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Analytic continuation of functions along parallel algebraic curves.

S.A.Imomkulov 1 and J.U.Khujamov 2

Introduction

Classical lemma of Hartogs (see [1]), about continuation along fixed di-
rection, conform, that if holomorphic in a domain

D × V = D × {w ∈ C : |w| < r} ⊂ Cn
z × Cw

function f(z, w), in each fixed z ∈ D holomorphic in a ball {w ∈ C, |w| < r},
then it holomorphic on a collection of variables in D × V . The Hartogs’
lemma has a plenty generalizations which different on characterizations and
direct verges to themes, connected with holomorphic continuation on fixed
direction. A further results in this field are given in a works of Rothstein
[2], M.V. Kazaryan [3], A.S.Sadullaev and E.M.Chirka [4], T.T.Tuychiev [5],
S.A.Imomkulov and J.U.Khujamov [6], S.A.Imomkulov [7] and etc.

In this work we study a problem about analytic continuation along par-
allel algebraic curves.

Algebraic curve in C2 will be determining as a set of zero of some of
polynomials:

A =
{

(ξ, η) ∈ C2 : P (ξ, η) = 0
}

.

A set of regular points A0of algebraic curve A, open on A, and the set of
critical points Ac = A\A0 is discrete set (see [1], [8],[9] ).

The algebraic set call irreducible, if it is impossible to present in the view
of joined algebraic sets, which differ from it.

Theorem. Let D is a domain from Cn and V is a domain from some of
irreducible algebraic curve A. If a function f(z, w) holomorphic in a domain
D× V ⊂ Cn

z ×A and in each fixed ξ from some of nonpluripolar set E ⊂ D,
a function f(ξ, w) variable of w continuous till the function, holomorhpic
on a whole A, excepting finite sets of singularities (from A0), then f(z, w)
holomorphic extended in (D×A)\S, where S- some of analytic subset D×A.
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§1. Holomorphic functions on algebraic set.

Any algebraic curve A ⊂ C2 in sufficiently small neighborhood U (each
its point a ∈ A) is ramified covering over neighborhood of projection point
a in some plane C ⊂ C2 (see. [1], chapter 2. §8. Page 175).

Observe, that on algebraic curves defining correctly not only holomorphic
functions, its derivatives also. Holomorphic function and its derivatives in a
point defining with the help following equality:

Dkf |a =
∂k

∂zk
f(π−1(z))|U , k = 0, 1, 2, 3, ...,

where π : A → C locally biholomorphic mapping, called projection and U –
neighborhood of point a, in which a restriction π|U - biholoorphic, π−1|U -
inverse mapping and in second member is a derivative in a point z = π(a).

§2. The Jacoby – Hartogs series

We consider the function f(z, w) holomorphic in a domain D × V, D ⊂
Cn, V ⊂ A. Assume, that π−1(0) ∈ V . Let g(ζ) - rational function on
ζ ∈ C such that g(0) = 0. Then at small ρ there exist connected component
Λρ of set {ζ : |g(ζ) < ρ|} such that O ∈ Λρ, π

−1(Λρ) ⊂ V . Since f(z, w)
holomorphic in the domain D × π−1(Λρ) then, at every fixed point z ∈ D it
can be expanded in a series Jacoby - Hartogs (see [4])

f(z, w) =
∞
∑

k=0

ck(z, π(w))g
k(π(w)) , (1)

where an coefficients of series defining as follows

ck(z, w) =
1

2πi

∫

∂(π−1(Λρ)

f(z, π(η))
g(π(η))− g(π(w))

gk+1(π(η))(η − w)
dη

, k = 0, 1, 2, ......

It follows, that ck(z, w) holomorphic functions in D×A. At a fixed point

z ∈ D the series (1) converge in a lemniscates
{

|g(π(w))| < R(g)(z)
}

, where

R(g)(z) defining as follows
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R(g)(z) =
1

lim
k→∞

k

√

‖ck(z, w)‖π−1(K)

.

Here K ⊂ C- arbitrary nonpolar compact, which does not hold poles g,
and the limit in right-hand member of equality does not depend on choice of
such compact. Notice, that the value R(g)(z) is a maximal radius, for which

the function f is holomorphic inside of lemniscates
{

|g(w)| < R(g)(z)
}

.

Lemma 1. The Jacoby – Hartogs series (1) converge uniformly inside of
open set

Gg =
{

(z, w) ∈ D ×A : |g(π(w))| < R(g)
∗
(z)

}

, z ∈ D,

where R
(g)
∗ (z) = lim

ξ→z
R(g)(ξ) - normalization from below. The function− lnR

(g)
∗ (z)

is plurisubharmonic inD, R
(g)
∗ (z) ≤ R(g)(z), z ∈ D and the set

{

z ∈ D : R
(g)
∗ (z) < R(g)(z)

}

is pluripolar.
We denote by ℜ = {g(ζ)} - countable family of all rational functions with

coefficients from the set Q + iQ (Q - the set of rational number) such that,
each function ℜ = {g(ζ)} has a zero only in a point w = 0. In order to study
convergence domain, corresponding Jacoby – Hartogs series will be useful
following lemma about approximation of flat sets by rational lemniscates.

Lemma 2. ([4],[6],[7]). Let Σ- close polar set from C\{0} and K -
compact in C\{Σ}. Then, there exist rational function g ∈ ℜ such that the
lemniscates {ζ : |g(z)| < 1} is connected, belong to C\{Σ} and holding K.

§3. Some properties of pseudoconcave sets.

The properties of pseudoconcave sets has been studied in works [10-13].
Let S- pseudoconcave subset of domain D × V . Assume, that S does not
cross D × ∂V and

Sa = S ∩ {z = a}.

Then:
1) the function ln(capSz), where cap – capacity ( ı̂á̂ıḉıà÷à̊aò å̀ıê̂ıñòü

(transfinite diameter) of flat set, is plurisubharmonic in D(see [13]).
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2) if Sz is finite for all z from some pluripolar set E ⊂ D, then S is
analytic set (see[12]).

3) if Sz is polar for all z from some nonpluripolar set E ⊂ D, then S is
pluripolar set (see [10], [11]).

Defenition. The close set S ⊂ D × A called pseudoconcave set in the
domain D × A if for any point a ∈ S there exist some neighborhood U ⊂
D × A and holomorphic in U\S function f such that it does not converge
holomorphically to the point a.

Lemma 3. Let D - a domain from Cn and V - a domain from irreducible
algebraic curve A, such that 0 ∈ π(V ). Let S - pseudoconcave subset of the
domain D× V . Assume, that S does not cross D× ∂V . Then , if Sz - finite
for all z ∈ D, then S- analytic subset of the domain D × V .

§4. The proof of theorem.

We expand of function f(z, w) in Jacoby – Hartogs series by degrees of
function g(π(w)), (g(ζ) ∈ ℜ , ζ = π(w), 0 ∈ π(V )),

f(z, w) =
∞
∑

k=0

ck(z, w)g
k(π(w)) , (2)

where ck(z, w) ∈ O(D × V ). It is possible, because f(z, w) - holomorphic
in D × V and at sufficiently small ρ > 0 the lemniscates {w : |g(w)| < ρ}
belong to V . According to lemma 1 the series (2) uniformly converge inside
of set

Gg =
{

(z, w) : |g(π(w))| < R(g)
∗
(z)

}

, z ∈ D

and consequently, its sum holomorphic in it. According to definition of family
of rational functions ℜ the set Gg is a domain, which contain D× {π−1(0)}.
The sum of constructed series (2) is coincident with f(z, w) in neighborhood
D × {π−1(0)} and, thus, (2) is holomorphic continuation of f(z, w) in Gg.

2. Let g1 and g2an arbitrary rational functions from family ℜ and let
f1(z, w) and f2(z, w) are analytic continuation of function f(z, w) in a do-
mains Gg1 and Gg2correspondingly. Since, for any point z0 ∈ D the function
f1(z

0, w) single-valued by w and f1(z
0, w) = f2(z

0, w) = f(z0, w) for any
(z0, w) ∈ Gg1 ∩ Gg2, then f(z, w) holomorphic in (Gg1 ∪ Gg2) ∩ {z = z0} so,
f(z, w) uniquely converge in Gg1 ∪ Gg2, and it follows that the function
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f(z, w) uniquely converge in domain G = ∪Gg, where union is taken by all
rational functions family ℜ.

3. Since, at each fixed point z0 ∈ D the function f(z0, w) single-valued in
A, then it follows that analytic continuation of function f(z, w) (in D × A)
is uniquely. Let G̃ ⊂ D × A an original domain for existence of function
f(z, w) regarding toD×A. So, G̃ nonexpendable holomorphic in every point
(z0, w0) ∈ S = (D × A)\G̃. From here we receive, that S - pseudoconcave
subset of the domain D ×A.

4. Now, using lemma 2, we show, that for any point z0 ∈ D, a set of
singular point of function f(z0, w) of variable w ∈ A coincide with layer
Sz0 of the set S. In fact, by the terms of theorem singular set Λ of func-
tion f(z0, w) consist finite number of points, then according to lemma 2,
for any compact K ⊂ A\Λ, there exist rational function g ∈ ℜ such that,
the lemniscates {|g(π(w))| < 1} contains K. Consequently, the lemniscates
{

|g(π(w))| < R(g)(z0)
}

, so and
{

|g(π(w))| < R
(g)
∗ (z0)

}

contains (since, R
(g)
∗ (z0) ≥

R(g)(z0)).
5. Let Ω - an image of domain G̃ = (D × A)\S in maping (z, π−1(ζ)) →

(z, π−1(1
ζ
)). The set (D × A′)\Ω = L is also pseudoconcave. Since, S does

not cross the set D × {π−1(0)}, then L is bounded and intersection L ∩ A′

for any point z0 ∈ D, consist from finite number of points, i.e. the set L

is satisfying all conditions of lemma 3. Consequently, L - analytic set from
here it is easy to see, that S- analytic. The proof of theorem is complete.
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