ON FUZZY-Γ-IDEALS OF Γ-ABEL-GRASSMANN'S GROUPOIDS

*Madad Khan and Faisal

Department of Mathematics COMSATS Institute of Information Technology Abbottabad, Pakistan

*E-mail: madadmath@yahoo.com, yousafzaimath@yahoo.com

Abstract. In this paper, we have introduced the notion of Γ -fuzzification in Γ -AG-groupoids which is in fact the generalization of fuzzy AG-groupoids. We have studied several properties of an intra-regular Γ -AG^{**}-groupoids in terms of fuzzy Γ -left (right, two-sided, quasi, interior, generalized bi-, bi-) ideals. We have proved that all fuzzy Γ -ideals coincide in intra-regular Γ -AG^{**}-groupoids. We have also shown that the set of fuzzy Γ -two-sided ideals of an intra-regular Γ -AG^{**}-groupoid forms a semilattice structure.

Keywords. Γ -AG-groupoid, intra-regular Γ -AG^{**}-groupoid and fuzzy Γ -ideals.

1. INTRODUCTION

Abel-Grassmann's groupoid (AG-groupoid) is the generalization of semigroup theory with wide range of usages in theory of flocks [12]. The fundamentals of this non-associative algebraic structure was first discovered by M. A. Kazim and M. Naseeruddin in 1972 [4]. AG-groupoid is a non-associative algebraic structure mid way between a groupoid and a commutative semigroup. It is interesting to note that an AG-groupoid with right identity becomes a commutative monoid [8].

After the introduction of fuzzy sets by L. A. Zadeh [17] in 1965, there have been a number of generalizations of this fundamental concept. A. Rosenfeld [13] gives the fuzzification of algebraic structures and give the concept of fuzzy subgroups. The ideal of fuzzification in semigroup was first introduced by N. Kuroki [6].

The concept of a Γ -semigroup has been introduced by M. K. Sen [14] in 1981 as follows: A nonempty set S is called a Γ -semigroup if $x\alpha y \in S$ and $(x\alpha y)\beta z = x\alpha(y\beta z)$ for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$. A Γ -semigroup is the generalization of semigroup.

In this paper we characterize Γ -AG^{**}-groupoids by the properties of their fuzzy Γ -ideals and generalize some results. A Γ -AG-groupoid is the generalization of AG-groupoid. Let S and Γ be any nonempty sets. If there exists a mapping $S \times \Gamma \times S \to S$ written as (x, α, y) by $x\alpha y$, then S is called a Γ -AG-groupoid if $x\alpha y \in S$ such that the following Γ -left invertive law holds for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$

(1) $(x\alpha y)\beta z = (z\alpha y)\beta x.$

²⁰⁰⁰ Mathematics Subject Classification. 20M10, 20N99.

A $\Gamma\text{-}\mathrm{AG}\text{-}\mathrm{groupoid}$ also satisfies the $\Gamma\text{-}\mathrm{medial}$ law for all $w,x,y,z\in S$ and $\alpha,\beta,\gamma\in\Gamma$

(2)
$$(w\alpha x)\beta(y\gamma z) = (w\alpha y)\beta(x\gamma z).$$

Note that if a Γ -AG-groupoid contains a left identity, then it becomes an AGgroupoid with left identity.

A Γ -AG-groupoid is called a Γ -AG**-groupoid if it satisfies the following law for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$

(3)
$$x\alpha(y\beta z) = y\alpha(x\beta z).$$

A $\Gamma\text{-}\mathrm{AG}^{**}\text{-}\mathrm{groupoid}$ also satisfies the $\Gamma\text{-}\mathrm{paramedial}$ law for all $w,x,y,z\in S$ and $\alpha,\beta,\gamma\in\Gamma$

(4)
$$(w\alpha x)\beta(y\gamma z) = (z\alpha y)\beta(x\gamma w).$$

2. Preliminaries

The following definitions are available in [15].

Let S be a Γ -AG-groupoid, a non-empty subset A of S is called a Γ -AG-subgroupoid if $a\gamma b \in A$ for all $a, b \in A$ and $\gamma \in \Gamma$ or if $A\Gamma A \subseteq A$.

A subset A of a Γ -AG-groupoid S is called a Γ -left (right) ideal of S if $S\Gamma A \subseteq A$ ($A\Gamma S \subseteq A$) and A is called a Γ -two-sided-ideal of S if it is both a Γ -left ideal and a Γ -right ideal.

A subset A of a Γ -AG-groupoid S is called a Γ -generalized bi-ideal of S if $(A\Gamma S)\Gamma A \subseteq A$.

A sub Γ -AG-groupoid A of a Γ -AG-groupoid S is called a Γ -bi-ideal of S if $(A\Gamma S)\Gamma A \subseteq A$.

A subset A of a Γ -AG-groupoid S is called a Γ -interior ideal of S if $(S\Gamma A) \Gamma S \subseteq A$. A subset A of a Γ -AG-groupoid S is called a Γ -quasi-ideal of S if $S\Gamma A \cap A\Gamma S \subseteq A$.

A fuzzy subset f of a given set S is described as an arbitrary function $f: S \longrightarrow [0,1]$, where [0,1] is the usual closed interval of real numbers.

Now we introduce the following definitions.

Let f and g be any fuzzy subsets of a Γ -AG-groupoid S, then the Γ -product $f \circ_{\Gamma} g$ is defined by

$$(f \circ_{\Gamma} g)(a) = \begin{cases} \bigvee_{a=b\alpha c} \{f(b) \land g(c)\}, \text{ if } \exists \ b, c \in S \ni \ a = b\alpha c \text{ where } \alpha \in \Gamma.\\ 0, & \text{otherwise.} \end{cases}$$

A fuzzy subset f of a Γ -AG-groupoid S is called a fuzzy Γ -AG-subgroupoid if $f(x\alpha y) \ge f(x) \land f(y)$ for all $x, y \in S$ and $\alpha \in \Gamma$.

A fuzzy subset f of a Γ -AG-groupoid S is called fuzzy Γ -left ideal of S if $f(x\alpha y) \ge f(y)$ for all $x, y \in S$ and $\alpha \in \Gamma$.

A fuzzy subset f of a Γ -AG-groupoid S is called fuzzy Γ -right ideal of S if $f(x\alpha y) \ge f(x)$ for all $x, y \in S$ and $\alpha \in \Gamma$.

A fuzzy subset f of a Γ -AG-groupoid S is called fuzzy Γ -two-sided ideal of S if it is both a fuzzy Γ -left ideal and a fuzzy Γ -right ideal of S.

A fuzzy subset f of a Γ -AG-groupoid S is called fuzzy Γ -generalized bi-ideal of S if $f((x\alpha y)\beta z) \ge f(x) \land f(z)$, for all x, y and $z \in S$ and $\alpha, \beta \in \Gamma$.

A fuzzy Γ -AG-subgroupoid f of a Γ -AG-groupoid S is called fuzzy Γ -bi-ideal of S if $f((x\alpha y)\beta z) \ge f(x) \land f(z)$, for all x, y and $z \in S$ and $\alpha, \beta \in \Gamma$.

A fuzzy subset f of a Γ -AG-groupoid S is called fuzzy Γ -interior ideal of S if $f((x\alpha y)\beta z) \ge f(y)$, for all x, y and $z \in S$ and $\alpha, \beta \in \Gamma$.

A fuzzy subset f of a Γ -AG-groupoid S is called fuzzy Γ -interior ideal of S if $(f \circ_{\Gamma} S) \cap (S \circ_{\Gamma} f) \subseteq f$.

3. Γ -fuzzification in Γ -AG-groupoids

Example 1. Let $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. The following multiplication table shows that S is an AG-groupoid and also an AG-band.

•	1	2	3	4	5	6	7	8	9
1	1	4	7	3	6	8	2	9	5
2	9	2	5	7	1	4	8	6	3
3	6	8	3	5	9	2	4	1	7
4	5	9	2	4	7	1	6	3	8
5	3	6	8	2	5	9	1	7	4
6	7	1	4	8	3	6	9	5	2
7	8	3	6	9	2	5	7	4	1
8	2	5	9	1	4	7	3	8	6
9	4	7	1	6	8	3	5	2	9

Clearly S is non-commutative and non-associative because $23 \neq 32$ and $(42)3 \neq 4(23)$.

Let $\Gamma = \{\alpha, \beta\}$ and define a mapping $S \times \Gamma \times S \to S$ by $a\alpha b = a^2 b$ and $a\beta b = ab^2$ for all $a, b \in S$. Then it is easy to see that S is a Γ -AG-groupoid and also a Γ -AGband. Note that S is non-commutative and non-associative because $9\alpha 1 \neq 1\alpha 9$ and $(6\alpha 7)\beta 8 \neq 6\alpha(7\beta 8)$.

Example 2. Let $\Gamma = \{1, 2, 3\}$ and define a mapping $\mathbb{Z} \times \Gamma \times \mathbb{Z} \to \mathbb{Z}$ by $a\beta b = b - \beta - a - \beta - z$ for all $a, b, z \in \mathbb{Z}$ and $\beta \in \Gamma$, where " - " is a usual subtraction of integers. Then \mathbb{Z} is a Γ -AG-groupoid. Indeed

$$(a\beta b)\gamma c = (b-\beta-a-\beta-z)\gamma c = c-\gamma - (b-\beta-a-\beta-z)-\gamma - z$$
$$= c-\gamma - b+\beta + a+\beta + z-\gamma - z = c-b+2\beta + a-2\gamma.$$

and

$$\begin{aligned} (c\beta b)\gamma a &= (b-\beta-c-\beta-z)\gamma a = a-\gamma-(b-\beta-c-\beta-z)-\gamma-z \\ &= a-\gamma-b+\beta+c+\beta+z-\gamma-z = a-2\gamma-b+2\beta+c \\ &= c-b+2\beta+a-2\gamma. \end{aligned}$$

Which shows that $(a\beta b)\gamma c = (c\beta b)\gamma a$ for all $a, b, c \in \mathbb{Z}$ and $\beta, \gamma \in \Gamma$. This example is the generalization of a Γ -AG-groupoid given by T. Shah and I. Rehman (see [15]).

Example 3. Assume that S is an AG-groupoid with left identity and let $\Gamma = \{1\}$. Define a mapping $S \times \Gamma \times S \to S$ by x1y = xy for all $x, y \in S$, then S is a Γ -AG-groupoid. Thus we have seen that every AG-groupoid is a Γ -AG-groupoid for $\Gamma = \{1\}$, that is, Γ -AG-groupoid is the generalization of AG-groupoid. Also S is a Γ -AG**-groupoid because x1(y1z) = y1(x1z) for all $x, y, z \in S$.

Example 4. Let S be an AG-groupoid and $\Gamma = \{1\}$. Define a mapping $S \times \Gamma \times S \rightarrow S$ by x1y = xy for all $x, y \in S$, then we know that S is a Γ -AG-groupoid. Let L be a left ideal of an AG-groupoid S, then $S\Gamma L = SL \subseteq L$. Thus L is Γ -left ideal

of S. This shows that every Γ -left ideal of Γ -AG-groupoid is a generalization of a left ideal in an AG-groupoid (for suitable Γ). Similarly all the fuzzy Γ -ideals are the generalizations of fuzzy ideals.

By keeping the generalization, the proof of Lemma 1 and Theorem 1 are same as in [5].

Lemma 1. Let f be a fuzzy subset of a Γ -AG-groupoid S, then $S \circ_{\Gamma} f = f$.

Theorem 1. Let S be a Γ -AG-groupoid, then the following properties hold in S.

(i) $(f \circ_{\Gamma} g) \circ_{\Gamma} h = (h \circ_{\Gamma} g) \circ_{\Gamma} f$ for all fuzzy subsets f, g and h of S.

(*ii*) $(f \circ_{\Gamma} g) \circ_{\Gamma} (h \circ_{\Gamma} k) = (f \circ_{\Gamma} h) \circ_{\Gamma} (g \circ_{\Gamma} k)$ for all fuzzy subsets f, g, h and k of S.

Theorem 2. Let S be a Γ -AG^{**}-groupoid, then the following properties hold in S.

(i) $f \circ_{\Gamma} (g \circ_{\Gamma} h) = g \circ_{\Gamma} (f \circ_{\Gamma} h)$ for all fuzzy subsets f, g and h of S.

(*ii*) $(f \circ_{\Gamma} g) \circ_{\Gamma} (h \circ_{\Gamma} k) = (k \circ_{\Gamma} h) \circ_{\Gamma} (g \circ_{\Gamma} f)$ for all fuzzy subsets f, g, h and k of S.

Proof. (i) : Assume that x is an arbitrary element of a Γ -AG^{**}-groupoid S and let $\alpha, \beta \in \Gamma$. If x is not expressible as a product of two elements in S, then $(f \circ_{\Gamma} (g \circ_{\Gamma} h))(x) = 0 = (g \circ_{\Gamma} (f \circ_{\Gamma} h))(x)$. Let there exists y and z in S such that $x = y\alpha z$, then by using (3), we have

$$\begin{aligned} \left(\left(f \circ_{\Gamma} g\right) \circ_{\Gamma} \left(h \circ_{\Gamma} k\right) \right) (x) &= \bigvee_{x=y\alpha z} \left\{ \left(f \circ_{\Gamma} g\right) (y) \wedge \left(h \circ_{\Gamma} k\right) (z) \right\} \\ &= \bigvee_{x=y\alpha z} \left\{ \bigvee_{y=p\beta q} \left\{f(p) \wedge g(q) \right\} \wedge \bigvee_{z=u\gamma v} \left\{h(u) \wedge k(v) \right\} \right\} \\ &= \bigvee_{x=(p\beta q)\alpha(u\gamma v)} \left\{f(p) \wedge g(q) \wedge h(u) \wedge k(v) \right\} \\ &= \bigvee_{x=(v\beta u)\alpha(q\gamma p)} \left\{k(v) \wedge h(u) \wedge_{\Gamma} g(q) \wedge f(p) \right\} \\ &= \bigvee_{x=m\alpha n} \left\{ \bigvee_{m=v\beta u} \left\{k(v) \wedge h(u) \right\} \wedge \bigvee_{n=q\gamma p} \left\{g(q) \wedge f(p) \right\} \right\} \\ &= \bigvee_{x=m\alpha n} \left\{(k \circ_{\Gamma} h)(m) \wedge (g \circ_{\Gamma} f)(n) \right\} \\ &= \left((k \circ_{\Gamma} h) \circ_{\Gamma} (g \circ_{\Gamma} f))(x). \end{aligned}$$

If z is not expressible as a product of two elements in S, then $(f \circ_{\Gamma} (g \circ_{\Gamma} h))(x) = 0 = (g \circ_{\Gamma} (f \circ_{\Gamma} h))(x)$. Hence, $(f \circ_{\Gamma} (g \circ_{\Gamma} h))(x) = (g \circ_{\Gamma} (f \circ_{\Gamma} h))(x)$ for all x in S.

(*ii*): If any element x of S is not expressible as product of two elements in S at any stage, then, $((f \circ_{\Gamma} g) \circ_{\Gamma} (h \circ_{\Gamma} k))(x) = 0 = ((k \circ_{\Gamma} h) \circ_{\Gamma} (g \circ_{\Gamma} f))(x)$. Assume that $\alpha, \beta, \gamma \in \Gamma$ and let there exists y, z in S such that $x = y\alpha z$, then by using (4),

we have

$$\begin{aligned} \left(\left(f\circ_{\Gamma}g\right)\circ_{\Gamma}\left(h\circ_{\Gamma}k\right)\right)\left(x\right) &= \bigvee_{x=y\alpha z} \left\{\left(f\circ_{\Gamma}g\right)\left(y\right)\wedge\left(h\circ_{\Gamma}k\right)\left(z\right)\right\} \\ &= \bigvee_{x=y\alpha z} \left\{\bigvee_{y=p\beta q} \left\{f(p)\wedge g(q)\right\}\wedge\bigvee_{z=u\gamma v} \left\{h(u)\wedge k(v)\right\}\right\} \\ &= \bigvee_{x=(p\beta q)\alpha(u\gamma v)} \left\{f(p)\wedge g(q)\wedge h(u)\wedge k(v)\right\} \\ &= \bigvee_{x=(v\beta u)\alpha(q\gamma p)} \left\{k(v)\wedge h(u)\wedge_{\Gamma}g(q)\wedge f(p)\right\} \\ &= \bigvee_{x=m\alpha n} \left\{\bigvee_{m=v\beta u} \left\{k(v)\wedge h(u)\right\}\wedge\bigvee_{n=q\gamma p} \left\{g(q)\wedge f(p)\right\}\right\} \\ &= \bigvee_{x=m\alpha n} \left\{(k\circ_{\Gamma}h)(m)\wedge(g\circ_{\Gamma}f)(n)\right\} \\ &= \left((k\circ_{\Gamma}h)\circ_{\Gamma}(g\circ_{\Gamma}f))(x). \end{aligned}$$

By keeping the generalization, the proof of the following two lemma's are same as in [7].

Lemma 2. Let f be a fuzzy subset of a Γ -AG-groupoid S, then the following properties hold.

- (i) f is a fuzzy Γ -AG-subgroupoid of S if and only if $f \circ_{\Gamma} f \subseteq f$.
- (*ii*) f is a fuzzy Γ -left (right) ideal of S if and only if $S \circ_{\Gamma} f \subseteq f$ ($f \circ_{\Gamma} S \subseteq f$). (*iii*) f is a fuzzy Γ -two-sided ideal of S if and only if $S \circ_{\Gamma} f \subseteq f$ and $f \circ_{\Gamma} S \subseteq f$.

Lemma 3. Let f be a fuzzy Γ -AG-subgroupoid of a Γ -AG-groupoid S, then f is a fuzzy Γ -bi-ideal of S if and only if $(f \circ_{\Gamma} S) \circ_{\Gamma} f \subseteq f$.

Lemma 4. Let f be any fuzzy Γ -right ideal and g be any fuzzy Γ -left ideal of Γ -AG-groupoid S, then $f \cap g$ is a fuzzy Γ -quasi ideal of S.

Proof. It is easy to observe the following

$$((f \cap g) \circ_{\Gamma} S) \cap (S \circ_{\Gamma} (f \cap g)) \subseteq (f \circ_{\Gamma} S) \cap (S \circ_{\Gamma} g) \subseteq f \cap g.$$

Lemma 5. Every fuzzy Γ -quasi ideal of a Γ -AG-groupoid S is a fuzzy Γ -AGsubgroupoid of S.

Proof. Let f be any fuzzy Γ -quasi ideal of S, then $f \circ_{\Gamma} f \subseteq f \circ_{\Gamma} S$, and $f \circ_{\Gamma} f \subseteq S \circ_{\Gamma} f$, therefore

$$f \circ_{\Gamma} f \subseteq f \circ_{\Gamma} S \cap S \circ_{\Gamma} f \subseteq f.$$

Hence f is a fuzzy Γ -AG-subgroupoid of S.

A fuzzy subset f of a Γ -AG-groupoid S is called Γ -idempotent, if $f \circ_{\Gamma} f = f$.

Lemma 6. In a Γ -AG-groupoid S, every Γ -idempotent fuzzy Γ -quasi ideal is a fuzzy Γ -bi-ideal of S.

Proof. Let f be any fuzzy Γ -quasi ideal of S, then by lemma 5, f is a fuzzy Γ -AG-subgroupoid. Now by using (2), we have

$$(f \circ_{\Gamma} S) \circ_{\Gamma} f \subseteq (S \circ_{\Gamma} S) \circ_{\Gamma} f \subseteq S \circ_{\Gamma} f$$

and

$$(f \circ_{\Gamma} S) \circ_{\Gamma} f = (f \circ_{\Gamma} S) \circ_{\Gamma} (f \circ_{\Gamma} f) = (f \circ_{\Gamma} f) \circ_{\Gamma} (S \circ_{\Gamma} f)$$
$$\subseteq f \circ_{\Gamma} (S \circ_{\Gamma} S) \subseteq f \circ_{\Gamma} S.$$

This implies that $(f \circ_{\Gamma} S) \circ_{\Gamma} f \subseteq (f \circ_{\Gamma} S) \cap (S \circ_{\Gamma} f) \subseteq f$. Hence by lemma 3, f is a fuzzy Γ -bi-ideal of S.

Lemma 7. In a Γ -AG-groupoid S, each one sided fuzzy Γ -(left, right) ideal is a fuzzy Γ -quasi ideal of S.

Proof. It is obvious.

Corollary 1. In a Γ -AG-groupoid S, every fuzzy Γ -two- sided ideal of S is a fuzzy Γ -quasi ideal of S.

Lemma 8. In a Γ -AG-groupoid S, each one sided fuzzy Γ -(left, right) ideal of S is a fuzzy Γ -generalized bi-ideal of S.

Proof. Assume that f be any fuzzy Γ -left ideal of S. Let $a, b, c \in S$ and let $\alpha, \beta \in \Gamma$. Now by using (1), we have $f((a\alpha b)\beta c) \geq f((c\alpha b)\beta a) \geq f(a)$ and $f((a\alpha b)\beta c) \geq f(c)$. Thus $f((a\alpha b)\beta c) \geq f(a) \wedge f(c)$. Similarly in the case of fuzzy Γ -right ideal. \Box

Lemma 9. Let f or g is a Γ -idempotent fuzzy Γ -quasi ideal of a Γ -AG^{**}-groupoid S, then $f \circ_{\Gamma} g$ or $g \circ_{\Gamma} f$ is a fuzzy Γ -bi-ideal of S.

Proof. Clearly $f \circ g$ is a fuzzy Γ -AG-subgroupoid. Now using lemma 3, (1), (4) and (2), we have

$$\begin{array}{rcl} \left(\left(f \circ_{\Gamma} g \right) \circ_{\Gamma} S \right) \circ_{\Gamma} \left(f \circ_{\Gamma} g \right) & = & \left(\left(S \circ_{\Gamma} g \right) \circ_{\Gamma} f \right) \circ_{\Gamma} \left(f \circ_{\Gamma} g \right) \\ & \subseteq & \left(\left(S \circ_{\Gamma} S \right) \circ_{\Gamma} f \right) \circ_{\Gamma} \left(f \circ_{\Gamma} g \right) \\ & = & \left(S \circ_{\Gamma} f \right) \circ_{\Gamma} \left(f \circ_{\Gamma} g \right) \\ & = & \left(g \circ_{\Gamma} f \right) \circ_{\Gamma} \left(f \circ_{\Gamma} S \right) \\ & = & \left(\left(f \circ_{\Gamma} S \right) \circ_{\Gamma} f \right) \circ_{\Gamma} g \subseteq \left(f \circ_{\Gamma} g \right). \end{array}$$

Similarly we can show that $g \circ f$ is a fuzzy Γ -bi-ideal of S.

Lemma 10. The product of two fuzzy Γ -left (right) ideal of a Γ -AG^{**}-groupoid S is a fuzzy Γ -left (right) ideal of S.

Proof. Let f and g be any two fuzzy Γ -left ideals of S, then by using (3), we have

$$S \circ_{\Gamma} (f \circ_{\Gamma} g) = f \circ_{\Gamma} (S \circ_{\Gamma} g) \subseteq f \circ_{\Gamma} g.$$

Let f and g be any two fuzzy Γ -right ideals of S, then by using (2), we have

$$(f \circ_{\Gamma} g) \circ_{\Gamma} S = (f \circ_{\Gamma} g) \circ_{\Gamma} (S \circ_{\Gamma} S) = (f \circ_{\Gamma} S) \circ_{\Gamma} (g \circ_{\Gamma} S) \subseteq f \circ_{\Gamma} g.$$

An element a of a Γ -AG-groupoid S is called an intra-regular if there exists x, $y \in S$ and $\beta, \gamma, \xi \in \Gamma$ such that $a = (x\beta(a\xi a))\gamma y$ and S is called intra-regular if every element of S is intra-regular.

Note that in an intra-regular Γ -AG-groupoid S, we can write $S \circ_{\Gamma} S = S$.

Example 5. Let $S = \{1, 2, 3, 4, 5\}$ be an AG-groupoid with the following multiplication table.

	a	b	c	d	e
a	a	a	a	a	a
b	a	b	b	b	b
c	a	b	d	e	c
d	a	b	c	d	e
e	a	b	e	c	d

Let $\Gamma = \{1\}$ and define a mapping $S \times \Gamma \times S \to S$ by x1y = xy for all $x, y \in S$, then S is a Γ -AG^{**}-groupoid because (x1y)1z = (z1y)1x and x1(y1z) = y1(x1z) for all $x, y, z \in S$. Also S is an intra-regular because a = (b1(a1a))1a, b = (c1(b1b))1d,c = (c1(c1c))1d, d = (c1(d1d))1e, e = (c1(e1e))1c.

It is easy to observe that $\{a, b\}$ is a Γ -two-sided ideal of an intra-regular Γ -AG^{**}-groupoid S.

It is easy to observe that in an intra-regular Γ -AG-groupoid S, the following holds

(5)
$$S = S\Gamma S.$$

Lemma 11. A fuzzy subset f of an intra-regular Γ -AG-groupoid S is a fuzzy Γ -right ideal if and only if it is a fuzzy Γ -left ideal.

Proof. Assume that f is a fuzzy Γ -right ideal of S. Since S is an intra-regular Γ -AG-groupoid, so for each $a \in S$ there exist $x, y \in S$ and $\beta, \xi, \gamma \in \Gamma$ such that $a = (x\beta(a\xi a))\gamma y$. Now let $\alpha \in \Gamma$, then by using (1), we have

$$f(a\alpha b) = f(((x\beta(a\xi a))\gamma y)\alpha b) = f((b\gamma y)\alpha(x\beta(a\xi a))) \ge f(b\gamma y) \ge f(b).$$

Conversely, assume that f is a fuzzy Γ -left ideal of S. Now by using (1), we have

$$f(a\alpha b) = f(((x\beta(a\xi a))\gamma y)\alpha b) = f((b\gamma y)\alpha(x\beta(a\xi a)))$$

$$\geq f(x\beta(a\xi a)) \geq f(a\xi a) \geq f(a).$$

Theorem 3. Every fuzzy Γ -left ideal of an intra-regular Γ -AG^{**}-groupoid S is Γ -idempotent.

Proof. Assume that f is a fuzzy Γ -left ideal of S, then clearly $f \circ_{\Gamma} f \subseteq S \circ_{\Gamma} f \subseteq f$. Since S is an intra-regular Γ -AG-groupoid, so for each $a \in S$ there exist $x, y \in S$ and $\beta, \gamma, \xi \in \Gamma$ such that $a = (x\beta(a\xi a))\gamma y$. Now let $\alpha \in \Gamma$, then by using (3) and (1), we have

$$a = (x\beta(a\xi a))\gamma y = (a\beta(x\xi a))\gamma y = (y\beta(x\xi a))\gamma a.$$

Thus, we have

$$(f \circ_{\Gamma} f)(a) = \bigvee_{a=(y\beta(x\xi a))\gamma a} \{f(y\beta(x\xi a)) \land f(a)\} \ge f(y\beta(x\xi a)) \land f(a)$$
$$\ge f(a) \land f(a) = f(a).$$

Corollary 2. Every fuzzy Γ -two-sided ideal of an intra-regular Γ -AG^{**}-groupoid S is Γ -idempotent.

Theorem 4. In an intra-regular Γ - AG^{**} -groupoid $S, f \cap g = f \circ_{\Gamma} g$ for every fuzzy Γ -right ideal f and every fuzzy Γ -left ideal g of S.

Proof. Assume that S is intra-regular Γ -AG^{**}-groupoid. Let f and g be any fuzzy Γ -right and fuzzy Γ -left ideal of S, then

 $f \circ_{\Gamma} g \subseteq f \circ_{\Gamma} S \subseteq f$ and $f \circ_{\Gamma} g \subseteq S \circ_{\Gamma} g \subseteq g$ which implies that $f \circ_{\Gamma} g \subseteq f \cap g$. Since S is an intra-regular, so for each $a \in S$ there exist $x, y \in S$ and $\beta, \xi, \gamma \in \Gamma$ such that $a = (x\beta(a\xi a))\gamma y$. Now let $\psi \in \Gamma$, then by using (3), (1), (5) and (4), we have

$$a = (x\beta(a\xi a))\gamma y = (a\beta(x\xi a))\gamma y = (y\beta(x\xi a))\gamma a$$

= $((u\psi v)\beta(x\xi a))\gamma a = ((a\psi x)\beta(v\xi u))\gamma a.$

Therefore, we have

$$\begin{array}{ll} (f \circ_{\Gamma} g)(a) &=& \bigvee_{a = ((a\psi x)\beta(v\xi u))\gamma a} \left\{ f((a\psi x)\beta(v\xi u)) \wedge g(a) \right\} \\ &\geq & f((a\psi x)\beta(v\xi u)) \wedge g(a) \\ &\geq & f(a) \wedge g(a) = (f \cap g)(a). \end{array}$$

Corollary 3. In an intra-regular Γ - AG^{**} -groupoid $S, f \cap g = f \circ_{\Gamma} g$ for every fuzzy Γ -right ideal f and g of S.

Theorem 5. The set of fuzzy Γ -two-sided ideals of an intra-regular Γ -AG^{**}-groupoid S forms a semilattice structure with identity S.

Proof. Let \mathbb{I}_{Γ} be the set of fuzzy Γ -two-sided ideals of an intra-regular Γ -AG^{**}groupoid S and f, g and $h \in \mathbb{I}_{\Gamma}$, then clearly \mathbb{I}_{Γ} is closed and by corollory 2 and corollory 3, we have $f = f \circ_{\Gamma} f$ and $f \circ_{\Gamma} g = f \cap g$, where f and g are fuzzy Γ -two-sided ideals of S. Clearly $f \circ_{\Gamma} g = g \circ_{\Gamma} f$, and now by using (1), we get $(f \circ_{\Gamma} g) \circ_{\Gamma} h = (h \circ_{\Gamma} g) \circ_{\Gamma} f = f \circ_{\Gamma} (g \circ_{\Gamma} h)$. Also by using (1) and lemma 1, we have

$$f \circ_{\Gamma} S = (f \circ_{\Gamma} f) \circ_{\Gamma} S = (S \circ_{\Gamma} f) \circ_{\Gamma} f = f \circ_{\Gamma} f = f.$$

A fuzzy Γ -two-sided ideal f of a Γ -AG-groupoid S is said to be a Γ -strongly irreducible if and only if for fuzzy Γ -two-sided ideals g and h of S, $g \cap h \subseteq f$ implies that $g \subseteq f$ or $h \subseteq f$.

The set of fuzzy Γ -two-sided ideals of a Γ -AG-groupoid S is called a Γ -totally ordered under inclusion if for any fuzzy Γ -two-sided ideals f and g of S either $f \subseteq g$ or $g \subseteq f$.

A fuzzy Γ -two-sided ideal h of a Γ -AG-groupoid S is called a Γ -fuzzy prime ideal of S, if for any fuzzy Γ -two-sided f and g of S, $f \circ_{\Gamma} g \subseteq h$, implies that $f \subseteq h$ or $g \subseteq h$.

Theorem 6. In an intra-regular Γ -AG^{**}-groupoid S, a fuzzy Γ -two-sided ideal is Γ -strongly irreducible if and only if it is Γ -fuzzy prime.

8

Proof. It follows from corollory 3.

Theorem 7. Every fuzzy Γ -two-sided ideal of an intra-regular Γ -AG^{**}-groupoid S is Γ -fuzzy prime if and only if the set of fuzzy Γ -two-sided ideals of S is Γ -totally ordered under inclusion.

Proof. It follows from corollory 3.

Theorem 8. For a fuzzy subset f of an intra-regular Γ -AG^{**}-groupoid, the following statements are equivalent.

- (i) f is a fuzzy Γ -two-sided ideal of S.
- (*ii*) f is a fuzzy Γ -interior ideal of S.

Proof. $(i) \Rightarrow (ii)$: Let f be any fuzzy Γ -two- sided ideal of S, then obviously f is a fuzzy Γ -interior ideal of S.

 $(ii) \Rightarrow (i)$: Let f be any fuzzy Γ -interior ideal of S and $a, b \in S$. Since S is an intra-regular Γ -AG-groupoid, so for each $a, b \in S$ there exist $x, y, u, v \in S$ and $\beta, \xi, \gamma, \delta, \psi, \eta \in \Gamma$ such that $a = (x\beta(a\xi a))\gamma y$ and $b = (u\delta(b\psi b))\eta v$. Now let $\alpha, \in \Gamma$, thus by using (1), (3) and (2), we have

$$f(a\alpha b) = f((x\beta(a\xi a))\gamma y)\alpha b) = f((b\gamma y)\alpha(x\beta(a\xi a)))$$

= $f((b\gamma y)\alpha(a\beta(x\xi a))) = f((b\gamma a)\alpha(y\beta(x\xi a))) \ge f(a).$

Also by using (3), (4) and (2), we have

$$\begin{aligned} f(a\alpha b) &= f\left(a\alpha\left(\left(u\delta(b\psi b)\right)\eta v\right)\right) = f\left(\left(u\delta(b\psi b)\right)\alpha\left(a\eta v\right)\right) = f\left(\left(b\delta(u\psi b)\right)\alpha\left(a\eta v\right)\right) \\ &= f\left(\left(v\delta a\right)\alpha\left(\left(u\psi b\right)\eta b\right)\right) = f\left(\left(u\psi b\right)\alpha\left(\left(v\delta a\right)\eta b\right)\right) \ge f(b). \end{aligned}$$

Hence f is a fuzzy Γ -two- sided ideal of S.

Theorem 9. A fuzzy subset f of an intra-regular Γ -AG^{**}-groupoid is fuzzy Γ -twosided ideal if and only if it is a fuzzy Γ -quasi ideal.

Proof. Let f be any fuzzy Γ -two-sided ideal of S, then obviously f is a fuzzy Γ -quasi ideal of S.

Conversely, assume that f is a fuzzy Γ -quasi ideal of S, then by using corollory 2 and (4), we have

$$f \circ_{\Gamma} S = (f \circ_{\Gamma} f) \circ_{\Gamma} (S \circ_{\Gamma} S) = (S \circ_{\Gamma} S) \circ_{\Gamma} (f \circ_{\Gamma} f) = S \circ_{\Gamma} f.$$

Therefore $f \circ_{\Gamma} S = (f \circ_{\Gamma} S) \cap (S \circ_{\Gamma} f) \subseteq f$. Thus f is a fuzzy Γ -right ideal of S and by lemma 11, f is a fuzzy Γ -left ideal of S.

Theorem 10. For a fuzzy subset f of an intra-regular Γ -AG^{**}-groupoid S, the following conditions are equivalent.

- (i) f is a fuzzy Γ -bi-ideal of S.
- (*ii*) f is a fuzzy Γ -generalized bi-ideal of S.

Proof. $(i) \Longrightarrow (ii)$: Let f be any fuzzy Γ -bi-ideal of S, then obviously f is a fuzzy Γ -generalized bi-ideal of S.

 $(ii) \Rightarrow (i)$: Let f be any fuzzy Γ -generalized bi-ideal of S, and $a, b \in S$. Since S is an intra-regular Γ -AG-groupoid, so for each $a \in S$ there exist $x, y \in S$ and

 $\beta, \gamma, \xi \in \Gamma$ such that $a = (x\beta(a\xi a))\gamma y$. Now let $\alpha, \delta, \in \Gamma$, then by using (5), (4), (2) and (3), we have

$$\begin{aligned} f(a\alpha b) &= f(((x\beta(a\xi a))\gamma y)\alpha b) = f(((x\beta(a\xi a))\gamma(u\delta v))\alpha b) \\ &= f(((v\beta u)\gamma((a\xi a)\delta x))\alpha b) = f(((a\xi a)\gamma((v\beta u)\delta x))\alpha b) \\ &= f(((x\gamma(v\beta u))\delta(a\xi a))\alpha b) = f((a\delta((x\gamma(v\beta u))\xi a))\alpha b) \ge f(a) \wedge f(b). \end{aligned}$$

Therefore f is a fuzzy bi-ideal of S.

Theorem 11. For a fuzzy subset f of an intra-regular Γ -AG^{**}-groupoid S, the following conditions are equivalent.

- (i) f is a fuzzy Γ -two- sided ideal of S.
- (*ii*) f is a fuzzy Γ -bi-ideal of S.

Proof. $(i) \Longrightarrow (ii)$: Let f be any fuzzy Γ -two- sided ideal of S, then obviously f is a fuzzy Γ -bi-ideal of S.

 $(ii) \Rightarrow (i)$: Let f be any fuzzy Γ -bi-ideal of S. Since S is an intra-regular Γ -AGgroupoid, so for each $a, b \in S$ there exist $x, y, u, v \in S$ and $\beta, \xi, \gamma, \delta, \psi, \eta \in \Gamma$ such that $a = (x\beta(a\xi a))\gamma y$ and $b = (u\delta(b\psi b))\eta v$. Now let $\alpha \in \Gamma$, then by using (1), (4), (2) and (3), we have

$$f(a\alpha b) = f(((x\beta(a\xi a))\gamma y)\alpha b) = f((b\gamma y)\alpha(x\beta(a\xi a)))$$

$$= f(((a\xi a)\gamma x)\alpha(y\beta b)) = f(((y\beta b)\gamma x)\alpha(a\xi a))$$

$$= f((a\gamma a)\alpha(x\xi(y\beta b))) = f(((x\xi(y\beta b))\gamma a)\alpha a)$$

$$= f(((x\xi(y\beta b))\gamma((x\beta(a\xi a))\gamma y))\alpha a)$$

$$= f(((x\beta(a\xi a))\gamma((x\xi(y\beta b))\gamma y))\alpha a)$$

$$= f(((a\xi a)\gamma((y\beta(x\xi(y\beta b)))\gamma x))\alpha a)$$

$$= f(((x\xi(y\beta(x\xi(y\beta b)))\gamma(a\gamma a))\alpha a)$$

$$= f(((x\xi(y\beta(x\xi(y\beta b)))\gamma(a\gamma a))\alpha a)$$

$$= f((a\gamma((x\xi(y\beta(x\xi(y\beta b)))\gamma a))\alpha a)$$

$$\geq f(a) \wedge f(a) = f(a).$$

Now by using (3), (4) and (1), we have

$$f(a\alpha b) = f(a\alpha(u\delta(b\psi b))\eta v) = f((u\delta(b\psi b))\alpha(a\eta v)) = f((v\delta a)\alpha((b\psi b)\eta u))$$

 $= f((b\psi b)\alpha((v\delta a)\eta u)) = f((((v\delta a)\eta u)\psi b)\alpha b)$

- $= f((((v\delta a)\eta u)\psi((u\delta(b\psi b))\eta v)) \alpha b)$
- $= f(((u\delta(b\psi b))\psi(((v\delta a)\eta u)\eta v)) \alpha b)$
- $= f(((v\delta((v\delta a)\eta u))\psi((b\psi b)\eta u))\alpha b)$
- $= f(((b\psi b)\psi((v\delta((v\delta a)\eta u))\eta u)) \alpha b)$
- $= f(((u\psi(v\delta((v\delta a)\eta u)))\psi(b\eta b))\alpha b)$
- $= f((b\psi((u\psi(v\delta((v\delta a)\eta u)))\eta b)) \alpha b)$

$$\geq f(b) \wedge f(b) = f(b).$$

Theorem 12. Let f be a subset of an intra-regular Γ -AG^{**}-groupoid S, then the following conditions are equivalent.

(i) f is a fuzzy Γ -bi-ideal of S.

(*ii*) $(f \circ_{\Gamma} S) \circ_{\Gamma} f = f$ and $f \circ_{\Gamma} f = f$.

Proof. $(i) \Longrightarrow (ii)$: Let f be a fuzzy Γ -bi-ideal of an intra-regular Γ -AG^{**}-groupoid S. Let $a \in A$, then there exists $x, y \in S$ and $\beta, \gamma, \xi \in \Gamma$ such that $a = (x\beta(a\xi a))\gamma y$. Now let $\alpha \in \Gamma$, then by using (3), (1), (5), (4) and (2), we have

- $a = (x\beta(a\xi a))\gamma y = (a\beta(x\xi a))\gamma y = (y\beta(x\xi a))\gamma a = (y\beta(x\xi((x\beta(a\xi a))\gamma y)))\gamma a)\gamma a = (y\beta(x\xi((x\beta(a\xi a))\gamma y)))\gamma a)\gamma a = (y\beta(x\xi a))\gamma y = (y\beta(x\xi$
 - $= ((u\alpha v)\beta(x\xi((a\beta(x\xi a))\gamma y)))\gamma a = ((((a\beta(x\xi a))\gamma y)\alpha x)\beta(v\gamma u))\gamma a$
 - $= \quad (((x\gamma y)\alpha(a\beta(x\xi a)))\beta(v\gamma u))\gamma a = ((a\alpha((x\gamma y)\beta(x\xi a)))\beta(v\gamma u))\gamma a$
 - $= ((a\alpha((x\gamma x)\beta(y\xi a)))\beta(v\gamma u))\gamma a = (((v\alpha u)\beta((x\gamma x)\beta(y\xi a)))\gamma a)\gamma a$
 - $= (((v\alpha u)\beta((x\gamma x)\beta(y\xi((x\beta(a\xi a))\gamma(u\alpha v)))))\gamma a)\gamma a$
 - $= (((v\alpha u)\beta((x\gamma x)\beta(y\xi((v\beta u)\gamma((a\xi a)\alpha x)))))\gamma a)\gamma a$
 - $= (((v\alpha u)\beta((x\gamma x)\beta(y\xi((a\xi a)\gamma((v\beta u)\alpha x)))))\gamma a)\alpha a$
 - $= (((v\alpha u)\beta((x\gamma x)\beta((a\xi a)\xi(y\gamma((v\beta u)\alpha x)))))\gamma a)\gamma a$
 - $= (((v\alpha u)\beta((a\xi a)\beta((x\gamma x)\xi(y\gamma((v\beta u)\alpha x)))))\gamma a)\gamma a$

$$= (((a\xi a)\beta((v\alpha u)\beta((x\gamma x)\xi(y\gamma((v\beta u)\alpha x)))))\gamma a)\gamma a$$

- $= (((((x\gamma x)\xi(y\gamma((v\beta u)\alpha x)))\xi(v\alpha u))\beta(a\beta a))\gamma a)\gamma a$
- $= ((a\beta((((x\gamma x)\xi(y\gamma((v\beta u)\alpha x)))\xi(v\alpha u))\beta a))\gamma a)\gamma a = (p\gamma a)\gamma a$

where $p = a\beta((((x\gamma x)\xi(y\gamma((v\beta u)\alpha x)))\xi(v\alpha u))\beta a)$. Therefore

$$\begin{aligned} ((f \circ_{\Gamma} S) \circ_{\Gamma} f)(a) &= \bigvee_{a=(pa)a} \{ (f \circ_{\Gamma} S)(pa) \wedge f(a) \} \ge \bigvee_{pa=pa} \{ f(p) \circ_{\Gamma} S(a) \} \wedge f(a) \\ &\ge \{ f(a\beta((((x\gamma x)\xi(y\gamma((v\beta u)\alpha x)))\xi(v\alpha u))\beta a)) \wedge S(a) \} \wedge f(a) \\ &\ge f(a) \wedge 1 \wedge f(a) = f(a). \end{aligned}$$

Now by using (3), (1), (5) and (4), we have

$$\begin{aligned} a &= (x\beta(a\xi a))\gamma y = (a\beta(x\xi a))\gamma y = (y\beta(x\xi a))\gamma a \\ &= (y\beta(x\xi((x\beta(a\xi a))\gamma(u\alpha v))))\gamma a = (y\beta(x\xi((v\beta u)\gamma((a\xi a)\alpha x))))\gamma a \\ &= (y\beta(x\xi((a\xi a)\gamma((v\beta u)\alpha x))))\gamma a = (y\beta((a\xi a)\xi(x\gamma((v\beta u)\alpha x))))\gamma a \end{aligned}$$

- $= ((a\xi a)\beta(y\xi(x\gamma((v\beta u)\alpha x))))\gamma a = (((x\gamma((v\beta u)\alpha x))\xi y)\beta(a\xi a))\gamma a$
- $= (a\beta((x\gamma((v\beta u)\alpha x))\xi y))\gamma a = (a\beta p)\gamma a$

where $p = ((x\gamma((v\beta u)\alpha x))\xi y)$. Therefore

$$\begin{aligned} ((f \circ_{\Gamma} S) \circ f)(a) &= \bigvee_{a=(a\beta p)\gamma a} \{(f \circ_{\Gamma} S)(a\beta p) \wedge f(a)\} \\ &= \bigvee_{a=(a\beta p)\gamma a} \left(\bigvee_{a\beta p=a\beta p} f(a) \wedge S(p) \right) \wedge f(a) \\ &= \bigvee_{a=(a\beta p)\gamma a} \{f(a) \wedge 1 \wedge f(a)\} = \bigvee_{a=(a\beta p)\gamma a} f(a) \wedge f(a) \\ &\leq \bigvee_{a=(a\beta p)\gamma a} f((a\beta((x\gamma((v\beta u)\alpha x))\xi y))\gamma a) = f(a). \end{aligned}$$

Thus $(f \circ_{\Gamma} S) \circ_{\Gamma} f = f$. As we have shown that

$$a = ((a\beta((((x\gamma x)\xi(y\gamma((v\beta u)\alpha x)))\xi(v\alpha u))\beta a))\gamma a)\gamma a.$$

Let $a = p\gamma a$ where $p = (a\beta((((x\gamma x)\xi(y\gamma((v\beta u)\alpha x)))\xi(v\alpha u))\beta a))\gamma a$. Therefore

$$(f \circ_{\Gamma} f)(a) = \bigvee_{\substack{a = p\gamma a \\ e = f(a) \land f(a) \land f(a) \land f(a) = f(a). } \{ f((a\beta((((x\gamma x)\xi(y\gamma((v\beta u)\alpha x)))\xi(v\alpha u))\beta a))\gamma a) \land f(a) \}$$

Now by using lemma 2, we get $f \circ_{\Gamma} f = f$.

 $(ii) \Longrightarrow (i)$: Assume that f is a fuzzy subset of an intra-regular Γ -AG^{**}-groupoid S and let $\beta, \gamma \in \Gamma$, then

$$f((x\beta a)\gamma y) = ((f \circ_{\Gamma} S) \circ_{\Gamma} f)((x\beta a)\gamma y) = \bigvee_{(x\beta a)\gamma y = (x\beta a)\gamma y} \{(f \circ_{\Gamma} S)(xa) \wedge f(y)\}$$
$$\geq \bigvee_{x\beta a = x\beta a} \{f(x) \wedge S(a)\} \wedge f(y) \ge f(x) \wedge 1 \wedge f(y) = f(x) \wedge f(z).$$

Now by using lemma 2, f is fuzzy Γ -bi-ideal of S.

Theorem 13. Let f be a subset of an intra-regular Γ -AG^{**}-groupoid S, then the following conditions are equivalent.

(i) f is a fuzzy Γ -interior ideal of S.

 $(ii) (S \circ_{\Gamma} f) \circ_{\Gamma} S = f.$

Proof. $(i) \Longrightarrow (ii)$: Let f be a fuzzy Γ -bi-ideal of an intra-regular Γ -AG^{**}-groupoid S. Let $a \in A$, then there exists $x, y \in S$ and $\beta, \gamma, \xi \in \Gamma$ such that $a = (x\beta(a\xi a))\gamma y$. Now let $\alpha \in \Gamma$, then by using (3), (5), (4) and (1), we have

$$a = (x\beta(a\xi a))\gamma y = (a\beta(x\xi a))\gamma y = ((u\alpha v)\beta(x\xi a))\gamma y$$

= $((a\alpha x)\beta(v\xi u))\gamma y = (((v\xi u)\alpha x)\beta a)\gamma y.$

Therefore

$$((S \circ_{\Gamma} f) \circ_{\Gamma} S)(a) = \bigvee_{a = (((v\xi u)\alpha x)\beta a)\gamma y} \{(S \circ_{\Gamma} f)(((v\xi u)\alpha x)\beta a) \land S(y)\}$$

$$\geq \bigvee_{((v\xi u)\alpha x)\beta a = ((v\xi u)\alpha x)\beta a} \{(S((v\xi u)\alpha x) \land f(a)\} \land 1$$

$$\geq 1 \land f(a) \land 1 = f(a).$$

Now again

$$\begin{aligned} ((S \circ_{\Gamma} f) \circ_{\Gamma} S)(a) &= \bigvee_{a=(x\beta(a\xi a))\gamma y} \{ (S \circ_{\Gamma} f)(x\beta(a\xi a)) \wedge S(y) \} \\ &= \bigvee_{a=(x\beta(a\xi a))\gamma y} \left(\bigvee_{(x\beta(a\xi a))=(x\beta(a\xi a))} S(x) \wedge f(a\xi a) \right) \wedge S(y) \\ &= \bigvee_{a=(x\beta(a\xi a))\gamma y} \{ 1 \wedge f(a\xi a) \wedge 1 \} = \bigvee_{a=(x\beta(a\xi a))\gamma y} f(a\xi a) \\ &\leq \bigvee_{a=(x\beta(a\xi a))\gamma y} f((x\beta(a\xi a))\gamma y) = f(a). \end{aligned}$$

Hence it follows that $(S \circ_{\Gamma} f) \circ_{\Gamma} S = f$.

 $(ii) \Longrightarrow (i)$: Assume that f is a fuzzy subset of an intra-regular Γ -AG^{**}-groupoid S and let $\beta, \gamma \in \Gamma$, then

$$f((x\beta a)\gamma y) = ((S \circ_{\Gamma} f) \circ_{\Gamma} S)((x\beta a)\gamma y) = \bigvee_{(x\beta a)\gamma y = (x\beta a)\gamma y} \{(S \circ_{\Gamma} f)(x\beta a) \land S(y)\}$$

$$\geq \bigvee_{x\beta a = x\beta a} \{(S(x) \land f(a)\} \land S(y) \ge f(a).$$

Lemma 12. Let f be a fuzzy subset of an intra-regular Γ -AG^{**}-groupoid S, then $S \circ_{\Gamma} f = f = f \circ_{\Gamma} S$.

Proof. Let f be a fuzzy Γ -left ideal of an intra-regular Γ -AG^{**}-groupoid S and let $a \in S$, then there exists $x, y \in S$ and $\beta, \gamma, \xi \in \Gamma$ such that $a = (x\beta(a\xi a))\gamma y$.

Let $\alpha \in \Gamma$, then by using (5), (4) and (3), we have

$$a = (x\beta(a\xi a))\gamma y = (x\beta(a\xi a))\gamma(u\alpha v) = (v\beta u)\gamma((a\xi a)\alpha x) = (a\xi a)\gamma((v\beta u)\alpha x)$$
$$= (x\xi(v\beta u))\gamma(a\alpha a) = a\gamma((x\xi(v\beta u))\alpha a).$$

Therefore

$$(f \circ_{\Gamma} S)(a) = \bigvee_{a=a\gamma((x\xi(v\beta u))\alpha a)} \{f(a) \land S((x\xi(v\beta u))\alpha a)\}$$
$$= \bigvee_{a=a\gamma((x\xi(v\beta u))\alpha a)} \{f(a) \land 1\}$$
$$= \bigvee_{a=a((x(ye))a)} f(a) = f(a).$$

The rest of the proof can be followed from lemma 1.

Theorem 14. For a fuzzy subset f of an intra-regular Γ -AG^{**}-groupoid S, the following conditions are equivalent.

- (i) f is a fuzzy Γ -left ideal of S.
- (*ii*) f is a fuzzy Γ -right ideal of S.
- (*iii*) f is a fuzzy Γ -two-sided ideal of S.
- (iv) f is a fuzzy Γ -bi-ideal of S.
- (v) f is a fuzzy Γ -generalized bi- ideal of S.
- (vi) f is a fuzzy Γ -interior ideal of S.
- (vii) f is a fuzzy Γ -quasi ideal of S.
- $(viii) \ S \circ_{\Gamma} f = f = f \circ_{\Gamma} S.$

Proof. $(i) \Longrightarrow (viii)$: It follows from lemma 12.

 $(viii) \Longrightarrow (vii)$: It is obvious.

 $(vii) \implies (vi)$: Let f be a fuzzy Γ -quasi ideal of an intra-regular Γ -AG^{**}groupoid S and let $a \in S$, then there exists $b, c \in S$ and $\beta, \gamma, \xi \in \Gamma$ such that $a = (b\beta(a\xi a))\gamma c$. Let $\delta, \eta \in \Gamma$, then by using (3), (4) and (1), we have

$$\begin{aligned} (x\delta a)\eta y &= (x\delta(b\beta(a\xi a))\gamma c)\eta y = ((b\beta(a\xi a))\delta(x\gamma c))\eta y \\ &= ((c\beta x)\delta((a\xi a)\gamma b))\eta y = ((a\xi a)\delta((c\beta x)\gamma b))\eta y \\ &= (y\delta((c\beta x)\gamma b))\eta(a\xi a) = a\eta((y\delta((c\beta x)\gamma b))\xi a) \end{aligned}$$

and from above

$$\begin{aligned} x\delta a)\eta y &= (y\delta((c\beta x)\gamma b))\eta(a\xi a) = (a\delta a)\eta(((c\beta x)\gamma b)\xi y) \\ &= ((((c\beta x)\gamma b)\xi y)\delta a)\eta a. \end{aligned}$$

Now by using lemma 12, we have

$$f((x\delta a)\eta y) = ((f \circ_{\Gamma} S) \cap (S \circ_{\Gamma} f))((x\delta a)\eta y)$$

= $(f \circ_{\Gamma} S)((x\delta a)\eta y) \wedge (S \circ_{\Gamma} f)((x\delta a)\eta y)$

Now

$$(f \circ_{\Gamma} S)((x\delta a)\eta y) = \bigvee_{(x\delta a)\eta y = a\eta((y\delta((c\beta x)\gamma b))\xi a)} \{f(a) \land S_{\delta}((y\delta((c\beta x)\gamma b))\xi a)\} \ge f(a)$$

and

$$(S \circ_{\Gamma} f)((x\delta a)\eta y) = \bigvee_{(x\delta a)\eta y = ((((cx)b)y)a)a} \{S((((c\beta x)\gamma b)\xi y)\delta a) \land f(a)\} \ge f(a).$$

This implies that $f((x\delta a)\eta y) \ge f(a)$ and therefore f is a fuzzy Γ -interior ideal of S.

 $(vi) \Longrightarrow (v)$: It follows from theorems 8, 11 and 10.

 $(v) \Longrightarrow (iv)$: It follows from theorem 10.

 $(iv) \Longrightarrow (iii)$: It follows from theorem 11.

 $(iii) \Longrightarrow (ii)$: It is obvious and $(ii) \Longrightarrow (i)$ can be followed from lemma 11. \Box

References

- [1] P. Holgate, Groupoids satisfying a simple invertive law, The Math. Stud., 1 4, 61 (1992), 101 106.
- [2] J. Ježek and T. Kepka, A note on medial division groupoids, Proc. Amer. Math. Soc., 2, 119 (1993), 423 – 426.
- [3] J. Ježek and T. Kepka, The equational theory of paramedial cancellation groupoids, Czech. Math. J., 50, 125 (2000), 25 - 34.
- [4] M. A. Kazim and M. Naseeruddin, On almost semigroups, The Alig. Bull. Math., 2 (1972), 1-7.
- [5] M. N. A. Khan, Fuzzification in Abel-Grassmann's groupoids, MS. Thesis, 2009.
- [6] N. Kuroki, Fuzzy bi-ideals in semigroups, Comment. Math. Univ. St. Pauli, 27 (1979), 17-21.
 [7] J. N. Mordeson, D. S. Malik and N. Kuroki, *Fuzzy semigroups*, Springer-Verlag, Berlin Germany, 2003.
- [8] Q. Mushtaq and S. M. Yusuf, On LA-semigroups, The Alig. Bull. Math., 8 (1978), 65-70.
- Q. Mushtaq and S. M. Yusuf, On LA-semigroup defined by a commutative inverse semigroup, Math. Bech., 40 (1988), 59 - 62.
- [10] Q. Mushtaq and M. Khan, M-systems in LA-semigroups, Souteast Asian Bulletin of Mathematics, 33 (2009), 321 – 327.
- Q. Mushtaq and M. Khan, Semilattice decomposition of locally associative AG^{**}-groupoids, Algeb. Colloq., 16, 1 (2009), 17 - 22.
- [12] M. Naseeruddin, Some studies in almost semigroups and flocks, Ph.D., thesis, Aligarh Muslim University, Aligarh, India, 1970.
- [13] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512 517.
- [14] M. K. Sen, On Γ-semigroups, Proceeding of International Symposium on Algebra and Its Applications, Decker Publication, New York, (1981), 301 – 308.
- [15] T. Shah and I. Rehman, On M-systems in $\Gamma\text{-AG-groupoids},$ Proc. Pakistan Acad. Sci., 47(1) : 33-39. 2010.
- [16] N. Stevanović and P. V. Protić, Composition of Abel-Grassmann's 3-bands, Novi Sad, J. Math., 2, 34 (2004), 175 – 182.
- [17] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338 353.