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Quasi-biennial oscillations in the solar tachocline caused by

magnetic Rossby wave instabilities

Teimuraz V. Zaqarashvili1,4, Marc Carbonell2, Ramón Oliver3, and José Luis Ballester3

ABSTRACT

Quasi-biennial oscillations (QBO) are frequently observed in the solar activity

indices. However, no clear physical mechanism for the observed variations has

been suggested so far. Here we study the stability of magnetic Rossby waves in the

solar tachocline using the shallow water magnetohydrodynamic approximation.

Our analysis shows that the combination of typical differential rotation and a

toroidal magnetic field with a strength ≥ 105 G triggers the instability of the

m = 1 magnetic Rossby wave harmonic with a period of∼ 2 years. This harmonic

is antisymmetric with respect to the equator and its period (and growth rate)

depends on the differential rotation parameters and the magnetic field strength.

The oscillations may cause a periodic magnetic flux emergence at the solar surface

and consequently may lead to the observed QBO in the solar activity features.

The period of QBO may change throughout the cycle, and from cycle to cycle,

due to variations of the mean magnetic field and differential rotation in the

tachocline.

Subject headings: Sun: oscillations —Physical Data and Processes: magnetic

fields—MHD—waves

1. Introduction

Apart from the well known 11-year cycle, solar activity shows quasi periodic variations

on shorter time scales. Two different time scales have been frequently observed in many solar

1Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria. Email:

teimuraz.zaqarashvili@oeaw.ac.at
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activity indicators: several months and a few years. The oscillations with period of several

months (mostly with 150-160 days) are known as Rieger-type periodicities (Rieger et al. 1984;

Lean & Brueckner 1989; Carbonell & Ballester 1990; Oliver et al. 1998; Krivova & Solanki

2002; Kane 2005; Knaack et al. 2005). The oscillations with period ∼ 2 years are known

as Quasi-Biennial Oscillations (QBO) and they modulate almost all indices of solar activity

(Sakurai 1981; Gigolashvili et al. 1995; Knaack et al. 2005; Kane 2005; Danilovic et al. 2005;

Forgács-Dajka & Borkovits 2007; Badalyan et al. 2008; Javaraiah et al. 2009; Laurenza et al.

2009; Vecchio & Carbone 2009; Vecchio et al. 2010; Sýkora & Rybak 2010).

The source(s) of these periodicities is still unclear. Several mechanisms have been sug-

gested to drive the Rieger-type periodicities: interaction between l = 2 and l = 3 g-modes

(Wolff 1983), the timescale for storage and/or escape of magnetic fields in the solar con-

vection zone (Ichimoto et al. 1985), “clock” modeled by an oblique rotator (Bai & Sturrock

1991) and equatorially trapped Rossby-type waves in the photosphere (Lou 2000). Recently,

Zaqarashvili et al. (2010) (hereinafter Paper I) suggested that the Rieger-type periodicities

can be caused by unstable m = 1, two-dimensional (θ − φ surface in spherical coordinates)

magnetic Rossby waves in the solar tachocline. They show that a combination of the typical

differential rotation parameters and the magnetic field strength ≤ 104 G in the tachocline

favor the strong growth of one particular harmonic with period of 150-160 days. The pe-

riodic modulation of the tachocline magnetic field due to the unstable harmonic triggers

the periodic emergence of magnetic flux towards the surface, which leads to the observed

periodicities in the solar activity. On the other hand, there is no clear mechanism for QBO

reported in literature so far. Pataraya & Zaqarashvili (1995) supposed that the quasi 2-year

impulse of shear waves can cause the 2-year periodicity of the differential rotation in the

photosphere. However, this mechanism may work only near solar minima and cannot ex-

plain the long standing modulation of solar activity. Therefore, the question of the source

for QBO is widely open.

In this letter, we show that the instability of magnetic Rossby waves in the tachocline

could be the reason for QBO in solar activity. We consider a nonzero thickness of the

tachocline and hence we use the shallow water magnetohydrodynamic (SWMHD) equations

(Gilman 2000). We show that a stronger magnetic field (≥ 105 G) favors the growth of

magnetic Rossby wave harmonic with period ∼ 2 years.
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2. Shallow water MHD equations and unstable magnetic Rossby wave

harmonics

In the following we use a spherical coordinate system (r, θ, φ) rotating with the solar

equator, where r is the radial coordinate, θ is the co-latitude and φ is the longitude.

The solar differential rotation law in general is

Ω = Ω0(1− s2 cos
2 θ − s4 cos

4 θ) = Ω0 + Ω1(θ), (1)

where Ω0 is the equatorial angular velocity, and s2, s4 are constant parameters determined

by observations.

In the solar tachocline the magnetic field is predominantly toroidal, ~B = Ξêφ, and we

take Ξ = Bφ(θ) sin θ, where Bφ is in general a function of co-latitude. Then, the linear

SWMHD equations (Gilman 2000) can be rewritten in the rotating frame (with Ω0) as

follows:
∂uθ

∂t
+ Ω1

∂uθ

∂φ
− 2Ω cos θuφ = −

g

R0

∂h

∂θ
+

Bφ

4πρR0

∂bθ
∂φ

− 2
Bφ cos θ

4πρR0

bφ, (2)

∂uφ

∂t
+Ω1

∂uφ

∂φ
+

uθ

sin θ

∂[Ω sin2 θ]

∂θ
= −

g

R0 sin θ

∂h

∂φ
+

Bφ

4πρR0

∂bφ
∂φ

+
bθ

4πρR0 sin θ

∂[Bφ sin
2 θ]

∂θ
, (3)

∂bθ
∂t

+ Ω1

∂bθ
∂φ

=
Bφ

R0

∂uθ

∂φ
, (4)

∂

∂θ
(sin θbθ) +

∂bφ
∂φ

+
Bφ sin θ

H0

∂h

∂φ
= 0, (5)

∂h

∂t
+ Ω1

∂h

∂φ
+

H0

R0 sin θ

∂

∂θ
(sin θuθ) +

H0

R0 sin θ

∂uφ

∂φ
= 0, (6)

where uθ, uφ, bθ and bφ are the velocity and magnetic field perturbations, H0 is the tachocline

thickness and h is its perturbation, ρ is the density, g is the reduced gravity and R0 is the

distance from the solar center to the tachocline. Eqs. (5)-(6) are the solenoidal conditions

of shallow water magnetic field and velocity respectively (Gilman 2000).

Fourier analysis with exp[im(φ − ct)] and the transformation of variables µ = cos θ in

Eqs. (2)-(6) lead to the equations

[(c−Ω1)
2−Ω2

A](1−µ2)
∂H

∂µ
−2µ[Ω(c−Ω1)+Ω2

A]H = −imΩ2

gh+im(1−µ2)[(c−Ω1)
2−Ω2

A]h, (7)

2µ[Ω(c−Ω1)+Ω2

A](1−µ2)
∂H

∂µ
−
[

m2(c− Ω1)
2 −m2Ω2

A + µ(1− µ2)
∂Ω2

∂µ
− µ(1− µ2)

∂Ω2

A

∂µ

]

H =
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= imΩ2

g(1− µ2)
∂h

∂µ
+ 2imµ(1− µ2)[Ω(c− Ω1) + Ω2

A]h, (8)

where

ΩA =
Bφ√
4πρR0

, Ωg =

√
gH0

R0

,

are the Alfvén and surface gravity frequency respectively, h is normalized by H0 and

H(µ) =
bθ(µ)

√

1− µ2

Bφ

=
uθ(µ)

√

1− µ2

R0(c− Ω1)
. (9)

In the remaining we use a magnetic field

Bφ = B0µ, (10)

which changes sign at the equator (Gilman & Fox 1997).

We expandH and h in infinite series of associated Legendre polynomials (Longuet-Higgins

1968)

H =

∞
∑

n=m

anP
m
n (µ), h =

∞
∑

n=m

bnP
m
n (µ), (11)

which satisfy the boundary conditions H = h = 0 at µ = ±1 (i.e. at the solar poles).

Then, we substitute Eq. (11) into Eqs. (7)-(8) and, using a recurrence relation of Legendre

polynomials, we obtain algebraic equations as infinite series. The dispersion relation for

the infinite number of harmonics can be obtained when the infinite determinant of the

system is set to zero. In order to solve the determinant, we truncate the series at n =

70, and the resulting polynomial in ω is solved numerically. This gives the frequencies

of the first 70 harmonics. The harmonics with real frequency are stable, while those with

complex frequency are unstable (see the general technique of Legendre polynomial expansion

in Longuet-Higgins (1968); Watson (1981); Gilman & Fox (1997); Zaqarashvili et al. (2010)

and references therein).

The typical values of equatorial angular velocity, radius and density in the tachocline

are Ω0 = 2.7 · 10−6 s−1, R0 = 5 · 1010 cm and ρ = 0.2 g · cm−3 respectively. We use a

tachocline thickness H0 = 0.02R0 = 109 cm. The ratio between angular and surface gravity

frequencies ǫ = Ω2

0
/Ω2

g = Ω2

0
R2

0
/(gH0) is an important parameter in the shallow water theory.

ǫ ≪ 1 means strongly stable stratification (main part of tachocline), while ǫ ≫ 1 considers

weakly stable stratification (upper overshoot region). Here we consider the mean part of the

tachocline and thus we take the limit ǫ ≪ 1.

The observed differential rotation parameters near the solar surface satisfy s2+s4 ≈ 0.28,

which may tend to s2 + s4 ≈ 0.26 near the upper part of the tachocline (Schou et al. 1998).
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The solar radiative interior rotates uniformly, therefore the latitudinal differential rotation

parameters drop to zero from the upper part of tachocline to its base. The radial dependence

of latitudinal differential rotation through the tachocline is not clear, and s2, s4 may also vary

throughout the solar cycle (Howe et al. 2000). Therefore, s2+s4 may take any value between

0.26 and 0.

Figure 1 shows the real, mcr, and imaginary, mci, frequencies of all m = 1 unstable

harmonics for different combinations of ǫ (i.e. reduced gravity) and magnetic field strength.

The differential rotation parameters are fixed to s2 = s4 = 0.11. The plot shows that each

combination of the magnetic field strength, differential rotation parameters and reduced

gravity leads to the occurrence of a particular harmonic whose growth rate is much stronger

than that of other harmonics. This is similar to what happens in the two-dimensional case

(Zaqarashvili et al. 2010). An increase of magnetic field strength leads to the reduction of

the frequency of the most unstable harmonic. The unstable harmonics are mostly symmetric

(defined by asterisks) with respect to the equator for a magnetic field strength < 104 G, while

they become mostly antisymmetric (defined by circles) for a strength > 105 G. A magnetic

field strength between 104−105 G yields unstable harmonics for both symmetries. This can

be explained in terms of magnetic and differential rotation energies. Equipartition between

the magnetic energy and the kinetic energy of differential rotation occurs at ∼ 5 · 104 G for

s2 = s4 = 0.11. When the magnetic field strength is smaller, then the differential rotation

is the main energy source for instability and this obviously yields the symmetric harmonics

as the differential rotation is symmetric around the equator. However, when the magnetic

field is stronger, then the magnetic energy is the main source for the instability and the

unstable harmonics are antisymmetric as the magnetic field is antisymmetric with respect

to the equator.

The importance of the equipartition value of the magnetic field strength is clearly seen on

Figure 2. This figure displays the periods and growth rates (defined as mci/Ω0) vs magnetic

field strength. The growth rates are higher for weaker (< 104 G) and stronger (> 105 G)

magnetic fields. However, the growth rates are much lower when the magnetic field strength

is inside the interval 104−105 G. The weaker field (< 104 G) favors Rieger-type periodicities

(150-160 days), while the stronger field (> 105 G) supports QBO. Increasing the magnetic

field suppresses symmetric harmonics as it has been shown in Paper I.

Figure 3 displays the period of the most unstable symmetric and antisymmetric har-

monic vs the value of reduced gravity (i.e. on ǫ) for a magnetic field strength of 8·104 G

and the differential rotation parameters s2 = s4 = 0.11. It is seen that the oscillation period

does not depend significantly on the reduced gravity.

Figure 4 displays the dependence of the periods of the most unstable symmetric and
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antisymmetric harmonics on the differential rotation parameters for a magnetic field strength

of 8·104 G and for ǫ = 0.12 (corresponding to a reduced gravity of 1.5 · 102 cm s−2). The

upper panel (circles) displays the antisymmetric harmonics and the lower panel (asterisks)

displays the symmetric ones. The periods of unstable harmonics vs s4 are plotted for different

values of s2. The values of s2 vary from 0.13 (blue color) to 0.09 (red color). We can observe

that the period of this harmonic depends on the differential rotation parameters significantly

and takes values between 400-700 days. The period becomes shorter for stronger differential

rotation.

3. Discussion

Our results show that the differential rotation and the magnetic field with a strength

of > 105 G may lead to large-scale oscillations of tachocline with periods of ∼ 2 years. The

oscillation is due to the m = 1 unstable mode of magnetic Rossby waves. The magnetic

Rossby waves are magnetohydrodynamic counterparts to usual hydrodynamic Rossby waves

(Zaqarashvili et al. 2007, 2009). The period and growth rate of the unstable harmonics

depend on the magnetic field strength and the differential rotation parameters (Figures 1,

2 and 4). The unstable harmonics with periods of ∼ 2 years are antisymmetric with respect

to the solar equator.

The unstable magnetic Rossby waves in the tachocline can be the reason for QBO

observed in almost all indices of the solar activity. Recent papers suggest that QBO are

not persistent but may vary from cycle to cycle (Vecchio & Carbone 2009) and throughout

a cycle (Sýkora & Rybak 2010). Our analyses also suggest this behaviour as the period of

unstable harmonics depends on magnetic field strength and differential rotation parameters,

which may vary in time depending on phase and strength of a particular cycle.

The antisymmetric behaviour of unstable harmonics with respect to the equator may

explain the recent observational results of Badalyan et al. (2008), which show that QBO are

well recognizable in the N-S asymmetry of solar activity indices.

Our analysis suggests the reduction of growth rates of unstable harmonics when the

magnetic field strength is inside the interval 104 − 105 G (see Figure 2). It is clearly seen

that the relatively weak magnetic field < 104 G leads to the occurrence of Rieger-type

periodicities (see the same results in the paper I), while the field of > 105 G favors QBO.

The upper overshoot region of the tachocline probably contains relatively weaker magnetic

field comparing to the lower stable layers. Therefore, we may speculate that the Rieger-

type periodicities are formed in the overshoot layer (this was also suggested in the paper
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I), while QBO are formed in lower layers with strongly stable stratification. Therefore, the

both periodicities may occur simultaneously.

The magnetic field of 105 G is unstable due to the buoyancy instability, which makes

difficult to keep it in the tachocline. On the other hand, the emergence of magnetic flux at

observed latitudes requires sufficiently strong magnetic field (∼ 105) below the convection

zone (Fan 2004). Therefore, the storage of strong fields below the convection zone is still

open question.

Significant simplifications in our approach is the linear stability analysis, which only

describes the initial phase of instability. Intense numerical simulations are needed in the

future to study the developed stage of magnetic Rossby wave instabilities.

4. Conclusions

We have shown that the unstable magnetic Rossby waves in the solar tachocline could

be responsible for the observed intermediate periodicities in solar activity. The periods and

growth rates of unstable harmonics depend on the differential rotation parameters and the

magnetic field strength. The unstable harmonics are either symmetric or antisymmetric

with respect to the equator. The latitudinal differential rotation is mainly responsible for

the growth of symmetric harmonics, while, the antisymmetric toroidal magnetic field favors

the growth of antisymmetric harmonics. A magnetic field with a strength ≤ 104 G leads

to oscillations with shorter period (150-170 days), while a stronger magnetic field ≥ 105 G

favors oscillations with longer periods (1-2.5 yrs). Hence, ∼ 2-year oscillations can be formed

in the main part of the tachocline with stronger toroidal magnetic field and strongly stable

stratification. The oscillations may trigger the periodic magnetic flux emergence at the solar

surface and consequently QBO in solar activity.
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Fig. 1.— Real, mcr, and imaginary, mci, frequencies of all m = 1 unstable harmonics for

different combinations of ǫ (i.e. reduced gravity) and magnetic field strength. The differential

rotation parameters are fixed to s2 = s4 = 0.11 for all four panels. The reduced gravity varies

from 1.5 ·104 cm s−2 (ǫ = 1.2 ·10−3, upper left panel) to 1.1 ·102 cm s−2 (ǫ = 0.167, lower right

panel). Yellow, magenta, blue, green, dark blue and red colors correspond to magnetic field

strengths of 2·103 G, 2·104 G, 6·104 G, 8·104 G, 105 G, and 2·105 G, respectively. Asterisks

(circles) denote the symmetric (antisymmetric) harmonics with respect to the equator.
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Fig. 2.— Period (upper panel) and growth rate mci/Ω0 (lower panel) of the most unstable

harmonics vs magnetic field strength. Asterisks (circles) define symmetric (antisymmetric)

harmonics. Here ǫ=0.12 and the differential rotation parameters are s2 = s4 = 0.11.
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Fig. 3.— Periods of the most unstable symmetric (asterisks) and antisymmetric (circles) har-

monics vs ǫ for a magnetic field strength of 8·104 G and the differential rotation parameters

s2 = s4 = 0.11.
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Fig. 4.— Periods of the most unstable symmetric (asterisks) and antisymmetric (circles)

harmonics vs s4 for different values of s2. Dark blue, blue, green, magenta and red colors

correspond to s2=0.13, 0.12, 0.11, 0.10 and 0.09 respectively. The magnetic field strength

equals 8·104 G and ǫ = 0.12.
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