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OPERATOR ALGEBRA QUANTUM GROUPS
OF UNIVERSAL GAUGE GROUPS

SNIGDHAYAN MAHANTA AND VARGHESE MATHAI

ABSTRACT. In this paper, we quantize universal gauge groups such as SU(00), in the o-C*-
algebra setting. More precisely, we propose a concise definition of o-C*-quantum groups
and explain the concept here. At the same time, we put this definition in the mathematical
context of countably compactly generated groups as well as C*-compact quantum groups.

If H is a compact and Hausdorff topological group, then the C*-algebra of all continu-
ous functions C(H) admits a comultiplication map A : C(H) — C(H)®C(H) arising from
the multiplication in H. This observation motivated Woronowicz (see, for instance, [12]),
amongst others such as Soibelman [I0], to introduce the notion of a C*-compact quantum
group in the setting of operator algebras as a unital C*-algebra with a coassociative comulti-
plication, satisfying a few other conditions. If the group H is only locally compact then the
situation becomes significantly more difficult. One of the reasons is that the multiplication
map m : H x H — H is no longer a proper map and one needs to introduce multiplier
algebras of C*-algebras to obtain a comultiplication, see for instance, Kustermans-Vaes [5],
and the excellent and thorough introduction to this theory [6]. In the sequel we show that
it H = @n H,, is a countably compactly generated group, i.e., H, C H,,; compact and
Hausdorft topological groups for all n € N and H is the direct limit, then a story similar to
the compact group case goes through using the general framework of o-C*-algebras as sys-
tematically developed by Phillips [8], 9], motivated by some earlier work by Arveson, Mallios,
Voiculescu, amongst others. There is a clean formulation of, what we call, o-C*-quantum
groups, which are noncommutative generalizations of C(H). Examples of such groups are
U(oo) =lim U(n), SU(co) =lim SU(n), where U(n) (resp. SU(n)) are the unitary (resp.
special unitary) groups. They are also known in the physics literature as universal gauge
groups, see Harvey-Moore [4] and Carey-Mickelsson [3]. Such spaces are not locally compact
and hence the existing literature on quantum groups cannot handle them. Moreover, locally
compact groups that are not compact, are also not countably compactly generated. We also
discuss in detail the interesting example of quantum versions of the universal special unitary
group, C(SU,(c0)).

A pro C*-algebra is an inverse limit of C*-algebras and *-homomorphisms, where the in-
verse limit is constructed inside the category of all topological x-algebras and continuous
x-homomorphisms. For the general theory of topological x-algebras one may refer to, for
instance, [7]. The topology of a pro C*-algebra is necessarily complete and Hausdorff. It
is not a C*-algebra in general; it would be so if, for instance, the directed set is finite.
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If the directed set is countable, then the inverse limit is called a o-C*-algebra. One can
choose a linearly directed cofinal subset inside any countable directed set and the passage
to a cofinal subset does not change the inverse limit. Therefore, we shall always identify
a o-C*-algebra A = l'mn A,, where n € N. The inverse limit could have also been con-
structed inside the category of C*-algebras; however, the two results will not agree. For
instance, if [/ = lim H, as above, then the inverse limit lim C(H,) inside the category of
topological x-algebras is C(H), whereas that inside the category of C*-algebras is Cy(H),
i.e., the norm bounded functions on H. It is known that C,(H) = C(SH), where SH is the
Stone-Cech compactification of H. Therefore, if one wants to model a space via its algebra
of all continuous functions then the former inverse limit is the appropriate one. Henceforth,
the inverse limits are always constructed inside the category of topological x-algebras. 1t is
known that any x-homomorphism between two pro C*-algebras is automatically continuous,
provided the domain is a o-C*-algebra (see Theorem 5.2. of [§]). Furthermore, the category
of commutative and unital o-C*-algebras with unital x-homomorphisms (automatically con-
tinuous) is contravariantly equivalent to the category of countably compactly generated and
Hausdorff spaces with continuous maps via the functor X +— C(X) (see Proposition 5.7. of
[8]). If A= gnn A,, B= @n B,, are two o-C*-algebras, then the minimal tensor product is
defined to be A® B = @n A, @minBn. Henceforth, AQB will always denote the minimal
or spatial tensor product between o-C*-algebras.

If H is a countably compactly generated and Hausdorff topological group, although the
multiplication map m : H x H — H is not proper, we get an induced comultiplication
map m* : C(H) — C(H x H) = C(H)®C(H), which will be coassociative owing to the
associativity of m. Motivated by the definition of Woronowicz (see also Definition 1 of [5]),
we propose:

Definition. A unital o-C*-algebra A is called a o-C*-quantum group if there is a unital
x-homomorphism A : A — A®A which satisfies coassociativity, i.e., (A®id)A = (iId®A)A
and such that the linear spaces A(A)(A®1) and A(A)(1®A) are dense in AQA.

Lemma. Let {A,}en be a countable inverse system of C*-algebras and let B, C A, be a
dense subset for all n. Then @n B, is a dense subset of the o-C*-algebra @n A,

Proof. This is the Corollary to Proposition 9 in §4-4 of [2]. O

Example. Let {A,,,0, : A, — A,_1}nen be a countable inverse system of C*-compact quan-
tum groups with 6, surjective for all n. Furthermore, let us assume that the comultiplication
homomorphisms A, form a morphism of inverse systems of C*-algebras {A,} : {A,} —
{A,®A,}. Then (A,A) = (@n An,l'gln A,) is a o-C*-quantum group. Indeed, the density
of the linear spaces A(A)(A®1) and A(A)(1QA) inside ARA follow from the above Lemma.

If G is set of generators and R is a set of admissible relations (see Definition 1.1. of
[1]) one can always form a universal C*-algebra C*(G, R). For instance, the universal C*-
algebra generated by one generator x, subject to the relation z*z = 1 = xx*, is isomorphic to
C(SY). Let {(Gy, R;)}ien be a countable family of admissible generators and relations, so that
C*(Gy, R;) exist for all 7. Let us further assume that all the relations R; are algebraic (||z]] < 1
is not algebraic whereas x*x = 1 is) and that there are surjective maps 0; : G; — G;_1, so

that the following diagrams commutes:
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Morever, we require that 6;(G;) is compatible with R; ; for all ¢ > 1 in the following sense:
Let C[G; [ [ G§] denote the free complex algebra on the generators G; [[ GF. Here [ denotes
disjoint union and G} = {g*| g € G;} (formal adjoints). Since the relations are algebraic,
each R; is a subset of C[G;[[G]. The maps 6; extend uniquely to a complex algebra
homomorphism 6; : C[G;[[Gi] — C|[G;—1 [ Gi_;]. We require that 6;(R;) = R;—1. The
surjective maps 6; induce surjective s-homomorphisms 6; : C*(G;, R;) — C*(G;_1, Ri_1)
and {C*(G;, R;), 6;}ien forms a countable inverse system of C*-algebras. We may form the
inverse limit o-C*-algebra l&nZ C*(G;, R;). Setting R = l&nZ R; with canonical projection
maps p; : R — R;, one observes that (G, R) is a weakly admissible set of generators and
relations (see Definition 1.3.4 and Example 1.3.5.(1) of [9]), so that one may construct
the universal pro C*-algebra C*(G, R) (see Proposition 1.3.6. of [9]). The maps p; induce
surjective *-homomorphisms p; : C*(G, R) — C*(G;, R;) and Equation (II) says that they are
compatible with the inverse system. Consequently, there is a canonical induced continuous
s-homomorphism 7 : C*(G, R) — lim, C*(Gy, R;).

Theorem. The x-homomorphism n : C*(G, R) — lim, C*(G;, R;) is an isomorphism.

Proof. Let us first show that lim, C*(G;, R;) is a universal representation of (G, R), i.e., there
is a map ¢ : G — lim, C*(G;, R;) such that ((G) satisfies R inside Jim, C*(Gy, R;) and given
any map p : G — B (B a pro C*-algebra) such that p(G) satisfies R inside B, there is a
unique continuous x-homomorphism & : @Z C*(Gy, R;) — B making the following diagram
commute:

B.

The map ¢ : G — lim, C*(G;, R;) is defined as g — {pi(g)}. It follows from Equation (I]) that
{pi(g)} is a coherent system of elements in Jm, C*(Gy, R;). Let F(G) (resp. F(G;)) denote
the free nonunital complex *-algebra generated by G [[G* (resp G;[[ G}). Then C*(G, R)
(resp. C*(Gy, R;)) is defined via a certain Hausdorff completion of F(G) (resp. F(G;))
with respect to representations in pro C*-algebras (resp. C*-algebras) satisfying R (resp.
R;). By the above Lemma it suffices to define  on coherent sequences of the form {w;},
where wj is an finite C-linear combination of words in G; [ [ G}, which extends uniquely to a
continuous function on the Hausdorff completions. There is a unique choice for k(w;) forced
by the compatibility requirement, i.e., k(w;) = p(w;). Note that p extends uniquely to a
s-homomorphism F'(G) — B. By construction x is a *-homomorphism and it is continuous
since @Z C*(G;, R;) is a o-C*-algebra. Setting B = C*(G, R) in the above diagram one
finds a *-homomorphism, which can be checked to be the inverse of 7. 0
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Remark. All matriz C*-compact quantum groups considered, for instance, in [11], 12], such
that the relations put a bound on the norms of the generators, are of the form C*(G, R),
where (G, R) is an admissible set of generators and relations.

Our next goal is to outline the construction of quantum universal special unitary group,
C(SU,(00)). First recall that for ¢ € (0,1), the C*-algebra C(SU,(n)) is the universal
unital C*-algebra generated by n? elements {u;; : 4,7 = 1,...,n} which satisfy the following
relations

n n
* *
(3) E kW), = Oij, E UpUkj = Oij
k=1 k=1

n n n

i1=lia=1  in=1
where

B o 0 whenever iy, -+ 4, are not distinct;
1112+++in (_q)é(il,i2,~~~,in)'

Here /(o) denotes its length of a permutation o on {1,2,--- ,n}. The C*-algebra C(SU,(n))
has a C*-compact quantum group structure with the comultiplication A given by

A(UZJ> = Zuzk & Uk -
k

Denoting the generators of C'(SU,(n—1)) by v;;, the map 6,, : C(SU,(n)) — C(SU,(n—1))
defined by

o= Juy Hl1<ij<n-—1,

is a surjective unital C*-algebra homomorphism such that the following diagram commutes

An

C(SUy(n))&C(SU,(n))

0’” l/ \L 07l®07l

C(SU,(n — 1)) S O(SU,(n —1)&C(SU,(n — 1))

One can verify this assertion by a routine calculation on the generators. Consequently,
for n > 2 the families {C(SU,(n)), 6,} and {C(SU,(n))®@C(SU,(n)),0,®0,} form countable
inverse systems of C*-algebras and {A,} : {C(SU,(n))}—={C(SU,(n))&C(SU,(n))} becomes
a morphism of inverse systems of C*-algebras. We may form the inverse limit o-C*-algebra
lm C(SU,(n)), which we denote by C(SU,(c0)). Then C(SU,(c0)) is a o-C*-quantum
group, since it is the inverse limit of C*-compact quantum groups, where the comultiplication
A on C(SU,(c0)) is defined as A = Hm A, (see the Example above).

An immediate application of the above Theorem enables us to describe C'(SU,(c0)) ex-

plicitly in terms of generators and relations.
4



Corollary. Let G = {u;;}ijen and R denote the inverse limit of the relations in equations

@)

and @) for alln > 2. Let p, : G — G, be the canonical map, where G, = {u;j}1<i j<n-

By construction, p,(R) = R,,, where R,, denotes the relations in equations [B) and (@). Then

[1]
2]
3]

[10]
[11]

[12]

C(SU,(0)) = C*(G, R).
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