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We propose an optimal length for accurate calculation of eigenvalues and eigenfunctions of power-
law potentials with trigonometric basis functions. We show that, this proposal make us free from
using the variational procedure which promotes this method as one of the most accurate and efficient
techniques for finding the energy spectrum of anharmonic oscillators.
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I. INTRODUCTION

Eighty years after the birth of quantum mechanics, the
Schrödinger’s famous equation

HΨ = EΨ, (1)

still remains a subject for numerous studies, aiming at ex-
tending its field of applications and at developing more
efficient analytic and approximation methods for obtain-
ing its energy eigenvalues and its stationary states. The
interest in this subject ranges from various branches of
physics to chemistry.
This has been the driving force behind the develop-

ment of perturbative and non-perturbative methods for
this kind of problems. Among them are the semiclas-
sical approximation [1], finite-difference technique [2],
hypervirial recurrence relation scheme [3], renormalized
hypervirial-Padè scheme [4], variational matrix solution
[5], Rayleigh-Ritz variational method supplemented by
the Lanczos algorithm [6], Brillouin-Wigner perturbation
theory based on shifted oscillator variational functions
[7], instanton method [8, 9], transfer matrix method [10],
uniform approximation of the logarithmic derivative of
the ground state eigenfunction [11], and many other spe-
cific methods.
Various variational methods are usually used in quan-

tum mechanics, statistical mechanics and field theory.
In quantum mechanics, variational parameters are incor-
porated into trial wave functions and trial Hamiltoni-
ans. The Rayleigh-Ritz method is the minimization of
the ground state energy with respect to these variational
parameters. The applications of this formalism using var-
ious set of basis such as harmonic-oscillator [12], Cheby-
shev polynomials [13], hypervirial theorems [14], and the
coherent states [15], have been already appeared in the
literature.
In Refs. [16, 17], it was shown by numerical results that

the trigonometric basis functions which obey Dirichlet
boundary condition Ψ(−L) = Ψ(L) = 0, where L is the
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domain of the basis set, can be effectively used to find the
spectrum of an unbounded problem. They showed that,
the low lying energy levels En(L) are equal to those of
L = ∞ with high accuracy, if the boundedness param-
eter L is in near vicinity of the optimal length Lop. In
fact, they have employed the Rayleigh-Ritz variational
method with the particle-in-a-box basis set in order to
find the optimal lengths related to the anharmonic oscil-
lators. They showed that the trigonometric functions are
a suitable basis set in variational calculations which re-
sult in the highly accurate results. Moreover, the model
is simple, fast-convergent, and works for various kind of
potentials.

Recently, it was shown that the usage of trigonometric
basis functions which obeying periodic boundary condi-
tion Ψ(−L) = Ψ(L) results in more accurate solutions
with respect to Dirichlet boundary condition [18]. This
is due to the fact that the Dirichlet boundary condition
enforces the wave function to vanish at x = ±L, but
the periodic boundary condition lets the wave function
to fit itself more closer to the exact solution which is not
necessarily zero at the boundaries. Therefore, using the
periodic boundary condition, the same accuracy can be
obtained with the smaller number of the basis functions.

In this paper, first we diagonalize the Hamiltonian of
the anharmonic oscillators using the trigonometric basis
functions obeying Dirichlet boundary condition. Then,
we propose an analytic relation between the optimal
length and the number of the basis functions. There-
fore, we do not need the variational procedure and we
obtain a simple, efficient, and accurate method for solv-
ing anharmonic oscillators.

II. DIAGONALIZATION OF THE

HAMILTONIAN

Let us consider the following dimensionless time-
independent one-dimensional Schrödinger equation

(

− d2

dx2
+ V (x)

)

Ψ(x) = EΨ(x), (2)
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where V (x) =
∑M

i=1 a2ix
2i. Since the potential is an even

function of x, to avoid large matrices, we can use even
and odd basis functions separately

φm(x) =

√

1

L
cos

[(

m− 1

2

)

πx

L

]

, m = 1, 2, 3, ... (3)

and

φm(x) =

√

1

L
sin

(mπx

L

)

, m = 1, 2, 3, ... (4)

for even and odd parity solutions, respectively. Now, we
can expand the solution using these orthonormal basis
sets

Ψ(x) =
∑

m

Amφm(x), (5)

where the wave function satisfies the Dirichlet boundary
condition Ψ(L) = Ψ(−L) = 0. Moreover, the wave func-
tion should be the solution of the Schrödinger equation
which results to the secular equations

∞
∑

n=1

(Hmn − Eδmn)An = 0, m = 1, 2, 3, ... (6)

where δmn is the Kronecker’s delta and Hmn are the ma-
trix elements defined by

Hmn = −
〈

φn,
d2φm

dx2

〉

+
M
∑

i=1

a2i
〈

φm, x2iφn

〉

. (7)

We can evaluate the inner products using the basis func-
tions (3,4)

Hmn =

(

m− 1

2

)2
π2

L2
δmn

+

M
∑

i=1

a2i

(

L

π

)2i
(

D
(i)
m+n−1 +D

(i)
m−n

)

, (8)

for even states and

Hmn =
m2π2

L2
δmn

+

M
∑

i=1

a2i

(

L

π

)2i
(

D
(i)
m−n −D

(i)
m+n

)

, (9)

for odd states, where D
(i)
k is defined by

D
(i)
k =

1

π

∫ π

0

x2i cos(kx)dx, (10)

which explicitly takes the following form

D
(i)
k =

i−1
∑

p=0

(−1)p+k

kp+1

(

2i
2p+ 1

)

× (2p+ 1)!π2(i−1−p), k > 0, (11)

D
(i)
k =

π2i

2i+ 1
, k = 0. (12)

Therefore, the eigenvalues and eigenfunctions of the
Schrödinger equation (2) are equal to the corresponding
quantities of the matrix H .
In practice, we choose 2N (N even and N odd) basis

functions to obtain the desired accuracy. On the other
hand, the accuracy crucially depends on the domain of
the basis functions L. In fact, we need to look for the
optimal length Lop which results in the maximum accu-
racy for eachN . So, we should repeat the diagonalization
procedure many times (variational procedure) to find the
optimal length which minimizes the energy eigenvalues.
However, the variational part is much time consuming es-
pecially for large values of N which prevents this method
from being considered as a popular differential equation
solver. In the next section, for the case of power-law po-
tentials, we propose an analytic relation between the op-
timal length and the number of the basis function which
makes us free from the variational part of the method.

III. THE OPTIMAL LENGTH

From Eqs. (3,4) is apparent that there should exist an
optimal length which minimizes the Hamiltonian. This
is due to the fact that the average potential energy goes
to infinity as L → ∞. Also, the average kinetic energy
behaves in the same manner as L → 0. So, a balanced
finite estimate of each of these quantities would require
a nonzero finite L.
The usage of the trigonometric basis functions is equiv-

alent with putting the potentials in an infinite potential

well i.e. V (x) =
∑M

i=1 a2ix
2i for |x| < L and V (x) = ∞

elsewhere. Since for |x| ≥ L this model is not identical
with the original one, the particle-in-a-box basis func-
tions with energies larger than V (L) would not have a
useful contribution to the sought-after solutions. So, we
propose a rough criterion between the cut-off N and the
optimal domain of the basis functions Lop

V (Lop) = α
N2π2

L2
op

, (13)

where α only depends on the form of the potential. Cal-
culations show that the actual optimal length for various
power-law potentials agrees well with the above relation.
In fact, for the potential in the form V (x) = βx2M we
obtain

Lop =

√
2π

β
1

2(M+1)

(

N

2M

)
1

M+1

, (14)

which corresponds to α = (π/2)
M−1

in Eq. (13). In
figure 1, we have shown the calculated optimal lengths
for M = 1, 2, 3, 4. As the figure shows there is a com-
plete correspondence between the calculated ones using
the variational procedure and using relation (14).
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FIG. 1. The optimal length versus the number of basis using
the variational procedure (circles), and using Eq. (14) for i =
1, 2, 3, 4.

Now, consider a general polynomial potential V (x) =
∑M

i=1 a2ix
2i. Since α depends on i, we cannot simply use

Eq. (13) for the polynomial potential. However, for large
values of N , its energy spectrum approximately coincides
with V (x) = a2Mx2M . So, for the general polynomial
potential, the relation (14) is valid for N ≫ 1 with β =
a2M . On the other hand, since the variational part is
inefficient and too much time consuming for large N , the
validness of (14) is so useful.
Note that, for the case of the periodic boundary con-

dition, there is not exists a true minimum value in the
graph of the energy versus the domain of basis functions
[18]. In fact, because of the nature of the boundary con-
dition, we observe an inflection point instead of a min-

imum value at the optimal length. On the other hand,
contrary to the Dirichlet boundary condition, the wave
function is not forced to vanish at the boundaries. Since
for the large values of the optimal length the exact wave
function is almost zero at the boundaries, we expect that
the difference between the results of these two boundary
conditions would not be significant for large Lop. So, we
can also use the relation (14) for the periodic boundary
condition with large N .

Now, to find the validness limit of equation (14), let us
consider the particle in a box with size 2 as an extreme
exact solvable case. This potential is equivalent with
V (x) = βx2M where M = ∞. It is obvious that the
actual optimal length for this problem is Lop = 1 for
all N . However, the predicted length using Eq. (14) is
√

π/2 = 1.25331. Therefore, the relation (14) is not
accurate for the potentials with large exponent (M ≫ 1).

IV. CONCLUSIONS

We proposed a prescription for finding the optimal
length in order to accurately calculate the eigenvalues
and eigenfunctions of power-law potentials using the
trigonometric basis functions. We showed that, using this
prescription, the highly accurate results can be obtained
at the first run of the diagonalization scheme without
using the variational procedure. Also, it is shown that,
the proposed optimal length relation is not valid for the
potentials with large exponent.
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