
We will find n ≥ 1 such that Yα(n) ⊂ U . By Assumption 4.3 ii), X \ U is covered
by {X \ Yα(n)}n≥1. Since X \ U is compact and X \ Yα(n) is an open subset of
X with respect to the patch topology, there exists an integer n ≥ 1 such that
X \ U ⊂ X \ Yα(n). In other words, Yα(n) is contained in U .

The following construction is crucial for the proof of Theorem 4.5:

Lemma 4.8 We can find an integer nα ≥ 1 for each α ∈ T satisfying the following
conditions:

– For every α ∈ T , nα = nf(α).

– For α ∈ T , put Uα = Y ◦
α (nα)\

⋃

β>α Y
◦
β (nβ) andWα = Y ◦

α (nα)\
⋃

β>α Yβ(nβ+1).
Then we have Uα∩Uβ = ∅ for every α, β ∈ T with α 6= β, and Wα∩Wf(α) = ∅
for every α ∈ T .

By the assumption, Y ◦(n) is an open subset of X with respect to the patch
topology. Therefore, the lemma is reduced to the following:

Lemma 4.9 Let X be a compact topological space. Let T be a finite set equipped
with a partial order and {Yα}α∈T a family of closed subsets of X indexed by T . Put

Y(α) = Yα \
⋃

β>α Yβ and assume that Y(α) ∩ Y(β) = ∅ if α 6= β. Let f : T
∼=
−−→ T be

an order-preserving bijection such that f(α) 6= α for every α ∈ T . Assume that we
are given a fundamental system of open neighborhoods {Yα(n)}n≥1 of Yα for each
α ∈ T such that Yα(n + 1) ⊂ Yα(n) for every n ≥ 1. Then, for every integer N ≥ 1
we can find an integer nα ≥ N for each α ∈ T satisfying the following conditions:

– For every α ∈ T , nα = nf(α).

– For α ∈ T , put Uα = Yα(nα)\
⋃

β>α Yβ(nβ) and Vα = Yα(nα)\
⋃

β>α Yβ(nβ +1).
Then we have Uα ∩Uβ = ∅ for every α, β ∈ T with α 6= β, and Vα ∩ Vf(α) = ∅
for every α ∈ T .
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Proof. Use the induction on the cardinality of T . If T is empty, then the lemma
is clear. Assume that T is non-empty. Take a maximal element α0 of T and put
T0 = {f

m(α0) | m ∈ Z}. Note that every element of T0 is maximal.
Consider an element (α, β) of T0 × T such that β � α. As Yβ is contained in

∐

γ≥β Y(γ), Yα = Y(α) does not intersect Yβ by the assumption. Since X is compact,
two closed subsets Yα and Yβ can be separated by open neighborhoods. Thus we
can find an integer n ≥ N such that Yα(n)∩Yβ(n) = ∅. Since there are only finitely
many such elements (α, β), we can take n ≥ N such that Yα(n) ∩ Yβ(n) = ∅ for
every α ∈ T0 and β ∈ T with β � α. Put nα = n for every α ∈ T0.

Put X ′ = X \
⋃

α∈T0
Yα(nα+1), T ′ = T \T0, Y

′
β = X ′∩Yβ and Y ′

β(n) = X ′∩Y ′
β(n)

for β ∈ T ′. Note that f induces an order-preserving bijection T ′
∼=
−−→ T ′, which is

also denoted by f . Then, these satisfy the assumptions in the lemma. Therefore, by
the induction hypothesis, we can find nα ≥ nα0 for each α ∈ T ′. We will observe that
{nα}α∈T satisfies the conditions in the lemma. The first condition nα = nf(α) is clear
from the construction. For the second condition, put U ′

α = Y ′
α(nα)\

⋃

β∈T ′,β>α Y
′
β(nβ)

and V ′
α = Y ′

α(nα) \
⋃

β∈T ′,β>α Y
′
β(nβ + 1) for α ∈ T ′. Then,

U ′
α \

⋃

γ∈T0

Yγ(nγ) =
(

Yα(nα) \
⋃

β∈T ′,β>α

Yβ(nβ)
)

\
⋃

γ∈T0

Yγ(nγ)

=
(

Yα(nα) \
⋃

β∈T ′,β>α

Yβ(nβ)
)

\
⋃

γ∈T0,γ≥α

Yγ(nγ)

= Yα(nα) \
⋃

β∈T ,β>α

Yβ(nβ) = Uα.

The second equality follows from Yα(nα) ∩ Yγ(nγ) ⊂ Yα(nα0) ∩ Yγ(nα0) = ∅ for
γ ∈ T0 with γ � α. Similarly, we can check that V ′

α = Vα for α ∈ T ′.
Let us take α, β ∈ T with α 6= β and prove Uα ∩ Uβ = ∅. If α, β ∈ T0,

Uα ∩ Uβ = Yα(nα0) ∩ Yβ(nα0) = ∅ since β � α. If α ∈ T0 and β ∈ T ′, then
Uα ∩ Uβ = Yα(nα) ∩ (U ′

β \
⋃

γ∈T0
Yγ(nγ)) = ∅. The case where α ∈ T ′ and β ∈ T0

is similar. Finally if α, β ∈ T ′, then Uα ∩ Uβ ⊂ U ′
α ∩ U ′

β = ∅ by the induction
hypothesis.

Let us take α ∈ T and prove Vα ∩ Vf(α) = ∅. If α ∈ T0 then Vα ∩ Vf(α) =
Yα(nα0) ∩ Yf(α)(nα0) = ∅ since α and f(α) are disjoint elements in T0. If α ∈ T ′

then Vα ∩ Vf(α) = V ′
α ∩ V ′

f(α) = ∅ by the induction hypothesis.

Now the proof is complete.

Fix {nα}α∈T as in Lemma 4.8 and put W =
⋃

α∈T Y ◦
α (nα), X0 = X \W . By

Assumption 4.3 iii), we have f(W ) = W and f(X0) = X0.

Proposition 4.10 We have Tr(f ∗
η ;RΓc(Xη,Λ)) = Tr(f ∗

η ;RΓc(X0,η,Λ)).

Lemma 4.11 Let L, L′ be locally closed constructible subsets of X such that
f(L) = L, f(L′) = L′ and L′ is an open subset of L. Put L′′ = L \ L′. Then
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we have

Tr
(

f ∗
η ;RΓc(Lη,Λ)

)

= Tr
(

f ∗
η ;RΓc(L

′
η,Λ)

)

+ Tr
(

f ∗
η ;RΓc(L

′′
η,Λ)

)

.

Proof. First note thatRΓc(Lη,Λ), RΓc(L
′
η,Λ) andRΓc(L

′′
η,Λ) are perfect Λ-complexes

by Proposition 4.6, and the traces make sense.
Let j : (Xη, L

′
η) −֒→ (Xη, Lη) and i : (Xη, L

′′
η) −֒→ (Xη, Lη) be the natural im-

mersions of pseudo-adic spaces. Consider the filtered sheaf F = (F1F = j!Λ ⊂
Λ = F0F). We have a natural morphism f ∗

ηF −→ F of filtered sheaves, which
induces a morphism f ∗

η : RΓc(Lη,F) −→ RΓc(Lη, f
∗
ηF) −→ RΓc(Lη,F) in the fil-

tered derived category of Λ-modules (cf. [Ill71, Chapitre V]). It is easy to see that
the morphism on gr0 (resp. gr1) induced by f ∗

η coincides with the pull-back map
f ∗
η on RΓc(Lη, i∗Λ) = RΓc(L

′′
η,Λ) (resp. RΓc(Lη, j!Λ) = RΓc(L

′
η,Λ)). Therefore the

equality follows from [Ill71, Corollaire 3.7.7, Remarque 3.7.7.1].

Proof of Proposition 4.10. By Lemma 4.11, it suffices to show Tr(f ∗
η ;RΓc(Wη,Λ)) =

0. Take a maximal element α0 of T and put T0 = {fm(α0) | m ∈ Z}, W0 =
⋃

α∈T0
Y ◦
α (nα) =

∐

α∈T0
Uα. Obviously RΓc(W0,η,Λ) =

⊕

α∈T0
RΓc(Uα,η,Λ) and

f(W0) = W0. Since f(Uα) = Uf(α) and f(α) 6= α by Assumption 4.3 iv), it is
immediate to see Tr(f ∗

η ;RΓc(W0,η,Λ)) = 0.
PutW ′ = W\W0 and T

′ = T \T0. Then Tr(f ∗
η ;RΓc(Wη,Λ)) = Tr(f ∗

η ;RΓc(W
′
η,Λ))

by Lemma 4.11. If T ′ is non-empty, take a maximal element α1 of T ′ and put
T1 = {fm(α1) | m ∈ Z}, W1 =

⋃

α∈T1
Y ◦
α (nα) \W0 =

∐

α∈T1
Uα. In the same way

as above, we can prove that Tr(f ∗
η ;RΓc(W1,η,Λ)) = 0. Put W ′′ = W ′ \W1. Then

Tr(f ∗
η ;RΓc(W

′
η,Λ)) = Tr(f ∗

η ;RΓc(W
′′
η ,Λ)) by Lemma 4.11 (note that W1 is closed

in W ′). We repeat this procedure to obtain Tr(f ∗
η ;RΓc(Wη,Λ)) = 0.

Next lemma ensures that we may apply Theorem 3.13 to X0,η.

Lemma 4.12 i) The adic space X0 is a quasi-compact open adic subspace of Xη.
In particular, X0,η is smooth, separated of finite type over S.

ii) For x ∈ Xη \X0,η, there exists a closed constructible subset Wx of Xη such that
fη(Wx) ∩Wx = ∅.

iii) The closed adic subspace Fix fη of Xη is contained in X0,η. In particular,
Fix fη = Fix(fη|X0,η

) is proper over S and #Fix fη = #Fix(fη|X0,η
).

Proof. i) Since X is a spectral space and W is a closed constructible subset of X , X0

is a quasi-compact open subset of X . On the other hand, X0 ⊂ X \
⋃

α∈T Yα = Xη

by Assumption 4.1 i). Thus X0 is a quasi-compact open subset of Xη.
ii) As x ∈ Wη =

∐

α∈T Uα,η ⊂
⋃

α∈T Wα,η, there exists α ∈ T such that x ∈ Wα,η.
By Assumption 4.3 iii), we have Wα,η ∩ fη(Wα,η) = Wα,η ∩Wf(α),η = ∅ (we use the
second condition in Lemma 4.8). Since Wα is a closed constructible subset of X ,
Wα,η is a closed constructible subset of Xη.

iii) Clear from ii) and Proposition 2.10.
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Proof of Theorem 4.5. Since Xη is partially proper and taut over S by the assump-
tion, the closure X0,η of X0,η in Xη is proper over S. By Lemma 4.12 i), ii), we can
apply Theorem 3.13 to X0,η −֒→ X0,η. Together with Proposition 4.10 and Lemma
4.12 iii), we can conclude

Tr
(

f ∗
η ;RΓc(Xη,Λ)

)

= Tr
(

f ∗
η |X0,η

;RΓc(X0,η,Λ)
)

= #Fix(fη|X0,η
) = #Fix fη.

Remark 4.13 At least when the characteristic of k is 0, we can deduce from The-
orem 4.5 the analogous result for ℓ-adic coefficient simply by taking projective limit
(cf. [Mie10b, proof of Corollary 4.40]).

Next we discuss the existence of systems of neighborhoods in Assumption 4.3.

Let f : X
∼=
−−→ X and {Yα}α∈T be as in the beginning of this section, and f : T

∼=
−−→ T

a bijection (we do not need to take the order on T into account). We want to find
a system of open constructible subsets {Yα(n)}n≥1 and that of closed constructible
subsets {Y ◦

α (n)}n≥1 satisfying i), ii), iii) in Assumption 4.3. To construct them, we
introduce a “tubular neighborhood” of a closed formal subscheme Y of X .

Definition 4.14 Let Y be a closed formal subscheme of X and I be an ideal of
definition of X . We will define the subsets Y (I) and Y ◦(I) of X = t(X )a as follows.
First assume that X = Spf A is affine. Then Y is defined by an ideal J of A. Put
I = Γ(X , I) and

Y (I) =
{

x ∈ X
∣

∣ max
f∈J
|f(x)| ≤ max

g∈I
|g(x)|

}

,

Y ◦(I) =
{

x ∈ X
∣

∣ max
f∈J
|f(x)| < max

g∈I
|g(x)|

}

.

Note that maxf∈J |f(x)| = max1≤i≤m|fi(x)| for every system of generators f1, . . . , fm
of J ; in particular maxf∈J |f(x)| exists. Similar for maxg∈I |g(x)|.

Obviously we can globalize the construction by patching, and get Y (I) and Y ◦(I)
for the general case.

Proposition 4.15 The subset Y (I) is open in X and Y ◦(I) is closed in X . These
are constructible subsets in X .

Proof. We may assume that X = Spf A is affine. Let J ⊂ A be the defining ideal of
Y and put I = Γ(X , I). Take a system of generators f1, . . . , fm (resp. g1, . . . , gn) of
J (resp. I). Then, noting that X = {x ∈ t(X ) | max1≤j≤n|gj(x)| 6= 0}, we have

Y (I) =
⋃

1≤j≤n

R
(f1, . . . , fm, g1, . . . , gn

gj

)

, X \ Y ◦(I) = X ∩
⋃

1≤i≤m

R
(g1, . . . , gn

fi

)

,

where R(−) denotes a rational subset of t(X ) = Spa(A,A). Since every rational
subset is quasi-compact and open, Y (I) and X \ Y ◦(I) are quasi-compact open

subsets of X . This completes the proof.
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The following two lemmas are clear from the definition:

Lemma 4.16 For an ideal of definition I of X , we have the following:

i) Y (In+1) ⊂ Y ◦(In) ⊂ Y (In) for every n ≥ 1.

ii) Y := t(Y)a =
⋂

n≥1 Y (In).

Lemma 4.17 Let f : X ′ −→ X be an adic morphism over S and put Y ′ = Y×X X
′.

For an ideal of definition I of X , put I ′ = (f−1I)OX ′ . Then f : X ′ := t(X ′)a −→ X
induces a map from Y ′(I ′) to Y (I).

Now we can give fairly simple conditions for existence of systems of neighbor-
hoods in Assumption 4.3.

Proposition 4.18 Assume that the isomorphism f : X
∼=
−−→ X induces an isomor-

phism of formal schemes Yα

∼=
−−→ Yf(α) for every α ∈ T . Then there exists a system

of constructible open (resp. closed) subsets {Yα(n)}n≥1 (resp. {Y ◦
α (n)}n≥1) of X

satisfying i), ii), iii) in Assumption 4.3.

Proof. Let I be the maximal ideal of definition of X (it exists since X is noethe-
rian) and put Yα(n) = Yα(I

n), Y ◦
α (n) = Y ◦

α (I
n) for each α ∈ T and n ≥ 1. By

Proposition 4.15, Yα(n) (resp. Y ◦
α (n)) is a constructible open (resp. closed) subset

of X . Moreover, by Lemma 4.16, {Yα(n)}n≥1 and {Y
◦
α (n)}n≥1 satisfy the conditions

i), ii) in Assumption 4.3. Finally, the condition iii) follows from Lemma 4.17, since

I is preserved by the isomorphism f .

Proposition 4.19 Assume that the isomorphism f : X
∼=
−−→ X induces a set-theoretic

bijection Yα

∼=
−−→ Yf(α) for every α ∈ T . Assume moreover that for every ideal of

definition I of X , there exists an integer N ≥ 1 such that fN ≡ id (mod I). Then
there exists a system of constructible open (resp. closed) subsets {Yα(n)}n≥1 (resp.
{Y ◦

α (n)}n≥1) of X satisfying i), ii), iii) in Assumption 4.3.

First we will show:

Lemma 4.20 Assume that the isomorphism f : X
∼=
−−→ X satisfies the latter condi-

tion in Proposition 4.19. Then, for every constructible subset V of X , there exists
an integer N ≥ 1 such that fN(V ) = V .

Proof. Replacing f by its power if necessary, we may assume that f induces the
identity on the underlying space of X . Therefore we may assume that X is affine.
Moreover, we can reduce to the case where V is a rational subset of t(X ). Now the

lemma is clear from [Hub93, Lemma 3.10].
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Proof Proposition 4.19. Take an ideal of definition I of X .
Let us decompose T into f -orbits T1∐ · · ·∐ Tm. Fix an element αi ∈ Ti for each

1 ≤ i ≤ m; then Ti = {f
j(αi) | j ∈ Z}. For α ∈ Ti and an integer n ≥ 1, put Yα(n) =

⋂

j∈Z,fj(αi)=α f
j(Yαi

(In)) and Y ◦
α (n) =

⋂

j∈Z,fj(αi)=α f
j(Y ◦

αi
(In)). By the previous

lemma, these intersections are essentially finite. Therefore, Yα(n) (resp. Y
◦
α (n)) is a

constructible open (resp. closed) subset of X . By the assumption f(Yα) = Yf(α) and
Lemma 4.16, {Yα(n)}n≥1 and {Y

◦
α (n)}n≥1 satisfy the condition i), ii) in Assumption

4.3. On the other hand, f(Yα(n)) = Yf(α)(n) and f(Y ◦
α (n)) = Y ◦

f(α)(n) are clear from

the construction. Now the proof is complete.

We finish this section by two examples of Rapoport-Zink spaces.

Example 4.21 Let O be a complete discrete valuation ring with finite residue field
Fq. Denote the completion of the strict henselization of O by Ŏ and the fraction field

of Ŏ by F̆ . Fix an integer d ≥ 1 and denote by X a formal O-module over Fq with
O-height d (such X is unique up to isomorphism). For an integer m ≥ 0, Xm denotes
the universal deformation space over Ŏ of X with Drinfeld m-level structures. For
the precise definition, see [Str08, §2.1] for example. Recall that X0 is isomorphic to
Spf Ŏ[[T1, . . . , Td−1]] and the natural morphism Xm −→ X0 is finite. In particular,
Xm is special over Spf Ŏ and its generic fiber Xm = t(Xm)η is partially proper over

Spa(F̆ , Ŏ). Moreover, it is known that the morphism Xm −→ X0 induced on the
generic fibers is étale. Therefore Xm is smooth over Spa(F̆ , Ŏ).

More generally, we can associate to a compact open subgroup K ofK0 = GLd(O)
the formal scheme XK (cf. [Str08, §2.2]). Put Km = Ker(GLd(O) → GLd(O/m

m))
for an integer m ≥ 1, where m denotes the maximal ideal of O. Take m ≥ 0 such
that Km ⊂ K; then XK is defined as the quotient in the sense of invariant theory of
the action of the finite group K/Km on Xm (the action of K ⊂ K0 on Xm is given
via the Drinfeld level structures). It is easy to see that XK is special over Spf Ŏ and
its generic fiber XK = t(XK)η is partially proper and smooth over Spa(F̆ , Ŏ).

Let D be the central division algebra over F with invariant 1/d. The formal
scheme XK is endowed with a right action of the subgroup of GLd(F )×D× consisting
of elements (g, h) such that vF (det g) + vF (Nrd h) = 0 and gKg−1 = K, where vF
denotes the normalized valuation of F . We would like to explain that we can use
Theorem 4.5 to calculate the trace Tr((g, h)∗;RΓc(XK,η,Λ)), under the assumption
that gK consists of regular elliptic elements of GLd(F ) and that h is a regular elliptic
element in D×.

For an integer m ≥ 1, let Sm be the ordered set of O/mm-submodules of
(m−m/O)d which are direct summands. Put S ′

m = Sm \ {0, (m
−m/O)d}. For each

I ∈ Sm, we can construct the closed formal subscheme YI of Xm,s (cf. [Mie10a, Def-
inition 4.1]); roughly speaking, it is the locus where the universal Drinfeld m-level
structure vanishes on I. More generally, for an compact open subgroup K of K0,
we put SK = (K/Km)\Sm and S ′

K = (K/Km)\S
′
m, where m ≥ 1 is an integer with

Km ⊂ K. We endow them with the induced partial orders. For I ∈ SK , we can also
define the closed formal subscheme YI of XK,s so that Y(I) = YI \

⋃

I′∈SK ,I′>I YI′,
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where YI denotes t(YI)a, coincides with the boundary subset ∂IMK in [Str08, Para-
graph 3.1.1]; in fact, we can take YI as the closed formal subscheme defined by pK in
[Str08, Proposition 3.1.3 (i)] (note that the partial order on SK in [Str08] is the in-
verse of ours). However, the author could not find any natural moduli interpretation
of YI .

Now we can easily see that the family of closed formal subschemes {YI}I∈S′
m
sat-

isfies Assumption 4.1. On the other hand, we can define the action of g on S ′
K as in

[Str08, p. 914]. Since we are assuming that gK consists of regular elliptic elements,
we have I 6= g−1I for every I ∈ S ′

K . Moreover, it is easy to see that the action of
(g, h) maps YI onto Yg−1I at least set-theoretically (cf. [Str08, Lemma 3.2.2 (ii)]).
Since (g, h) is regular elliptic, the action of (g, h) on XK satisfies the second condi-
tion in Proposition 4.19 by the first part of the proof of [Str08, Proposition 3.2.4].
Therefore, by Proposition 4.19, the action of (g, h) on XK satisfies Assumption 4.3.
Finally, it is known that XK is algebraizable ([Str08, Theorem 2.3.1]). Hence all the
assumptions in Theorem 4.5 are satisfied and we obtain

Tr
(

(g, h)∗;RΓc(XK,η,Λ)
)

= #Fix(g, h).

This recovers a result [Str08, Theorem 3.3.1] of Strauch. Recall that the right hand
side has been calculated in [Str08, Theorem 2.6.8], and as a consequence of the
trace formula above, we can get a purely local proof of the fact that the ℓ-adic
cohomology of the Lubin-Tate tower (Xm)m≥0 realizes the local Jacquet-Langlands
correspondence ([Str08, Theorem 4.1.3]).

The advantage of our proof is that it does not require algebraization of the action.
The proof of [Str08, Theorem 3.3.1] uses careful approximation of the action of (g, h)
by an algebraizable morphism (cf. [Str08, Proposition 3.2.4 (ii), §5.2]), and it seems
difficult to extend that method to the non-affine case.

Example 4.22 Let p be a prime. For a compact open subgroup Kp of GSp4(A
∞,p)

and an integer m ≥ 0, let Shm,Kp be the Shimura variety over Zp∞ = W (Fp) intro-
duced in [IM10, §4]; namely, it is the moduli space parametrizing polarized abelian
surfaces with Kp-level structures outside p and Drinfeld m-level structures at p. Let
Sm be the ordered set of direct summands of (Z/pmZ)4 whose ranks are greater than
1 and put S ′

m = Sm \ {(Z/pmZ)4}. Fix a perfect alternating bilinear form on Z4
p

and denote the subset of Sm (resp. S ′
m) consisting of coisotropic direct summands

by Scoi
m (resp. S ′coi

m ). Then, as in Example 4.21, we can define the closed subscheme
Shm,Kp,[I] of Shm,Kp = Shm,Kp ⊗Zp∞

Fp for I ∈ Sm (cf. [IM10, Definition 5.1]). It is

known that every Fp-rational point of Ym,Kp := Shm,Kp,[(Z/pmZ)4] corresponds to a
supersingular abelian variety (note that the definition of Ym,Kp here is different from
that in [IM10], but they coincide up to nilpotent elements; see [IM10, Lemma 5.3
iii)]).

Let Sh′
m,Kp be the closed subscheme of Shm,Kp defined by the quasi-coherent

ideal of OShm,Kp consisting of elements killed by pl for some integer l ≥ 0. Put

Sh
′

m,Kp = Shm,Kp×Shm,Kp Sh
′
m,Kp, Sh

′

m,Kp,[I] = Shm,Kp,[I]×Shm,Kp Sh
′
m,Kp and Y ′

m,Kp =
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Ym,Kp ×Shm,Kp Sh′
m,Kp. Then, by [IM10, Lemma 5.3, proof of Proposition 5.7] the

family of closed subschemes {Sh
′

m,Kp,[I]}I∈Scoi
m

satisfies the conditions in Example 4.2.

Let us denote the completion of Shm,Kp (resp. Sh′
m,Kp) along Ym,Kp (resp. Y ′

m,Kp) by
(Shm,Kp)∧/Ym,Kp

(resp. (Sh′
m,Kp)∧/Y ′

m,Kp
).

Let M̆ be the Rapoport-Zink space for GSp(4) considered in [IM10] and M̆m be

as in [IM10, §3.2]. The formal scheme M̆m is endowed with the action of GSp4(Zp)×
J(Qp), where J is an inner form of GSp4. By the p-adic uniformization theo-

rem of Rapoport-Zink, there is a GSp4(Zp)-equivariant morphism θm,Kp : M̆m −→

(Shm,Kp)∧/Ym,Kp
, which induces an open and closed immersion M̆m/Γ −֒→ (Shm,Kp)∧/Ym,Kp

for some discrete subgroup Γ of J(Qp) ([IM10, Theorem 4.2]). Put M̆m,[I] =

M̆m ×Shm,Kp Shm,Kp,[I], M̆ ′
m = M̆m ×Shm,Kp Sh′

m,Kp and M̆ ′
m,[I] = M̆m ×Shm,Kp

Sh
′

m,Kp,[I]. As mentioned in [IM10, proof of Proposition 5.10], M̆m,[I] is preserved by

the action of J on M̆m. On the other hand, it is easy to see that the defining ideal of
M̆ ′

m in M̆m consists of elements of O
M̆m

which is killed by pl for some integer l > 0.

Therefore the actions of J on M̆ ′
m and M̆ ′

m,[I] are naturally induced. Moreover, we

have an open and closed immersion M̆ ′
m/Γ −֒→ (Sh′

m,Kp)∧/Y ′
m,Kp

. It is also easy to

observe that t(M̆ ′
m)η coincides with t(M̆m)η.

Now it is easy to see that the formal scheme M̆ ′
m/Γ, a family of closed formal

subscheme {M̆ ′
m,[I]/Γ}I∈S′coi

m
and the action of (g, j) ∈ GSp4(Zp)×J(Qp) where gKm

consists of regular elliptic elements of GSp4(Qp) and j normalizes Γ satisfy all the
assumptions in Theorem 4.5. Indeed, Assumption 4.1 has already been observed.
Assumption 4.3 follows from [IM10, Proposition 5.15], Proposition 4.18 and the fact
that if gKm consists of regular elliptic then g−1I 6= I for every I ∈ S ′coi

m (otherwise
gKm intersects a proper parabolic subgroup). Since every irreducible component

of (M̆m)red is projective over Fp ([RZ96, Proposition 2.32]), Ym,Kp and Y ′
m,Kp are

proper over Fp and thus M̆ ′
m/Γ is partially proper over Spa(Qp∞ ,Zp∞). Hence we

get the formula

Tr
(

(g, j)∗;RΓc(t(M̆m)η/Γ,Λ)
)

= #Fix(g, j).

The author expects that the right hand side can be calculated in the similar way as
in [Str08, §2.6], and plans to work this out in a forthcoming paper.

5 Lefschetz trace formula for contracting mor-

phisms

5.1 Statement

In this section, we generalize Fujiwara’s trace formula for contracting morphisms
([Fuj97, Theorem 3.2.4]) to rigid spaces which are not necessarily algebraizable.
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Let X be a purely d-dimensional adic space which is proper and smooth over S.
For a closed adic subspace Y of X and ε ∈ |k×| ⊂ R, we can construct the open
tubular neighborhood Y (ε) and the closed tubular neighborhood Y ◦(ε) (cf. [Hub98c,
§2.6], in which Y (ε) is denoted by T (ε) and Y ◦(ε) by S(ε)). If Y is defined by
f1, . . . , fm ∈ Γ(X,OX), then Y (ε) (resp. Y ◦(ε)) is given by {x ∈ X | |fi(x)| ≤ ε}
(resp. {x ∈ X | |fi(x)| < ε}). Note that Y (ε) and Y ◦(ε) are constructible and
Y =

⋂

ε∈|k×| Y (ε).
Let f : X −→ X be an S-morphism. We will use the notation in Example 2.9.

We denote the set of connected components of Fix f by π0(Fix f). It is a finite
set since H0(Fix f,Λ) is a finitely generated Λ-module. Therefore every element of
π0(Fix f) is open and closed in Fix f .

Definition 5.1 Let D be a connected component of Fix f . We say that f is con-
tracting near D if there exists a strictly decreasing sequence (εn)n≥0 in |k

×| converg-
ing to 0 such that f(D(εn)) ⊂ D(εn+1) for every n ≥ 0.

If f is contracting near every connected component of Fix f , we say that f is
contracting near its fixed points.

The goal of this section is the following theorem:

Theorem 5.2 Assume that the characteristic of k is equal to 0 and f is contracting
near D ∈ π0(Fix f). Then we have

#FixD f = χ(D,Λ),

where we put χ(D,Λ) = Tr(id;RΓ(D,Λ)).

This theorem will be proved in §5.3. The following corollary is immediate from
Theorem 5.2 and Proposition 3.9:

Corollary 5.3 Assume that the characteristic of k is equal to 0 and f is contracting
near its fixed points. Then we have

Tr
(

f ∗;RΓ(X,Λ)
)

=
∑

D∈π0(Fix f)

χ(D,Λ).

In particular, if every fixed point of f is isolated, the right hand side is equal to the
number of the fixed points.

5.2 Lefschetz trace formula for proper pseudo-adic spaces

In order to prove Theorem 5.2, we need a variant of Proposition 3.9 for a pseudo-adic
space which is proper but not necessarily smooth over S. In this subsection, let X
be a finite-dimensional pseudo-adic space which is proper over S. We assume that
H i(X,Λ) is a finitely generated Λ-module for every integer i; then RΓ(X,Λ) is a
perfect Λ-complex (Corollary 3.3).
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Let f : X −→ X be an S-morphism. Since RΓ(X,Λ) is a perfect complex,
the trace Tr(f ;RΓ(X,Λ)) makes sense. Our purpose is to express this trace by a
cohomology class analogous to [γ] in Proposition 3.9.

First we will construct an analogue of cl(γ).

Definition 5.4 Since pr2 ◦γf = id, we have H0
Γf
(X ×S X, pr!2 Λ)

∼= H0(X,Λ). We

denote by cl(f) the element of H0
Γf
(X×SX, pr!2 Λ) that corresponds to 1 ∈ H0(X,Λ)

under the isomorphism above.

Remark 5.5 If X is purely d-dimensional and smooth over S, then H0
Γf
(X ×S

X, pr!2 Λ)
∼= H2d

Γf
(X×S X,Λ(d)) and by this isomorphism cl(f) corresponds to cl(γf)

in §2.

The following is an analogue of Proposition 2.18, whose proof is similar:

Proposition 5.6 The map f ∗ : RΓ(X,Λ) −→ RΓ(X,Λ) coincides with the com-
posite of

RΓ(X,Λ)
pr∗1−−→ RΓ(X ×S X,Λ)

∪ cl(f)
−−−→ RΓ(X ×S X, pr!2 Λ) = RΓ(X,R pr2! pr

!
2 Λ)

adj
−−→ RΓ(X,Λ).

Next we will establish an analogue of Corollary 3.7. Denote the structure mor-

phism of X by a : X −→ S and put KX = a!Λ. Let τ : KX

L
⊠ Λ −→ pr!2 Λ be the

base change map KX

L
⊠ Λ = pr∗1 a

!Λ −→ pr!2 a
∗Λ = pr!2 Λ.

Proposition 5.7 The map τ above induces an isomorphism

RΓ(X ×S X,KX

L
⊠ Λ)

∼=
−−→ RΓ(X ×S X, pr!2 Λ).

Proof. By Proposition 3.5, the Künneth morphism RΓ(X,KX)
L
⊗ RΓ(X,Λ) −→

RΓ(X×S X,KX

L
⊠Λ) is an isomorphism. On the other hand, we have isomorphisms

RΓ(X ×S X, pr!2 Λ) = RΓ(X,R pr1∗ pr
!
2 Λ)
∼= RΓ(X, a!Ra∗Λ) = RΓ

(

X, a!RΓ(X,Λ)
)

∼=
(1)

RΓ
(

X, a!Λ
L
⊗ RΓ(X,Λ)X

)

∼=
(2)

RΓ(X, a!Λ)
L
⊗RΓ(X,Λ)

= RΓ(X,KX)
L
⊗RΓ(X,Λ).

For (1), note that the natural map a!Λ
L
⊗ RΓ(X,Λ)X −→ a!RΓ(X,Λ) is an isomor-

phism. This is an easy consequence of the fact that RΓ(X,Λ) is a perfect Λ-complex.
The isomorphy of (2) is due to Lemma 3.1.
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It is easy to see that this isomorphism fits into the following diagram:

RΓ(X,KX)
L
⊗ RΓ(X,Λ)

∼=
��

RΓ(X,KX)
L
⊗ RΓ(X,Λ)

∼=

��

RΓ(X ×S X,KX

L
⊠ Λ)

τ // RΓ(X ×S X, pr!2 Λ).

This completes the proof.

Definition 5.8 Let [f ] be the element of H0(X ×S X,KX

L
⊠ Λ) that corresponds

to cl(f) by the isomorphism in Proposition 5.7.

Proposition 5.9 We have Tr(f ∗;RΓ(X,Λ)) = AdjX(δ
∗[f ]), where AdjX denotes

the natural adjunction map H0(X,KX) −→ Λ.

Proof. By Proposition 5.6, it suffices to show the commutativity of the lower part
of the following diagram:

RΓ(X,KX)
L
⊗ RΓ(X,Λ)

∼=
��

∼= // RHom
(

RΓ(X,Λ),Λ
) L
⊗ RΓ(X,Λ)

��

RΓ(X ×S X,KX

L
⊠ Λ)

��

δ∗

))

RΓ(X ×S X, pr!2 Λ)
(∗)

// RHom
(

RΓ(X,Λ), RΓ(X,Λ)
)

Tr
��

RΓ(X,KX)
AdjX // Λ,

where (∗) is given by

RΓ(X,Λ)
L
⊗RΓ(X ×S X, pr!2 Λ)

pr∗1 ∪ id
−−−−→ RΓ(X ×S X, pr!2 Λ)

= RΓ(X,R pr2! pr
!
2 Λ)

adj
−−→ RΓ(X,Λ).

As in the proof of Proposition 3.9, we can prove the commutativities of the upper
part and the outer part of the diagram above.

We can apply the technique in §3.3 to calculate AdjX(δ
∗[f ]):

Lemma 5.10 Let U be an open adic subspace of X which is purely d-dimensional
and smooth over S, and Y an closed constructible subset of X contained in U .
Assume that f(X) ⊂ Y . Then we have AdjX(δ

∗[f ]) = #Fix f |U .
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Proof. First note that Fix f |U = Fix f since Fix f ⊂ Y . Therefore the adic space
Fix f |U is proper over S and #Fix f |U makes sense.

In the same way as Corollary 3.19, we can deduce from Proposition 5.7 that the

map RΓY×SX(X ×S X,KX

L
⊠ Λ) −→ RΓY×SX(X ×S X, pr!2 Λ) is an isomorphism.

Consider the following commutative diagram:

H0
Γf
(X ×S X, pr!2 Λ) //

��

H2d
Γf |U

(

U ×S U,Λ(d)
)

��

H0
Y×SX

(X ×S X, pr!2 Λ) // H2d
Y×SU

(

U ×S U,Λ(d)
)

H0
Y×SX

(X ×S X,KX

L
⊠ Λ)

//

δ∗

��

∼=

OO

H2d
Y×SU

(

U ×S U,Λ(d)
)

δ∗U
��

H0
Y (X,KX)

∼= //

��

H2d
Y

(

U,Λ(d)
)

��

H0(X,KX)

AdjX
��

H2d
c

(

U,Λ(d)
)

oo

TrU
��

Λ Λ.

It is easy to see that the image of cl(f) ∈ H0
Γf
(X ×S X, pr!2 Λ) under the composite

of the arrows in the left column is equal to AdjX(δ
∗[f ]). On the other hand, by

Remark 5.5, the image of cl(f) under the top horizontal arrow is cl(f |U). Since the
image of cl(f |U) under the composite of the arrows in the right column is #Fix f |U ,

we get the lemma.

5.3 Proof of Theorem 5.2

We go back to the notation introduced in §5.1. Let D be a connected component of
Fix f and assume that f is contracting near D. Take a strictly decreasing sequence
(εn)n≥0 in |k×| converging to 0 such that f(D(εn)) ⊂ D(εn+1) for every n ≥ 0.
Take a sequence (ε′n)n≥0 in |k×| such that εn > ε′n > εn+1 for every n ≥ 0. Then
we have f(D◦(εn)) ⊂ f(D(εn)) ⊂ D(εn+1) ⊂ D◦(ε′n) ⊂ D(ε′n) ⊂ D◦(εn). Fix an
integer n ≥ 0. The pseudo-adic space D◦(εn) := (X,D◦(εn)) is proper over S and
H i(D◦(εn),Λ) is a finitely generated Λ-module ([Hub98c, Corollary 2.3], [Hub07,
Corollary 5.4]). Hence we may apply Proposition 5.9 to D◦(εn). Moreover, we can
also apply Lemma 5.10 to D◦(ε′n) ⊂ D(ε′n) ⊂ D◦(εn). Summing up, we get the
formula Tr(f ∗;RΓ(D◦(εn),Λ)) = #Fix(f |D(ε′n)).

On the other hand, for every D′ ∈ π0(Fix f) distinct from D, D(ε′n) does not
intersect D′; otherwise D′ also intersects

⋂

m≥0 f
m(D(ε′n)) ⊂

⋂

m≥n D(εm) = D.
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Thus we have Fix(f |D(ε′n)) = D and #Fix(f |D(ε′n)) = #FixD(f |D(ε′n)) = #FixD f
(the final equality is due to Proposition 2.10).

Now assume that the characteristic of k is 0. Then, by [Hub98b, Theorem 3.6],
the restriction map H i(D◦(εn),Λ) −→ H i(D,Λ) is an isomorphism for sufficiently
large n. Therefore, by the commutative diagram

RΓ
(

D◦(εn),Λ
) f∗

//

∼=
��

RΓ
(

D◦(εn),Λ
)

∼=
��

RΓ(D,Λ) id // RΓ(D,Λ),

we have Tr(f ∗;RΓ(D◦(εn),Λ)) = χ(D,Λ) for such n. Hence we have #FixD f =
χ(D,Λ), as desired.
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