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Abstract

We compare two influential ways of defining a generalized notion of space. The
first, inspired by Gelfand duality, states that the category of ‘noncommutative spaces’
is the opposite of the category of C*-algebras. The second, loosely generalising Stone
duality, maintains that the category of ‘pointfree spaces’ is the opposite of the cat-
egory of frames (i.e., complete lattices in which the meet distributes over arbitrary
joins). One possible relationship between these two notions of space was unearthed by
Banaschewski and Mulvey [“A globalisation of the Gelfand duality theorem”, Annals
of Pure and Applied Logic 137, 62–103 (2006)], who proved a constructive version of
Gelfand duality in which the Gelfand spectrum of a commutative C*-algebra comes
out as a pointfree space. Being constructive, this result applies in arbitrary toposes
(with natural numbers objects, so that internal C*-algebras can be defined).

Earlier work by the first three authors [“A topos for algebraic quantum theory”,
Communications in Mathematical Physics 291, 63–110 (2009)], shows how a noncom-
mutative C*-algebra gives rise to a commutative one internal to a certain sheaf topos.
The latter, then, has a constructive Gelfand spectrum, also internal to the topos in
question. After a brief review of this work, we compute the so-called external descrip-
tion of this internal spectrum, which in principle is a fibered pointfree space in the
familiar topos Sets of sets and functions. However, we obtain the external spectrum
as a fibered topological space in the usual sense. This leads to an explicit Gelfand
transform, as well as to a topological reinterpretation of the Kochen–Specker Theo-
rem of quantum mechanics [“The problem of hidden variables in quantum mechanics”,
Journal of Mathematics and Mechanics 17, 59–87 (1967)], which supplements the re-
markable topos-theoretic version of this theorem due to Butterfield and Isham [“A
topos perspective on the Kochen-Specker theorem”, International Journal of Theoret-
ical Physics 37, 2669-2733 (1998)].
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1 Generalized spaces

Gelfand Duality is the categorical equivalence

compact Hausdorff spaces ≃ (unital commutative C*-algebras)op, (1)

where the choice of arrows in both categories is implicit (but obvious, i.e., continuous
maps and unital ∗-homomorphisms, respectively). For simplicity, we restrict ourselves to
the compact/unital case. Furthermore, given a category C, the opposite category C

op has
the same objects as C, but has all arrows reversed. The relevant functors implementing the
equivalence (1) are, of course, C : X 7→ C(X) ≡ C(X,C) from left to right, with pullback
on arrows, and Σ : A 7→ Σ(A) from right to left, where Σ(A) is the Gelfand spectrum of
A (realized, e.g., as the space of unital multiplicative linear maps A → C equipped with
the relative weak∗-topology), and similarly pullback on arrows.

Subsequently, there are (at least) two possible directions to take.

1. The modern approach is to literally take the quantum jump of defining the category
of ‘noncommutative spaces’ up to equivalence by

noncommutative spaces ≃ (C*-algebras)op. (2)

Here a major surprise arises, which is quite unexpected from the categorical setting:
according to the (second) Gelfand–Naimark Theorem, a noncommutative space acts
as an operator algebra on some Hilbert space. It is the combination of this Hilbert
space setting deriving from the right-hand side of (2) and the call for geometrical
and topological techniques - adapted to the noncommutative setting - coming from
the left-hand side that gives noncommutative geometry its strength [11, 12].

2. More traditionally, one may attempt to generalize the notion of Gelfand duality to
noncommutative C*-algebras A. There have been many such attempts, which may
be grouped according to the specific notion of a Gelfand spectrum that is used. For
example, in the Dauns–Hofmann Theorem [15, 16, 30] the Gelfand spectrum of A
is taken to be the Gelfand spectrum of its centre Z(A), on which A is realized as
a sheaf. Akemann, on the other hand, used the space of maximal left ideals of A,
but needed to generalize the notions of topology and continuity [1]. Shultz used
the pure state space of A, equipped with the structure of a transition probability
[32], later refined so as to make the noncommutative Gelfand spectrum a so-called
Poisson space with a transition probability [26, 27]. See also [10, 25], etcetera. In
all cases, the point is to realize A in a way that resembles a space of complex-valued
continuous functions as much as possible.

Ultimately, what lies behind both directions is the success of Gelfand duality in capturing
(compact Hausdorff) spaces algebraically. What is slightly unnatural, though, is that
this capturing should involve the complex (or, for that matter, the real) numbers in a
fundamental way. This may be avoided in an order-theoretic approach, as follows [20],
[29, Ch. IX]. Instead of the passage X 7→ C(X) from spaces to complex algebras, we take
X 7→ O(X), where O(X) is just the topology of X in the defining sense of its collection
of open sets. This has a natural lattice structure under inclusion, and in fact defines a
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highly structured kind of lattice known as a frame. This is a complete distributive lattice
such that x∧

∨
λ yλ =

∨
λ x∧ yλ for arbitrary families {yλ} (and not just for finite ones, in

which case the said property follows from the definition of a distributive lattice). Indeed,
O(X) is a frame with U 6 V if U ⊆ V . A frame homomorphism preserves finite meets
and arbitrary joins; this leads to the category of frames and frame homomorphisms.

In order to have an equivalence like (1), we need to cut down both the category of
spaces and the category of frames. To do so, we first define a point of a frame F as a frame
map p∗ : F → {0, 1}, where as a frame {0, 1} is identified with O(∗), i.e., the topology of a
space with a point (so that we identify 0 with ∅ and 1 with ∗). In fact, if F = O(X), then
any point p ∈ X defines a point of F by p∗ = p−1 (that is, p∗(U) = 1 iff p ∈ U). Using
this concept, the set Pt(F ) of points of a frame F may be topologized in a natural way,
by declaring its opens to be the sets of the form Pt(U) = {p∗ ∈ Pt(F ) | p∗(U) = 1}, where
U ∈ F . We say that a frame F is spatial if it is isomorphic (in the category of frames) to
O(Pt(F )). On the other hand, a topological space X is called sober if it is homeomorphic
to Pt(O(X)). Given these definitions, it is almost tautological that

sober spaces ≃ (spatial frames)op, (3)

where the equivalence is given by O and Pt (seen as functors).1 Let us note the following,
however. It is easily shown that a frame F is spatial iff F ∼= O(X) for some space X, not
necessarily sober - in fact, we will later encounter an example of exactly this situation. In
that case, following [20], we may call

XS = Pt(O(X)), (4)

which is necessarily sober, the soberification of X (if X is already sober, one has XS ∼= X).
This construction may be compared to the passage from a compact non-Hausdorff space
X to its Hausdorffication

XH = Σ(C(X)). (5)

Now recall that the step from (1) to (2) introduced a certain generalization of the
concept of space by omitting the qualifier “unital commutative” in the characterization
of spaces in the right-hand side of (1). Analogously, we may omit the qualifier “spatial”
in the right-hand side of (3), hoping to arrive at a different generalized notion of space.
Following [20, 23, 29], we therefore write

pointfree spaces ≃ (frames)op, (6)

which, like (2), is no longer a duality theorem, but a statement of the definition of the
category of ‘pointfree spaces’ (also known as locales). This definition comes with a curious

1 Though (3) is true almost by definition, the nontrivial statement of Stone duality, i.e., Stone spaces
≃ (Boolean lattices)op, is actually a special case of (3). The nontrivial observation - apart from the fact
that Hausdorffness implies soberness - is that although Stone spaces form a subcategory of sober spaces,
Boolean lattices are not a subcategory of frames (for one thing, a Boolean lattice need not be complete).
Hence a special manoeuvre is needed to embed Boolean lattices in frames, which is done through the
so-called ideal completion L 7→ Idl(L); this is the collection of nonempty lower closed subsets I ⊂ L such
that x, y ∈ I implies x ∨ y ∈ I , ordered by inclusion [20, p.59]. A Stone space X then defines the Boolean
lattice Oc(X) of clopen subsets of X, whose ideal completion is the topology O(X); conversely, a Boolean
lattice L defines a Stone space X = Pt(Idl(L)), with O(X) ∼= Idl(L).



1 GENERALIZED SPACES 4

piece of notation: any frame is written O(X), whether or not it is spatial, and the corre-
sponding pointfree space is written as X. Furthermore, the symbol C(X,Y ) denotes the
object (in whatever category the frames are defined) of frame maps from O(Y ) to O(X);
a ‘continuous’ map f : X → Y is nothing but a frame map from O(Y ) to O(X), which
tends to be written as f∗ or f−1. This notation is partly motivated by the case where
O(X) are O(Y ) actually the topologies of sober spaces X and Y , respectively, for in that
case it can be shown (nonconstructively) that any frame map f∗ : O(Y ) → O(X) is of the
form f∗ = f−1 for a continuous map f : X → Y in the usual sense.

The surprising role of Hilbert spaces in the theory of noncommutative spaces has
a counterpart for pointfree spaces: these turn out to be related to logic, especially to
intuitionistic propositional logic.2 Indeed, a frame is a complete Heyting algebra, where a
Heyting algebra is a distributive lattice L with a map →: L×L → L satisfying x 6 (y → z)
iff x ∧ y 6 z, called implication [18, 29, 34]. Unlike in a Boolean lattice, negation is now
a derived notion, defined by ¬x = (x →⊥). Every Boolean algebra is a Heyting algebra,
but not vice versa; in fact, a Heyting algebra is Boolean iff ¬¬x = x for all x, which is the
case iff ¬x ∨ x = ⊤ for all x; not necessarily granting this is the essence of intuitionistic
logic. The point, then, is that a complete Heyting algebra is essentially the same thing
as a frame, for in a frame one may define y → z =

∨
{x | x ∧ y 6 z}, and conversely, the

infinite distributivity law in a frame is automatically satisfied in a Heyting algebra.
In principle, noncommutative spaces and pointfree spaces (i.e., locales) appear to be

totally different generalizations of the notion of a topological space. However, a close
connection arises if we return to Gelfand duality. To explain this, note that the usual
proofs of Gelfand duality are nonconstructive; for example, if the Gelfand spectrum is
realized as the maximal ideal space of A, one needs Zorn’s Lemma. However, a typical
situation in constructive mathematics now arises: Gelfand duality is nonconstructively
equivalent to a result that is constructively valid (that is, provable without using the axiom
of choice or the exclusion of the middle third) [2, 3, 4, 13, 14]. Hence the constructive
version of the key ingredient of classical Gelfand duality, namely the isomorphism

A ∼= C(Σ(A),C) (7)

of commutative C*-algebras, is formally the very same statement, but now reinterpreted
according to the notation for frame maps just explained. Thus the Gelfand spectrum Σ(A)
and the complex numbers C are now objects of the category of pointfree spaces, i.e., they
are really frames O(Σ(A)) and O(C), which are not necessarily spatial,3 and C(Σ(A),C)
denotes the object (in the ambient category) of frame maps from O(C) to O(Σ(A)).

The choice between the constructive version of Gelfand duality (in terms of pointfree
spaces) and its familiar nonconstructive counterpart (in terms of topological spaces) is not
a matter of philosophical taste. In set theory, the usual version is perfectly acceptable to
us. The point is that constructive Gelfand duality holds in arbitrary toposes (with natural
numbers objects, so that internal C*-algebras can be defined).4

2Perhaps this is less surprising in view of Stone duality and the well-known connection between Boolean
lattices and classical propositional logic.

3 Technically, O(Σ(A)) is required to be compact and completely regular [4], which are frame-theoretic
properties replacing the combination compact Hausdorff for topological spaces [20].

4We refer to [21, 22] for an encyclopaedic treatment of topos theory, to [29], [7], or [18] for (comple-
mentary) book-length introductions, to [34] for a shorter treatment, and finally to the appendix of [9] for
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2 Internal Gelfand spectrum

In order to define Gelfand spectra for noncommutative C*-algebras, we proceed as follows
[19]. Let A be a unital C*-algebra, and let C(A) be the poset of unital commutative
C*-subalgebras of A (ordered by set-theoretic inclusion), equipped with the Alexandrov
topology.5 Thus we have the topos Sh(C(A)) of sheaves on C(A). We now define a specific
sheaf A on C(A) by6

A(↑C) = C; C ∈ C(A); (8)

if C ⊆ D, then ↑D ⊆ ↑C, and the map A(↑C) → A(↑D), i.e., C → D, is simply given
by inclusion. This sheaf turns out to be a commutative C*-algebra A in Sh(C(A)) under
natural operations, so that it has an internal Gelfand spectrum Σ(A). With A fixed, we
will henceforth simply call this spectrum Σ; it is a pointfree space in the topos Sh(C(A)).7

The explicit computation of Σ was initiated in [19], and was completed in [35]. To
state the result (i.e., Theorem 1 below), topologize the disjoint union

Σ =
∐

C∈C(A)

Σ(C), (9)

where Σ(C) is the usual Gelfand spectrum of C ∈ C(A) (i.e., the set of pure states or
characters on C with the relative weak ∗-topology) by saying that U ∈ O(Σ) iff the
following two conditions are satisfied for all C ∈ C(A) (with the notation UC ≡ U ∩Σ(C)):

1. UC ∈ O(Σ(C)).

2. For all D ⊇ C, if λ ∈ UC and λ′ ∈ Σ(D) such that λ′
|C = λ, then λ′ ∈ UD.

For each U ∈ O(C(A)), we also introduce the space

ΣU =
∐

C∈U

Σ(C), (10)

with relative topology inherited from Σ. We then have:

Theorem 1 Let A be a unital C*-algebra A. The frame O(Σ) in Sh(C(A)) that underlies
the internal Gelfand spectrum Σ ≡ Σ(A) of the internal commutative C*-algebra A defined
by (8) is given by the sheaf

O(Σ) : U 7→ O(ΣU), (11)

where U ∈ O(C(A)); if U ⊆ V , the map O(ΣV ) → O(ΣU ) is given by U 7→ U ∩ ΣU .

a very brief survey of exactly what is needed below. The notion of a C*-algebra in a topos with natural
numbers object, including the statement and proof of Gelfand duality in the commutative case, is due to
Banaschewski and Mulvey [4]. See also [19] for a review of this theory, including a reformulation along the
lines of [13, 14].

5The open sets U of the Alexandrov topology on a poset P . are the upward closed sets (if x ∈ U and
x ≤ y, then y ∈ U). The sets Ux = ↑x = {y ∈ P | y ≥ x}, x ∈ P , form a basis of the Alexandrov topology.

6This formula defines A on the basic opens UC = ↑C of C(A) in the Alexandrov topology. On an
arbitrary open U =

⋃
C∈Γ UC , the sheaf property gives A(U) = limC∈Γ A(UC). Under the identification of

Sh(P ) with Sets
P (where the poset P is seen as a category in the usual way) through the correspondence

F (↑x) ↔ F (x) [18], the sheaf A corresponds to the tautological functor C 7→ C in Sets
C(A).

7The functorial properties of the map A 7→ Σ(A), as well as of the map A 7→ Σ(A) to be introduced
below, have been studied in [5].
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The proof of this theorem is quite lengthy, requiring familiarity with constructive mathe-
matics, as well as with the closely related technique of internal reasoning in topos theory.
Besides the general theory of internal Gelfand duality in Grothendieck toposes due to
Banaschewski and Mulvey [4] looming in the background, the proof of Theorem 1 consist
of three main steps:

1. The lattice-theoretic description of general constructive Gelfand spectra [13, 14];

2. The specific application of this description to the commutative C*-algebra A in the
topos Sh(C(A)) [19];

3. The insight that this application yields the explicit form (11) [33, 35].

We now give a summary of these steps, referring to the papers just cited for further
details.8 In what follows, A is a commutative C*-algebra with unit in some topos (with
natural numbers object), whereas C is a commutative C*-algebra with unit in the usual
sense, i.e., in the topos Sets of sets and functions.

1. As already mentioned, the constructive approach to Gelfand duality emphasizes the
frame O(Σ) rather than the set Σ ≡ Σ(A). To construct O(Σ), take the usual positive
cone A+ := {a ∈ Asa | a ≥ 0} of A (where Asa is the selfadjoint part of A), and define
a 4 b iff there exists n ∈ N such that a 6 nb. Define a ≈ b iff a 4 b and b 4 a. The lattice
operations on Asa (defined with respect to the usual partial order ≤) respect ≈ and hence
LA = A+/ ≈ is a lattice under the descent of ≤ to the quotient, which we denote by 6.

If A is finite dimensional, the constructive Gelfand spectrum of A is simply (isomorphic
to) the ideal completion Idl(LA) of LA (cf. footnote 1). In general, one needs a refinement
of this construction. First, define a surjective map Asa → LA, a 7→ Da ≡ [a+], where
a = a+ − a−, a± ∈ A+, and [a+] is the equivalence class of a+ in LA with respect to ≈.
Second, write Db ≪ Da iff Db 6 Da−q for some q > 0, q ∈ Q. Third, we refine the down-set
↓Da = {Db ∈ LA | Db 6 Da} to

։

Da = {Db ∈ LA | Db ≪ Da}, and declare an ideal I ∈ Idl(LA)
to be regular if I ⊇

։

Da for some Da ∈ LA implies Da ∈ I (in other words, if Db ∈ I for all
Db ≪ Da, then Da ∈ I). This yields the frame RIdl(LA) of regular ideals of LA, ordered
by inclusion (like Idl(LA), of which RIdl(LA) is a subframe). The constructive Gelfand
spectrum of A, then, turns out to be (isomorphic to) just this subframe, that is,

O(Σ(A)) ∼= RIdl(LA). (12)

There is a natural map f̃A : LA → Idl(LA), Da 7→ ↓Da, which may be refined to a map
fA : LA → RIdl(LA) that sends Da to the smallest regular ideal containing f̃A(Da) = ↓Da;
explicitly, one has fA(Da) = {Dc ∈ LA | Db ≪ Dc ⇒ Db 6 Da, Db ∈ LA}.

If one thinks of O(Σ) as the ‘topology’ of the Gelfand spectrum (in the appropriate
pointfree sense), the ‘opens’ fA(Da) (or, less accurately, the elements Da of LA themselves),
comprise ‘basic opens’ for the topology, in terms of which general ‘opens’ U ∈ RIdl(LA)
may be expressed as U =

∨
{fA(Da) | Da ∈ LA, fA(Da) ≤ U}.

8In fact, the third step can be carried out in two rather different ways, of which the approach of [35] is
easier to explain to operator algebraists. Hence in what follows we use the latter. The techniques in [33]
will be further explored in future work in collaboration with Steven Vickers, whom we wish to thank for
his insightful comments on an earlier version of this paper.
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Applying this to ordinary unital commutative C*-algebras C, one finds that the frame
O(Σ) is spatial, being related to the usual Gelfand topology O(Σ(C)) by the frame iso-
morphism RIdl(LC) → O(Σ(C)) that on basic opens is given by

fC(Da) 7→ Da ≡ {ϕ ∈ Σ(C) | ϕ(a) > 0}, a ∈ Csa.

In particular, the map
fC : LC → O(Σ(C)), Da 7→ Da (13)

is well defined (i.e., independent of the choice of a); cf. [35, Lemma 2.14].

2. Internalizing the above construction of O(Σ) to the topos Sh(C(A)) and applying it to
the internal C*-algebra A first yields a lattice LA in Sh(C(A)), given by [19, Theorem 20]

LA(↑C) = LC . (14)

Interpreting RIdl in the topos Sh(C(A)) through Kripke–Joyal semantics [29] then shows
that the internal frame RIdl(LA) in Sh(C(A)) is given by the sheaf (cf. [19, Theorem 29])

RIdl(LA) : U 7→ {F ∈ Sub(LA|U ) | F (↑C) ∈ RIdl(LC) for all C ∈ U}. (15)

Here LA|U : O(U)op → Sets denotes the restriction of the sheaf LA : O(C(A))op → Sets

to O(U), where U ∈ O(C(A)), and Sub(LA|U ) is the set of subsheaves of LA|U ; note that
F (↑C) ⊆ LC by (14), so that F (↑C) ∈ RIdl(LC) in (15) is well defined. If U ⊆ V , then
the map RIdl(LA)(V ) → RIdl(LA)(U) is given by restricting F ∈ Sub(LA|V ) to O(U).

3. To prove (15), the transformation θ : RIdl(LA) → O(Σ) defined by its components

θU : {F ∈ Sub(LA|U ) | F (↑C) ∈ RIdl(LC) for all C ∈ U} → O(ΣU );

F 7→
∐

C∈U

⋃

Da∈F (↑C)

Da, (16)

can be shown to be a natural isomorphism (since RIdl(LA) and O(Σ) are internal frames,
it suffices to prove that θC(A) is an isomorphism of frames in Sets; cf. [35, Theorem 2.17]).

Note that θU (F ) indeed lies in O(ΣU ) by the property ρ−1
DC ◦fC = fD ◦ ιCD for all C ⊆ D,

C,D ∈ C(A), where ρ−1
DC : O(Σ(C)) → O(Σ(D)) is the inverse image map of the restriction

ρDC : Σ(D) → Σ(C), λ 7→ λ|C , and ιCD : LC → LD is the obvious embedding Da 7→ Da

(where a ∈ C in the first Da and a ∈ D in the second). Q.E.D.

We illustrate Theorem 1 for A = Mn(C), i.e., the n × n complex matrices. We then
have a frame isomorphism O(Σ(C)) ∼= P(C) for any C ∈ C(A) [9], where P(C) is the
projection lattice of C (and similarly, P(A) below is the projection lattice of A). Hence

O(Σ) ∼= {S : C(A) → P(A) | S(C) ∈ P(C), S(C) ≤ S(D) if C ⊆ D}, (17)

where the right-hand side is equipped with the pointwise partial order ≤ with respect to
the usual partial ordering 6 of projections, i.e., S ≤ T iff S(C) 6 T (C) for all C ∈ C(A).
To obtain (17) we identify U =

∐
C∈C(A) UC as an element of O(Σ) with S : C(A) → P(A)

on the right-hand side of (17), where S(C) ∈ P(C) is the image of UC ∈ O(Σ(C)) under
the isomorphism O(Σ(C)) → P(C) just mentioned. Similarly, for U ∈ O(C(A)), the frame
O(ΣU ) may be identified with maps S : U → P(A) satisfying the conditions in (17).
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3 External Gelfand spectrum

It is not so easy for C*-algebraists to deal with pointfree spaces in a sheaf topos Sh(X).
Fortunately, such spaces have a so-called external description in ordinary set theory [17,
22, 23]. In fact, a pointfree space Y in Sh(X) may be represented by a continuous map
π : Y → X, where Y is a pointfree space in the usual sense (i.e., in Sets), with frame
O(Y ) = O(Y )(X); here O(Y ) is the internal frame in Sh(X) associated to Y . The reader
will now have gotten used to the idea that the notation π : Y → X really denotes a frame
map π∗ : O(X) → O(Y ), nothing being implied about the possible spatiality of the frames
in question. In terms of π∗, one may reconstruct Y from π : Y → X as the sheaf

O(Y ) : U 7→ {V ∈ O(Y ) | V ≤ π∗(U)}, U ∈ O(X). (18)

Furthermore, if Y 1 and Y 2 are two pointfree spaces in Sh(X), with external descriptions
πi : Yi → X, i = 1, 2, then an internal continuous map f : Y 1 → Y 2 is given externally by
a continuous map f : Y1 → Y2 satisfying π2 ◦ f = π1.

Applying this to X = C(A) and Y = Σ we obtain:

Theorem 2 The external description of the pointfree Gelfand spectrum Σ may be identi-
fied with the canonical projection9

π : Σ → C(A), (19)

where Σ is seen as an ordinary (rather than a pointfree) topological space, as is C(A).

Taking X = C(A) and Y = Σ, we see from (11) that O(Σ)(C(A)) = O(Σ), which frame is
obviously spatial.10 Conversely, from (18) and (19) we immediately recover (11). Q.E.D.

Theorem 2 has a number of interesting applications. We first turn to the Gelfand
transform.11 The Gelfand isomorphism (7) holds internally in Sh(C(A)), i.e., one has

A ∼= C(Σ,C) (20)

as an isomorphism of sheaves respecting the C*-algebraic structure on both sides.12 Here
C is the pointfree space of complex numbers in Sh(C(A)) with associated frame O(C),13

defined by the sheaf
O(C) : U 7→ O(U × C), U ∈ O(C(A)). (21)

It follows from eq. (5.12) in [9, Sect. 5] and (11) that as a sheaf one has

C(Σ,C) : U 7→ C(ΣU ,C), (22)

9 That is, if σ ∈ Σ(C) ⊂ Σ, then π(σ) = C. From this point of view, O(Σ) is actually the weakest
topology making this projection continuous with respect to the Alexandrov topology on C(A).

10To be precise, in pointfree topology a notation like (19) is typically used for a map between pointfree
spaces, which by definition is the frame map π−1 : O(C(A)) → O(Σ). In this case, however, the frame map
π−1 is actually the inverse image map of the continuous map (19), interpreted in the usual topological way.

11Unlike other approaches to Gelfand duality for noncommutative C*-algebras, our aim is not to recon-
struct A, but rather its ‘Bohrification’ A, since it is the latter that carries the physical content of A (at
least, according to Niels Bohr’s ‘doctrine of classical concepts’ [6] as reformulated mathematically in [28]).

12Recall that isomorphisms of sheaves in sheaf toposes are simply natural isomorphisms of functors [29].
13Not to be confused with the complex numbers object in Sh(C(A)), given by the sheaf U 7→ C(U,C).
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where ΣU =
∐

C∈U Σ(C); if U ⊆ V , the map C(ΣV ,C) → C(ΣU ,C) is given by the
pullback of the inclusion ΣU →֒ ΣV (that is, by restriction). It then follows from (8) and
(22) that the isomorphism (20) is given by its components

A(U) ∼= C(ΣU ,C). (23)

In particular, the component of the natural isomorphism in (20) at U = ↑C is

C ∼= C(Σ↑C ,C). (24)

A glance at the topology of Σ shows that the Hausdorffication (5) is given by ΣH
↑C

∼= Σ(C),
so that the isomorphism (24) comes down to the usual Gelfand isomorphism

C ∼= C(ΣC ,C). (25)

At the end of the day, the Gelfand isomorphism (20) therefore turns out to simply assemble
all isomorphisms (25) for the commutative C*-subalgebras C of A into a single sheaf-
theoretic construction. Incidentally, taking C = C · 1 in (24) shows that ΣH is a point,
which is also obvious from the fact that any open set containing the point Σ(C · 1) of Σ
must be all of Σ.

Second, we give a topological reinterpretation of the celebrated Kochen–Specker Theo-
rem [24].14 We say that a valuation on a C*-algebra A is a nonzero map λ : Asa → R that
is linear on commuting operators and dispersion-free, i.e., λ(a2) = λ(a)2 for all a ∈ Asa.
If A is commutative, the Gelfand spectrum Σ(A) consists precisely of the valuations on
A.15

Theorem 3 There is a bijective correspondence between:

• Valuations on A;

• Points of Σ(A) in Sh(C(A));

• Continuous cross-sections σ : C(A) → Σ of the bundle π : Σ → C(A) of Theorem 2.

In particular, this bundle admits no continuous cross-sections as soon as A has no valua-
tions,16 as in the case A = B(H) with dim(H) > 2.

14It was the sheaf-theoretic reformulation of the Kochen–Specker Theorem by Butterfield and Isham [8]
that originally got the the use of topos theory in the foundations of quantum physics going. What follows
is a simplification of Sect. 6 in [9], at which time the spatial nature of Σ was not yet understood. See also
[19, Theorem 6] for an internal proof of the equivalence between the first two bullet points.

15 Physically, a valuation correspond to a so-called noncontextual hidden variable, which assigns a sharp
value to each observable a per se. A contextual hidden variable gives a sharp value to a seen in a specific

measurement context in which it, in particular, may be measured. See, e.g., [31]. In our mathematization,
measurement contexts are identified with commutative C*-subalgebras of some ambient noncommutative
C*-algebra A, so that a contextual hidden variable assigns a value to a pair (a,C) where a ∈ C. Hence
Theorem 3 identifies noncontextual hidden variables with continuous cross-section of π : Σ → C(A),
contextual hidden variable corresponding to possibly discontinuous cross-sections.

The mathematics neatly fits the physics here, but it should be realized that specific examples of C*-
algebras A may suggest coarser natural topologies on C(A) than the Alexandrov topology (like the Scott
topology), which in turn may imply stronger continuity conditions. We thank the referee for this comment.

16The claim following this footnote sign is the content of the original Kochen–Specker Theorem [24].
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To prove this, we first give the external description of points of a pointfree space Y in
a sheaf topos Sh(X). The subobject classifier in Sh(X) is the sheaf Ω : U 7→ O(U), in
terms of which a point of Y is a frame map O(Y ) → Ω. Externally, the pointfree space
defined by the frame Ω is given by the identity map idX : X → X, so that a point of Y
externally correspond to a continuous cross-section σ : X → Y of the bundle π : Y → X
(i.e., π ◦ σ = idX). In principle, π and σ are by definition frame maps in the opposite
direction, but in the case at hand, namely X = C(A) and Y = Σ, the map σ : C(A) → Σ
may be interpreted as a continuous cross-section of the projection (19) in the usual sense.
Being a cross-section simply means that σ(C) ∈ Σ(C). As to continuity, by definition of
the Alexandrov topology, σ is continuous iff the following condition is satisfied:

for all U ∈ O(Σ) and all C ⊆ D, if σ(C) ∈ U then σ(D) ∈ U .

Hence, given the definition of O(Σ), the following condition is sufficient for continuity: if
C ⊆ D, then σ(D)|C = σ(C). However, this condition is also necessary. To explain this,
let ρDC : Σ(D) → Σ(C) again be the restriction map. This map is continuous and open.
Suppose ρDC(σ(D)) 6= σ(C). Since Σ(D) is Hausdorff, there is an open neighbourhood
UD of ρ−1

DC(σ(C)) not containing σ(D). Let UC = ρDC(UD) and take any U ∈ O(Σ) such
that U ∩O(Σ(C)) = UC and U ∩O(Σ(D)) = UD. This is possible, since UC and UD satisfy
both conditions in the definition of O(Σ). By construction, σ(C) ∈ U but σ(D) /∈ U , so
that σ is not continuous. Hence σ is a continuous cross-section of π iff

σ(D)|C = σ(C) for all C ⊆ D. (26)

Now define a map λ : Asa → C by λ(a) = σ(C∗(a))(a), where C∗(a) is the commutative
unital C*-algebra generated by a. If b∗ = b and [a, b] = 0, then λ(a + b) = λ(a) + λ(b)
by (26), applied to C∗(a) ⊂ C∗(a, b) as well as to C∗(b) ⊂ C∗(a, b). Furthermore, since
σ(C) ∈ Σ(C), the map λ is dispersion-free.

Conversely, a valuation λ defines a cross-section σ by complex linear extension of
σ(C)(a) = λ(a), where a ∈ Csa. By the criterion (26) this cross-section is evidently
continuous, since the value λ(a) is independent of the choice of C containing a. Q.E.D.

The contrast between the pointlessness of the internal spectrum Σ and the spatiality
of the external spectrum Σ is quite striking, but easily explained: a point of Σ (in the
usual sense, but also in the frame-theoretic sense in the case that Σ is sober) necessarily
lies in some Σ(C) ⊂ Σ, and hence is defined (and dispersion-free) only in the ‘context’ C.
For example, for A = Mn(C), a point λ ∈ Σ(C) corresponds to a map

λ∗ : O(Σ) → {0, 1}, S 7→ λ(S(C)), (27)

where O(Σ) has been realized as in (17). Thus λ∗ is only sensitive to the value of S at C.

To close, we examine the possible soberness of Σ [33, Theorem 8], [35, Theorem 2.25]:

Proposition 4 The space Σ is sober if A satisfies the ascending chain condition: every
chain C1 ⊆ C2 ⊆ · · · of elements Ci ∈ C(A) converges, in that Cn = Cm for all n > m.

The proof is straightforward, relying on the identification of points of Σ with irreducible
closed subsets of S and the ensuing condition that Σ is sober iff every irreducible closed
subsets of S is the closure of a unique point [29, §IX.3].
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For example, this proposition implies that Σ is sober for A = Mn(C), and, more
generally, for all finite-dimensional C*-algebras.
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