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Infinite disorder scaling of random quantum magnets in three and higher dimensions
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Using a very efficient numerical algorithm of the strong disorder renormalization group method
we have extended the investigations about the critical behavior of the random transverse-field Ising
model in three and in higher dimensions. In all studied cases an infinite disorder quantum crit-
ical point is identified, which ensures that the applied method is asymptotically correct and the
calculated critical exponents tend to the exact values for large scales. We have shown that the
critical exponents are independent of the form of the disorder and they are smooth functions of the
dimensionality.

Introduction Quantum phase transitions are among
the fundamental problems of modern physics, the prop-
erties of which are studied in solid state physics, quan-
tum field-theory, quantum information and statistical
mechanics[1]. These transitions take place at T = 0 tem-
perature, i.e. in the ground state of the quantum system
by varying a control parameter, such as the strength of
a transverse field. One basic question in this field of re-
search is how quenched disorder influences the properties
of quantum phases and phase transitions. In this respect
quantum spin glasses and the glass transition are partic-
ularly interesting[2]. This latter problem theoretically is
very challenging, since the corresponding quantum state
is the result of an interplay between quantum and disor-
der fluctuations, strong correlations and frustration.
One of the paradigmatic models of random quan-

tum magnets with a discrete symmetry is the random
transverse-field Ising model (RTIM), which is defined by
the Hamiltonian:

H = −
∑

〈ij〉

Jijσ
x
i σ

x
j −

∑

i

hiσ
z
i . (1)

Here the σx,zi are Pauli-matrices and i, j denote sites of a
lattice (or a graph). Experimentally the RTIM is realized
by the compound LiHoxY1−xF4 and at a concentration,
x = 0.167, a spin glass phase was observed[3]. In this
compound there is a dipole-coupling between the Ising
spins, thus the interaction is long-ranged. Applying a
magnetic field Ht transverse to the Ising axis results in
a transverse field of strength, hi = H2

t . In the theo-
retical investigations the interactions in the RTIM are
generally assumed to be short-ranged, thus the first sum
in Eq.(1) runs over nearest neighbors. Furthermore the
Jij couplings and the hi transverse fields are independent
random numbers, which are taken from the distributions,
p(J) and q(h), respectively.
Detailed theoretical results about the RTIM are known

in one dimension (1D) due to a complete analytical so-
lution of a renormalization group (RG) treatment[4].
The RG results are expected to be asymptotically ex-

act in the vicinity of the critical point (and also in
the Griffiths-phase, as long as dynamical singulari-
ties are concerned[5]), which is indeed demonstrated
by a comparison with independent analytical[6, 7] and
numerical[8, 9] works. One important observation, that
the critical properties of the 1D model are governed
by an infinite disorder fixed point (IDFP), in which
the strength of disorder growths without limit dur-
ing renormalization[10] and thus become dominant over
quantum fluctuations.

The IDFP scenario is found to be valid for the 2D
RTIM, too, as observed in numerical RG studies[11–17]
and in Monte Carlo (MC) simulations[18]. The calcu-
lated critical exponents are in agreement with the MC
results about the 2D random contact process[19], which
is a simple nonequilibrium model of spreading infections.
The d-dimensional random contact process is expected
to be in the same universality class[20] as the RTIM, at
least for strong enough disorder.

In three dimensions, which is connected to real quan-
tum magnets, no quantitative results are known, so far.
Analysis of the numerical RG trajectories lead to the
conclusion[11], that the critical behavior in this case is
probably controlled by an IDFP, but no estimates about
the critical exponents are available. For even higher di-
mensions it is unclear, if the IDFP scenario stays valid
for any finite value of d, or there is some upper critical
dimension, dc, so that for d > dc the critical behavior is
of conventional disorder type. We note that the large-d
limit of the problem is relevant for models with long-
range interactions, such as in LiHoxY1−xF4.

In this Letter we aim to extend the investigations
about the critical behavior of the RTIM in three and in
higher dimensions. Our studies are based on an improved
numerical algorithm of the strong disorder RG (SDRG)
procedure, which makes possible to obtain accurate re-
sults in 3D and 4D lattices. We have also studied the
large-d limit of the problem, which is realized by Erdős-
Rényi (ER) random graphs[21] with a finite coordination
number.
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SDRG procedure In the calculation we used the
SDRG procedure[22], which has been introduced by Ma,
Dasgupta and Hu[23]. At each step of the renormal-
ization the largest local term in the Hamiltonan (either
a coupling or a transverse field) is eliminated and new
terms are generated between remaining sites by second-
order perturbation method. After decimating a strong
coupling the two connected spins form a spin cluster hav-
ing an additive moment, µ, which is placed in an effective
transverse field. After decimating a large transverse field
the actual spin is eliminated and new effective couplings
are generated between each pair of spins being nearest
neighbors to the decimated site. If at one step two par-
allel couplings appear between two neighboring sites the
maximum of them is taken. Application of this “maxi-
mum rule” is exact at an IDFP and results in simplifica-
tions of the RG procedure. Here we have developed an
optimized algorithm, which needs t ∼ O(N logN + E)
time to renormalize a cluster with N sites and E edges
up to the last spin, irrespective of the dimension and
topology of the cluster[24]. In this algorithm terms in the
Hamiltonian are decimated in descending order in energy
and we have applied the following theorem for transverse
field decimation. According to this theorem for a dec-
imated site, i, there is always one relevant neighboring
site, j, so that after decimating i only those renormalized
couplings should be created, which connect j with its new
neighboring sites[25]. All the couplings which start from
other nearest neighbors of i (and does not end at j) are
irrelevant and need not be created. In this way during
one RG step not only the number of sites is reduced (by
one), but the number of couplings, as well. Using this
algorithm we avoid to generate almost fully connected
clusters, which is the main drawback of the näıve imple-
mentation of the method in higher dimensions[17], having
a performance: t ∼ O(N3).

Calculation of critical parameters In the actual cal-
culation we have renormalized finite clusters up to the
last site and we kept the energy scale, ǫ, as well as the
total moment, µ. (The way how to deduce these quanti-
ties in the RG procedure are described in Ref.[17].) In 3D
and 4D the clusters have a hypercubic shape with a lin-
ear length, L, while for the ER model a graph consists of
N sites and of kN/2 edges being in random positions. In
the actual calculation we have k = 3, so that the graph is
percolating, and some control measurements are also per-
formed with graphs having k = 4. The sizes of the largest
systems we studied are shown in Table I. In order to
check universality and to control the disorder dependence
of the estimates we have used two different form of ran-
domness. Both have the same uniform distribution of the
couplings: p(J) = Θ(J)Θ(1 − J) (Θ(x) being the Heav-
iside step-function), which are ferromagnetic[26]. For
the ’box-h’ disorder also the transverse fields are uni-

formly distributed: q(h) =
1

hb
Θ(h)Θ(hb−h), whereas for

the ’fixed-h’ model we have a constant transverse field:
hi = hf . We used the logarithmic variable, θ = log(hb)
or θ = log(hf ), as a quantum control parameter. We
have checked that the computational time to renormal-
ize an N = 103 (N = 106) cluster is typically ∼ 0.015
(∼ 50) second (in a 2.4GHz processor), which does not
depend on the dimension and the topology of the cluster.
The numbers of realizations used in the calculations were
typically 40000 but even for the largest sizes we have at
least 10000 samples.

During the calculation we have basically followed the
same strategy as used in the 2D problem[17].

(i) First, we have calculated sample dependent pseudo-
critical points, θc(N), by a variant of the doubling
method. In this procedure[17] we glue together two iden-
tical copies of the random sample by surface couplings[27]
and perform the renormalization for different values of θ.
In the locally ordered phase, θ < θc(N), there is an ef-
fective spin cluster, in which equivalent sites in the two
copies are present. On the contrary, in the locally dis-
ordered phase, θ > θc(N), there is no such a correlation

cluster.
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FIG. 1: (Color online) Distribution of the pseudo-critical
points, θc(N), for various sizes, N = L3, for fixed-h random-
ness for the 3D model. In the inset the scaled distributions
are shown as a function of y = (θc(N) − θc)N

1/dν , see the
text.

(ii) In the second step we have studied the size-
dependence of the distributions of the pseudo-critical
points, which is illustrated in Fig.1 for the 3D model.
From the scaling of the width, ∆θc(N) ∼ N−1/dνw , and
from the scaling of the mean value: |θc − θc(N)| ∼
N−1/dνs we have obtained the critical exponents, νw and
νs, respectively. We have calculated size-dependent effec-
tive exponents by two-point fits[17], which are then ex-
trapolated. The effective exponents for the 3D model are
shown in the inset of Fig.2 for the two different random-
nesses. As in this example we have generally observed
that the extrapolated critical exponents are universal, i.e.
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randomness independent. Estimates of the exponents are
presented in Table I, together with the values of the true

critical points, θ
(b)
c and θ

(f)
c , for the two randomnesses,

respectively.
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FIG. 2: (Color online) Average moment of the correlation
cluster at the critical point vs. the size of the system in a
log-log plot for the 3D and 4D models for two types of ran-
domness (box-h ⊡, fixed-h: +). The slope of the straight lines
is given by: df/d = 0.387 and df/d = 0.32 for 3D and 4D,
respectively. Inset: Finite-size effective exponents, νs (blue -
dashed) and νw (red - full), for the 3D model for two types of
randomness.

(iii) In the third step we have renormalized the systems
at the critical points and studied the scaling behavior of
the moment of the correlation cluster, µN , as well as that
of the log-energy parameter, γN = − log ǫN . The average
moment is found to scale as: µN ∼ Ndf/d, where df is
the fractal dimension of the correlation cluster. We illus-
trate this relation in Fig.2 for the 3D and the 4D models,
in which µN is shown as a function of N in a log-log
scale. Indeed, for not too small systems, N > 1000, the
points are very well on straight lines, the slope of which
being the same for the two different randomnesses for
the same d. From the cluster moment the magnetization
is calculated as, m = µN/N , thus we have the scaling
relations: x/d = β/(dν) = 1 − df/d. Estimates for the
exponents x/d, which are calculated through two-point
fits are shown in Table I.
The distribution of the log-energy parameter, γN ,

is shown in the upper panel of Fig.3, for the differ-
ent models. As a clear indication of infinite disorder
scaling the width of the distribution is increasing with
N . In 3D and 4D the appropriate scaling variable is
γ̃ = (γN − γ0)N

−ψ/d, as illustrated with the data col-
lapse in the lower panel of Fig.3. The critical exponent
ψ has been calculated from the optimal collapse of the
distributions, as well as from two-point fits of the mean
values, which are presented in Table I. The ER random
graphs are infinite dimensional objects and in this case
the broadening of the distribution of the log-energy pa-

10-4

10-3

10-2

10-1

 0  1  2  3  4  5

p

γ

3D

10-4

10-3

10-2

10-1

 0.1  0.3  0.5

p~
  

γ~ 

L=24
32
48
64
96

128

 0  0.5  1  1.5  2γ

4D

 0.1  0.2  0.3  0.4γ~ 

L=8
12
16
24
32
48

 0  1  2  3  4  5γ

ER

 0.04  0.08  0.12γ~ 

N=212

214

216

218

220

222

FIG. 3: (Color online) Distribution of the log-energy param-
eters at the critical point in 3D, 4D and in the ER random
graph for fixed-h randomness and for different sizes (upper
panel). In the lower panel the scaled distributions are shown,
as described in the text.

TABLE I: Critical properties of the RTIM in three and four
dimensions and in ER random graphs. Nmax denotes the
number of spins in the largest finite systems used in the RG
calculation.

3D 4D ER

Nmax 1283 484 222

θ
(b)
c 2.5305(10) 3.110(5) 2.775(2)

θ
(f)
c −0.07627(2) −0.04698(10) −0.093(1)

dνw 2.90(15) 3.30(15) 7.(2)

dνs 2.96(5) 2.96(15) 5.(1)

x/d 0.613(5) 0.68(3) 0.81(4)

ψ 0.46(2) 0.46(2) −

rameter is found to scale with logN . As a good scaling
combination we have here γ̃ = (γN − γ0)(logN/N0)

−ω,
which is illustrated with the data collapse in the lower
panel of Fig.3, with an exponent ω = 1.3(2).

Discussion Our numerical RG results indicate that
the critical behavior of the random transverse-field Ising
model in three and four dimensions as well as in the
ER random graph is controlled by infinite disorder fixed
points. This fact justifies the use of the SDRG method
and ensures that the calculated numerical results about
the critical exponents tend to be asymptotically cor-
rect for large sizes. Since the ER random graph rep-
resents the large-dimensional limit of the problem, infi-
nite disorder scaling is expected to be valid at any di-
mensions. The critical exponents presented in Table I
are found to be disorder independent, thus the IDFP-s
are expected to be attractive, at least for strong enough
disorder. Singularities of the thermodynamic quanti-
ties at small temperatures involve these exponents. For
example the susceptibility and the specific heat behave
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as: χ(T ) ∼ (log T )(d−2x)/ψ/T and CV (T ) ∼ (logT )d/ψ,
respectively[10, 22]. The analogous expressions for the
ER random graph are: log[Tχ(T )] ∼ (1−2x/d)(log T )1/ω

and log[CV (T )] ∼ (logT )1/ω.
The IDFP-s in Table I control the critical behavior

of the spinglass transition[26], as well as that of a class
of random quantum systems having an order parame-
ter with discrete symmetry, such as random quantum
Potts[28] and clock models[29]. Nonequilibrium phase
transitions, such as the contact process with (strong)
disorder[20] also belong to this class of universality. The
critical exponents in Table I show a smooth variation
with the dimension and indicate that the large-d limit is
not singular. For a given d the correlation length criti-
cal exponents, νs and νw, agree with each other, within
the error of the calculation. These satisfy the rigorous
bound[30], ν ≥ 2/d, and are in agreement with the scal-
ing theory at conventional random fixed points[31, 32].
Interestingly, the exponent ψ is found very close to 1/2
for any considered finite dimension[33]. This fact can be
explained with our observation, that the low-energy ex-
citations in any dimension are quasi-1D objects and the
energy scale can be obtained by renormalizing these ob-
jects practically independently of the rest of the system.
This leads to approximately the same type of linear-size
dependence of the energy in any dimension.
The SDRG investigations presented in this Letter can

be extended in several directions. Here we mention the
calculation of the entanglement entropy[14–16, 34] in
these systems, as well as study of the dynamical singular-
ities in the disordered and ordered Griffiths phases[22].
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