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Abstract

We study a family of ”classical” orthogonal polynomials which satisfy (apart from a 3-term recurrence

relation) an eigenvalue problem with a differential operator of Dunkl-type. These polynomials can be ob-

tained from the little q-Jacobi polynomials in the limit q = −1. We also show that these polynomials provide

a nontrivial realization of the Askey-Wilson algebra for q = −1.
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1. Introduction

The Askey scheme [13], [14] provides a list of all known ”classical” orthogonal polynomials. The term “classical”

means that the orthogonal polynomials satisfy a three-term recurrence relation

Pn+1(x) + bnPn(x) + unPn−1(x) = xPn(x), P−1 = 0, P0 = 1 (1.1)

and that they are also eigenfunctions

LPn(x) = λnPn(x) (1.2)

of an operator L which acts on the variable x. The operator L can be either a second-order differential operator

(in this case we obtain the purely classical polynomials: Jacobi, Laguerre, Hermite) or a second-order difference

operator on a uniform or non-uniform grid. The latter case leads to Wilson (q=1) and Askey-Wilson (q 6= 1)

polynomials and their descendents.

Bannai and Ito [4] proved a general theorem (which generalizes a famous theorem of Leonard [16], dealing

only with polynomials orthogonal on a finite set of points) stating that all such orthogonal polynomials should

coincide with the Askey-Wilson polynomials or their specializations. They also found a ”missing” case of the

Askey scheme corresponding to the limit q = −1 of the q-Racah polynomials (see also [19]). The example of

Bannai and Ito corresponds to polynomials orthogonal on a finite set of points. Hence in this case the operator

L is merely a finite-dimensional 3-diagonal matrix which corresponds to the case of ”Leonard pairs” (see, e.g.

[19]).

It is hence sensible to investigate other possibilities as q approaches -1 in the Askey scheme. Of course, the

limit q = 1 is well studied and classified (see, e.g. [13]). The limit q = −1 however, has not been explored much.

In [1] Askey and Ismail have studied the limit q = −1 for the q-ultraspherical polynomials, but in this case, the

operator L disappears in the limit q = −1.

Here we show that there is a very simple class of polynomials which can be obtained from the little q-Jacobi

polynomials in the limit q = −1. Under appropriate choice of the parameters, the operator L survives in

the limit q = −1. The polynomials thus obtained are indeed classical: they satisfy the eigenvalue equation

(1.2). But in contrast to the case of pure classical polynomials (like Jacobi polynomials), the operator L is

a combination of a differential operator of first order and of the reflection operator R (see formula (2.14) in

the next section). Operators of this type are known as Dunkl operators [9]. So far operators of Dunkl type

were used typically to transform one polynomial family into another. In the one-dimensional case, the Dunkl

operator Tµ is defined as [9], [6]

Tµf(x) = f ′(x) + µ
f(x)− f(−x)

x
(1.3)

where µ is a deformation parameter (when µ = 0 the Dunkl operator becomes the ordinary derivative operator).

Clearly, the Dunkl operator (1.3) reduces the degree of any polynomial by 1. Hence, there are no polynomials

which are eigenfunctions of the operator Tµ.
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Our operator (1.2), in contrast, preserves the linear space of polynomials of given degree. In the follow-

ing we construct the general solution of the eigenvalue equation (2.15) and obtain explicit expression for the

corresponding little -1 Jacobi polynomials P
(−1)
n (x).

We also show that the polynomials P
(−1)
n (x) are Dunkl-classical, i.e. TµP

(−1)
n (x) = Qn−1(x), where Qn(x)

is another set of little -1 Jacobi polynomials (with different parameters)

2. Limit of the little q-Jacobi polynomials as q → −1

The little q-Jacobi polynomials are defined through the recurrence coefficients

un = An−1Cn, bn = An + Cn, (2.1)

where An, Cn are given by

An = qn
(1− aqn+1)(1 − abqn+1)

(1− abq2n+1)(1 − abq2n+2)
, Cn = aqn

(1− qn)(1 − bqn)

(1− abq2n+1)(1 − abq2n)
,

They have the following simple expression in terms of the basic hypergeometric function

Pn(x) = κn 2Φ1

(

q−n, abqn+1

aq

∣

∣

∣
q; qx

)

(2.2)

with a normalization factor κn to ensure that they are monic.

They satisfy the orthogonality relation

∞
∑

s=0

(bq; q)s
(q; q)s

(aq)sPn(q
s)Pm(qs) = hn .δnm (2.3)

The moments corresponding to this weight function are

cn =
(aq; q)n
(abq2; q)n

, (2.4)

where (x; q)n = (1 − x)(1 − qx) . . . (1 − qn−1x) is standard notation for the q-shifted factorials (Pochhammer

q-symbol).

There is a q-difference equation of the form

a(bq − x−1)(Pn(qx) − Pn(x)) + (1− x−1)(Pn(q
−1x) − Pn(x)) = λnPn(x), (2.5)

where

λn = (q−n − 1)(1− abqn+1) (2.6)

If a = qα, b = qβ then in the limit q → 1 we get the ordinary Jacobi polynomials with parameters α, β.

There is, however, another nontrivial limit if one puts

q = −eε, a = −eεα, b = −eεβ (2.7)
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and take the limit ε → 0. This is the limit q = −1 of the little q-Jacobi polynomials.

A direct calculation shows that in this limit, we have the recurrence coefficients

un =
(n+ (1 − θn)α)(n+ β + θnα)

(2n+ α+ β)2
, bn = (−1)n

(2n+ 1)α+ αβ + α2 + (−1)nβ

(2n+ α+ β)(2n+ 2 + α+ β)
, (2.8)

where

θn =
1 + (−1)n

2

is the characteristic function of even numbers.

The corresponding moments are obtained directly from the moments (2.4):

c2n = c2n−1 =
(α/2 + 1/2)n

(α/2 + β/2 + 1)n
, n = 1, 2, 3, . . . , (2.9)

where (x)n = x(x + 1) . . . (x+ n− 1) is the ordinary Pochhammer symbol (shifted factorial).

Using this explicit expression for the moments, we can recover the weight function w(x) for the resulting

orthogonal polynomials. It is easily verified that

w(x) = κ|x|α(1− x2)(β−1)/2(1 + x), (2.10)

where

κ =
Γ(α/2 + β/2 + 1)

Γ(β/2 + 1/2)Γ(α/2 + 1/2)
.

Indeed, we have (using the ordinary Euler B-integral)

∫ 1

−1

w(x)xndx = cn, n = 0, 1, 2, . . . ,

where cn is given by (2.9). The coefficient κ is chosen to provide the standard normalization condition c0 = 1.

Under the obvious conditions α > −1, β > −1, the weight function w(x) is positive, all moments cn are well

defined and the moment problem is positive definite, i.e. ∆n > 0 for all n = 0, 1, 2, . . ..

Consider the form of the q-difference equation (2.5) in this limit. We divide both sides of (2.5) by ε and

introduce the operator Lε which acts on any polynomial f(x) as

Lεf(x) = aε−1(bq − x−1)(f(qx) − f(x)) + ε−1(1− x−1)(f(q−1x) − f(x)) (2.11)

(the parameters q, a, b depends on ε as in (2.7)). For monomials f = xn we have in the limit ε = 0

L0x
n = ξnx

n + ηnx
n−1, (2.12)

where

ξn = 2(−1)n+1n+ (1 − (−1)n)(α + β + 1), ηn = 2(−1)nn− (1 − (−1)n)α (2.13)

This allows one to present the operator L0 in the form

L0 = 2(1− x)∂xR+ (α+ β + 1− αx−1)(1− R), (2.14)
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where R is the reflection operator Rf(x) = f(−x).

Thus we have that our polynomials are classical: they satisfy the eigenvalue equation

L0Pn(x) = λnPn(x), (2.15)

where

λn =

{ −2n if n is even

2(α+ β + n+ 1) if n is odd
(2.16)

But in contrast to true classical polynomial the operator L0 is not purely differential: it contains the reflection

operator R.

In the next section we construct the general solution of the eigenvalue problem (2.15) in terms of the Gauss

hypergeometric functions

3. Different forms of R-differential equation

Consider the eigenvalue equation

L0F (x) = λF (x), (3.1)

where L0 has the expression (2.14). The operator L0 is a differential operator of the first order containing

the reflection operator R. Notice the important property of the operator L0: it preserves any linear space

of polynomials of degrees ≤ N for any N = 1, 2, 3, . . .. Hence the operator L0 behaves like the classical

hypergeometric operator: for any n = 0, 1, 2, . . . there exists a polynomial eigenvalue solution L0Pn(x) =

λnPn(x) for an appropriate set of eigenvalues λn.

In order to find an explicit expression for these polynomials, we need first to solve the eigenvalue problem

(3.1) with arbitrary λ.

We can arrive at a pure differential equation (without the operator R) by a standard procedure. Let us

present the function F (x) as a superposition of the even and odd parts:

F (x) = f(x) + g(x),

where f(−x) = f(x), g(−x) = −g(x). The functions f(x) and g(x) are determined uniquely from F (x). The

operator R acts on these functions as: Rf(x) = f(x), Rg(x) = −g(x). This allows one to rewrite the eigenvalue

equation (3.1) in the form

(1− x)f ′(x) + (x − 1)g′(x) + (1 + α+ β − α/x)g(x) = λ(f(x) + g(x))/2. (3.2)

Consider also the associated eigenvalue equation

RL0F (x) = λRF (x) (3.3)

which is obtained from (3.1) by application of the operator R. This equation can be presented in the form

(1 + x)f ′(x) + (1 + x)g′(x) + (1 + α+ β + α/x)g(x) = λ(g(x) − f(x))/2 (3.4)
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Adding and subtracting, we obtain the simpler system of equations

f ′(x) + xg′(x) + (1 + α+ β)g(x) = λg(x)/2,

xf ′(x) + g′(x) + αg(x)/x = −λf(x)/2 (3.5)

This presents the eigenvalue equation (3.2) equivalently as a system of two linear differential equations of first

order. We can eliminate the function g(x) from this system:

g(x) =
2(x2 − 1)f ′(x) + λxf(x)

2(β + 1)− λ
(3.6)

and obtain a second-order differential equation for f(x):

4x(x2 − 1)f ′′(x) + 4((α+ β + 3)x2 − α)f ′(x) + λx(2(α + β) + 4− λ)f(x) = 0 (3.7)

By a change of the variable x → x2 one can reduce equation (3.7) to the Gauss hypergeometric equation thus

obtaining the general solution:

f(x) = C1 2F1

(

λ
4 ,

α+β
2 + 1− λ

4
α+1
2

;x2

)

+ C2 x
1−α

2F1

(

λ+2−2α
4 , 2β+6−λ

4
3−α
2

;x2

)

, (3.8)

where C1, C2 are arbitrary constants. But by construction, the function f(x) must be even for all values of

the parameters α, β. This is possible only if C2 = 0 and the solution for f(x) contains only one undetermined

constant:

f(x) = C1 2F1

(

λ
4 ,

α+β
2 + 1− λ

4
α+1
2

;x2

)

(3.9)

Quite similarly, we can eliminate the function f(x) using:

f(x) =
2x(x2 − 1)g′(x) + ((2α+ 2β + 2− λ)x2 − 2α)g(x)

λ

Then one obtains a second-order differential equation for g(x):

4x2(x2 − 1)g′′(x) + 4x((3 + α+ β)x2 − α)g′(x) + (4α+ (2 + λ)(2α+ 2β + 2− λ)x2)g(x) = 0

Again the same change of the independent variable x → x2 leads to the Gauss hypergeometric equation with

general solution

g(x) = A1 x 2F1

(

1 + λ
4 ,

α+β
2 + 1− λ

4
α+3
2

;x2

)

+A2 x
−α

2F1

(

λ+2−2α
4 , 2β+2−λ

4
1−α
2

;x2

)

, (3.10)

with arbitrary constants A1, A2. The function g(x) should be odd for all values of the parameter α, hence

A2 = 0 and we obtain the solution

g(x) = A1 x 2F1

(

1 + λ
4 ,

α+β
2 + 1− λ

4
α+3
2

;x2

)

(3.11)

(The same result can be obtained directly from formula (3.6) if the function f(x) is given explicitly as (3.9))
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Now we have the general solution of equation (3.1) in the form

F (x) = f(x) + g(x) = C(λ) 2F1

(

λ
4 ,

α+β
2 + 1− λ

4
α+1
2

;x2

)

+A(λ) x 2F1

(

1 + λ
4 ,

α+β
2 + 1− λ

4
α+3
2

;x2

)

, (3.12)

where the parameters C(λ), A(λ) may depend on λ (as well as the parameters α, β). This dependence may be

recovered if one substitutes expressions (3.9) and (3.11) for f(x) and g(x) into equations (3.2) or (3.4). Clearly,

only the ratio A(λ)/C(λ) is an essential parameter, so we can put C(λ) = 1 without loss of generality. A simple

calculation yields A = − λ
2(1+α) . We thus have the following result: the function

F (x) = 2F1

(

λ
4 ,

α+β
2 + 1− λ

4
α+1
2

;x2

)

− λ

2(1 + α)
x 2F1

(

1 + λ
4 ,

α+β
2 + 1− λ

4
α+3
2

;x2

)

, (3.13)

is a solution of the eigenvalue equation (3.1). The general solution of this equation is obtained by multiplying

(3.13) by an arbitrary constant.

We would like to get polynomial solutions, i.e. find eigenvalues λn, n = 0, 1, 2, . . . such that Fn(x) is

a polynomial in x of exact degree n. It is easily seen that polynomial solutions are possible only if either

λ = −4n, n = 0, 1, 2, . . . or λ = 2(α + β + 2 + 2n), n = 0, 1, 2, . . .. If λ = −4n, the first term in (3.13) is a

polynomial of degree 2n whereas the second term is a polynomial of degree 2n − 1. Hence for all λn = −4n

we will have polynomials Fn(x) of the even degree 2n. If λ = 2(α + β + 2 + 2n) then the first term in

(3.13) is a polynomial of degree 2n, while the second term is a polynomial of degree 2n + 1. Hence for all

λn = 2(α+ β + 2+ 2n), n = 0, 1, 2, . . . we obtain polynomials Fn(x) having odd degree 2n+ 1. This solves the

problem, and we thus have the following explicit expression.

If n is even then

P (−1)
n (x) = κn

[

2F1

(

−n
2 ,

n+α+β+2
2

α+1
2

;x2

)

+
nx

α+ 1
2F1

(

1− n
2 ,

n+α+β+2
2

α+3
2

;x2

)]

(3.14)

If n is odd then

P (−1)
n (x) = κn

[

2F1

(

1−n
2 , n+α+β+1

2
α+1
2

;x2

)

− (α + β + n+ 1)x

α+ 1
2F1

(

1−n
2 , n+α+β+3

2
α+3
2

;x2

)]

, (3.15)

where κn is an appropriate normalization factor to ensure that the polynomial P
(1)
n (x) = xn+O(xn−1 is monic.

(We need not its explicit expression).

4. Relation with the symmetric Jacobi polynomials

The symmetric Jacobi polynomials were introduced by Chihara [7]. They can be defined as follows.

Let P
(ξ,η)
n (x) be the Jacobi polynomials

P (ξ,η)
n (x) = κn 2F1

(−n, n+ ξ + η + 1

ξ + 1
;x

)

(4.1)
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which are orthogonal on the interval [0, 1]

∫ 1

0

P (ξ,η)
n (x)P (ξ,η)

m (x)xξ(1− x)η = hnδnm

(κn is a factor needed for the polynomials P ξ,η
n (x) to be monic).

We can introduce symmetric polynomials S
(ξ,η)
n (x) by the formulas

S
(ξ,η)
2n (x) = P (ξ,η)

n (x2), S
(ξ,η)
2n+1(x) = xP (ξ+1,η)

n (x2) (4.2)

Then it is easily verified that the polynomials Sn(x) satisfy the symmetric property Sn(−x) = (−1)nSn(x) and

are orthogonal on the interval [−1, 1]

∫ 1

−1

S(ξ,η)
n (x)S(ξ,η)

m (x)w(x) = hnδnm (4.3)

with the weight function

w(x) = |x|2ξ+1(1− x2)η (4.4)

(Note that the original definition [7] by Chihara of the symmetric Jacobi polynomials Sn(x) is slightly different.

This is not essential for our purposes).

If ξ = −1/2, the polynomials S
(−1/2,η)
m (x) have the weight function w(x) = (1 − x2)η and hence can be

identified with the classical ultraspherical (Gegenbauer) polynomials. This is why the polynomials Sξ,η
n (x) are

sometimes called generalized Gegenbauer polynomials [5].

Starting from the polynomials Sξ,η
n (x) we can perform the Christoffel transform [17]

S̃ξ,η
n (x) =

Sξ,η
n+1(x) −AnS

ξ,η
n (x)

x+ 1
, (4.5)

where

An =
Sξ,η
n+1(−1)

Sξ,η
n (−1)

The polynomials S̃ξ,η
n (x) are again orthogonal on the interval [−1, 1] with the weight function w̃(x) obtained

from (4.4) as

w̃(x) = w(x)(x + 1) = |x|2ξ+1(1 − x2)η(1 + x) (4.6)

(we do not take into account the normalization condition which is not essential for our purposes).

The Christoffel transform (4.5) can be presented in explicit form because the coefficients An are expressible

in terms of the hypergeometric function 2F1(z) with argument z = 1 (this is seen from formulas (4.2) and (4.1)).

Hence from (4.5), we have an explicit expression for the polynomials S̃n(x) as a linear combination of two

hypergeometric functions. The polynomials S̃n(x) are not symmetric, i.e. they satisfy the general 3-term

recurrence relation

S̃n+1(x) + b̃nS̃n(x) + ũnS̃n−1(x) = xS̃n(x), (4.7)

where the coefficients b̃n, ũn can be expressed in terms of the coefficients An using the properties of the Christoffel

transform [17]. Hence these coefficients are also explicit.
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One can express the weight function (4.6) in an equivalent form

w̃(x) = |x|2ξ+1(1− x2)η+1(1− x)−1

which corresponds to the Geronimus transformation [22]:

S̃n(x) = Sξ,η+1
n (x) −BnS

ξ,η+1
n−1 (x) (4.8)

with some coefficients Bn.

We thus have that the same polynomials S̃n(x) can be obtained from the generalized Gegenbauer polynomials

Sξ,η
n (x) by either Christoffel or Geronimus transformations.

In [8] these polynomials were presented in the form (4.8); the recurrence coefficients b̃n, ũn were derived as

well in [8].

The comparison of the weight functions (4.6) and (2.10) leads to the conclusion that the little -1 Jacobi

polynomials P
(−1)
n (x) coincide with polynomials S̃

(ξ,η)
n , where

ξ =
α− 1

2
, η =

β − 1

2
.

We thus identified our ”classical” polynomials P
(−1)
n (x) with the ”nonsymmetric” generalized Gegenbauer pro-

posed by L.Chihara and T.Chihara [8].

Explicitly we have from (4.8)

P (−1)
n (x) = S

(α−1

2
,β−1

2
)

n (x)−BnS
(α−1

2
, β−1

2
)

n−1 (x), (4.9)

where

Bn =
2n+ (1− (−1)n)α

2(α+ β + 2n)
.

The same polynomials were also considered in [2], [3] from another point of view.

We would like to stress that other basic properties of these polynomials , e.g. the existence of a Dunkl-type

operator L0 providing the eigenvalue problem (2.15), as well as the origin of these polynomials as a limit case

(q=-1) of the little q-Jacobi polynomials had not been identified.

5. The Dunkl-classical property

All ”classical” orthogonal polynomials satisfy an important characteristic condition: they are ”covariant” with

respect to a ”derivative” operator D:

DPn(x) = [n]P̃n−1(x), (5.1)

where [n] is a specific function of n depending on the choice of the operator D, P̃n(x) is another set of ”classical”

orthogonal polynomials, and the operator D possesses the basic property of reducing the degree any polynomial

by one.
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Well known examples of the operator D are:

(i) the derivative operator D = ∂x;

(ii) the difference operator Df(x) = f(x+ 1)− f(x);

(iii) the q-derivative operator: Df(x) = f(xq)−f(x)
(q−1)x

(iv) the Askey-Wilson operator Df(x(s)) = f(x(s+1/2))−f(x(s−1/2))
x(s+1/2)−x(s−1/2) .

In the last case the function x(s) is either trigonometric x(s) = a1q
s + a2q

−s + a0 or quadratic x(s) =

a2s
2 + a1s+ a0 with some constants ai.

Recently it was recognized that apart from these operators there is one more operator which generates

”classical” orthogonal polynomials. This operator is the Dunkl operator Tµ (1.3). Namely, in [6] it was shown

that the only symmetric orthogonal polynomials Pn(x) satisfying the property

TµPn(x) = [n]µP̃n−1(x), [n]µ = n+ (1 − (−1)n)µ (5.2)

are the generalized Hermite or the generalized Gegenbauer polynomials. Recall that symmetric orthogonal

polynomials are defined by the property Pn(−x) = (−1)nPn(x). The generalized Hermite polynomials H
(µ)
n (x)

[7] are symmetric orthogonal polynomials which are orthogonal on whole real line with the weight function

w(x) = |x|2µ exp(−x2)

When µ = 0 (i.e. in the case when the Dunkl operator Tµ becomes the derivative operator ∂x) the generalized

Hermite polynomials become the ordinary Hermite polynomials.

The generalized Gegenbauer polynomials S
(ξ,η)
n (x) [7], [5] are orthogonal on the interval [−1, 1] with the

weight function (4.4). The generalized Gegenbauer polynomials satisfy the Dunkl-classical property (5.2) with

µ = ξ + 1/2

In both cases it is assumed that µ > −1/2.

In the present case we have correspondingly the following simple but important result

Proposition 1 The little -1 Jacobi polynomials P
(−1)
n (x) satisfy the Dunkl-classical property (5.2) with µ =

α/2, where the polynomials P̃n(x) are again little -1 Jacobi polynomials with parameters (α, β + 2).

The proof of this proposition follows easily from the explicit formula (4.9) and from the fact that the generalized

Gegenbauer polynomials S
(ξ,η)
n (x) satisfy the Dunkl-classical propertry (5.2) [6]:

TµS
(ξ,η)
n (x) = [n]µS

(ξ,η+1)
n−1 (x), µ = ξ + 1/2

In contrast to the assumptions of [6], the little -1 Jacobi polynomials are not symmetric. Hence we perhaps ob-

tained the first example of Dunkl-classical orthogonal polynomials beyond the family of symmetric polynomials.

The problem of finding all such orthogonal polynomials is an interesting open question.

All known families of ”classical” orthogonal polynomials possess not only lowering operators like (5.1) but

also raising operators Θ with the property

ΘPn(x) = νn+1Qn+1(x), (5.3)
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where the polynomials Qn(x) belong to the same family of classical orthogonal polynomials (albeit with different

parameters).

In the case of the little -1 Jacobi polynomials it is directly verified that the operator Θ does exists and has

the expression

Θf(x) = (x2 − 1)f ′(x) +
α(x − 1)2

2x
f(−x) +

(

(β + α/2)x− 1− α

2x

)

f(x) (5.4)

Given (5.4) property (5.3) holds with

νn+1 = n+ β +
1− (−1)n

2
α = β + [n]µ, µ = α/2

and Qn(x) the same monic little -1 Jacobi polynomials with parameters (α, β − 2) .

The generalized Hermite and Gegenbauer polynomials can be obtained from the ordinary Hermite and

Gegenbauer polynomials through the acting of the Dunkl intertwining operator [9], [6].

Recall that the Dunkl intertwining operator Vµ acts on the space of polynomials by the formulas [9], [10]

Vµx
n = σnx

n, σ2n−1 = σ2n =
(1/2)n

(µ+ 1/2)n
.

and is realized by the following integral representation [9]

Vµ(f(x)) =
Γ(µ+ 1/2)

Γ(µ)Γ(1/2)

∫ 1

−1

f(xt)(1 − t)µ−1(1 + t)µ

It preserves the space of polynomials and has the fundamental intertwining property

TµVµ = Vµ∂x, (5.5)

From this property it is possible to obtain the following result (see Proposition 2 below). Assume that the

monic polynomials Pn(x) and Qn(x) are related as

P ′

n(x) = nQn−1(x). (5.6)

Let us construct the monic polynomials P̃n(x) = σ−1
n VµPn(x), Q̃n(x) = σ−1

n VµQn(x). Then these polynomials

are correspondingly related:

TµP̃n(x) = [n]µQ̃n−1(x) (5.7)

In particular, if all polynomials Pn(x), Qn(x), P̃n(x), Q̃n(x) are orthogonal then the operator Vµ allows to obtain

Dunkl-classical polynomials (defined by property (5.7)) from ordinary classical polynomials (defined by property

(5.6)).

In [6] it was shown that the generalized Gegenbauer polynomials S
(ξ,η)
n (x) can be obtained from the ordinary

Gegenbauer polynomials S
(−1/2,η+µ)
n (x) by the action of the intertwining operator Vµ:

S(ξ,η)
n (x) = σ−1

n VµS
(−1/2,η+µ)
n (x), µ = ξ + 1/2 (5.8)

(A similar property for the generalized Hermite polynomials was obtained by Dunkl [9], [10]).
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Introduce now the ordinary monic Jacobi polynomials P
(ξ,η)
n (x) by the formula

P (ξ,η)
n (x) =

2n(ξ + 1)n
(ξ + η + n+ 1)n

2F1

(−n, n+ ξ + η + 1

ξ + 1
;
1− x

2

)

(5.9)

Notice that this definition differs from (4.1) by an affine transformation of the argument. The polynomials (5.9)

coincide with standard Jacobi polynomials orthogonal on the interval [−1, 1][13].

We have the following

Proposition 2 The little -1 Jacobi polynomials (3.14), (3.15) can be obtained from the Jacobi polynomials

(5.9) by the action of the Dunkl intertwining operator

P (−1)
n (x) = σ−1

n VµP
(ξ,ξ+1)
n (x), ξ =

α+ β − 1

2
, µ =

α

2
(5.10)

The proof of this proposition is based on formula (4.9) and property (5.8).

6. Askey-Wilson algebra relations for exceptional polynomials

The Askey-Wilson polynomials satisfy the so-called AW(3)-algebra [21], [19]. Among different equivalent forms

of this algebra we choose the following one, which possesses an obvious symmetry with respect to all 3 operators

(see, e.g. [12]):

XY − qY X = µ3Z + ω3, Y Z − qZY = µ1X + ω1, ZX − qXZ = µ2Y + ω2 (6.1)

Here q is a fixed parameter corresponding to the ”base” parameter in q-hypergeometric functions for the Askey-

Wilson polynomials [13]. The pairs of operators (X,Y ), (Y, Z) and (Z,X) play the role of ”Leonard pairs” (see

[19], [12]).

The Casimir operator

Q = (q2 − 1)XY Z + µ1X
2 + µ2q

2Y 2 + µ3Z
2 + (q + 1)(ω1X + ω2qY + ω3Z) (6.2)

commutes with all operators X,Y, Z.

The constants ωi, i = 1, 2, 2 (together with the value of the Casimir operator Q) define representations of

the AW (3) algebra (see [21] for details).

In the case of the little q-Jacobi operator, the realization of the AW(3) algebra is given by the operators

X = g(L+ 1 + qab), Y = x (6.3)

where

g =
1

(q2 − 1)
√
ab

(the arithmetic meaning of the square root is assumed), and the operator L coincides with the difference

eigenvalue operator for the little q-Jacobi polynomials in lhs of (2.5), i.e.

Lf(x) = a(bq − x−1)(f(qx) − f(x)) + (1 − x−1)(f(q−1x)− f(x)) (6.4)
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We then have the AW (3) relations

XY − qY X = Z + ω3, Y Z − qZY = 0, ZX − qXZ = Y + ω2, (6.5)

where

ω2 = − b+ 1

b(q + 1)
, ω3 = − a+ 1√

ab(q + 1)
.

The Casimir operator

Q = (q2 − 1)XY Z + q2Y 2 + Z2 + (q + 1)(ω2qY + ω3Z) (6.6)

takes the value

Q = −b−1

These relations survive in the limit q = −1.

Indeed, let us define the operators

X =
L0

2
− 1 + α+ β

2
, Y = x, Z = (x− 1)R, (6.7)

where L0 is the operator defined by (2.14) and the operator Y is multiplication by x.

Then it is elementary to verify that the operators X,Y, Z satisfy the relations

XY + Y X = Z + α, Y Z + ZY = 0, ZX +XZ = Y + β (6.8)

which corresponds to the AW (3) algebra with parameters q = −1, ω3 = α, ω1 = 0, ω2 = β.

It is easily verified that the Casimir operator commuting with X,Y, Z is

Q = Y 2 + Z2. (6.9)

In the case of of the realization (6.7) of the operators X,Y, Z, the Casimir operator becomes the identity

operator:

Q = I (6.10)

Note that relations (6.8) can be considered as an anticommutator version of some Lie algebra. Like in the

case of an ordinary Lie algebra, the Casimir operator is quadratic in the operators Y, Z (the cubic part XY Z

disappears in both “classical“ limits q = ±1).

The ”canonical“ representation of the algebra (6.8) is obtained in the basis Pn(x) of orthogonal polynomials.

In this basis the operator X is diagonal

XPn(x) =
λn + 1 + α+ β

2
Pn(x)

while the operator Y is 3-diagonal

Y Pn(x) = Pn+1(x) + bnPn(x) + unPn−1(x)
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The monomial basis Mn = xn provides another convenient representation, where the lower- and upper- trian-

gular operators X,Y are

XMn = ξnMn + ηnMn−1, Y Mn = Mn+1,

with the coefficients ξn, ηn given by (2.13)
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