Analytic continuation of functions along parallel algebraic curves.

 $S.A.Imomkulov^1$ and $J.U.Khujamov^2$

Introduction

Classical lemma of Hartogs (see [1]), about continuation along fixed direction, conform, that if holomorphic in a domain

$$D \times V = D \times \{ w \in C : |w| < r \} \subset C_z^n \times C_w$$

function f(z, w), in each fixed $z \in D$ holomorphic in a ball $\{w \in C, |w| < r\}$, then it holomorphic on a collection of variables in $D \times V$. The Hartogs' lemma has a plenty generalizations which different on characterizations and direct verges to themes, connected with holomorphic continuation on fixed direction. A further results in this field are given in a works of Rothstein [2], M.V. Kazaryan [3], A.S.Sadullaev and E.M.Chirka [4], T.T.Tuychiev [5], S.A.Imomkulov and J.U.Khujamov [6], S.A.Imomkulov [7] and etc.

In this work we study a problem about analytic continuation along parallel algebraic curves.

Algebraic curve in \mathbb{C}^2 will be determining as a set of zero of some of polynomials:

$$A = \{ (\xi, \eta) \in \mathbf{C}^2 : P(\xi, \eta) = 0 \}.$$

A set of regular points A^0 of algebraic curve A, open on A, and the set of critical points $A^c = A \setminus A^0$ is discrete set (see [1], [8],[9]).

The algebraic set call irreducible, if it is impossible to present in the view of joined algebraic sets, which differ from it.

Theorem. Let D is a domain from \mathbb{C}^n and V is a domain from some of irreducible algebraic curve A. If a function f(z, w) holomorphic in a domain $D \times V \subset C_z^n \times A$ and in each fixed ξ from some of nonpluripolar set $E \subset D$, a function $f(\xi, w)$ variable of w continuous till the function, holomorphic on a whole A, excepting finite sets of singularities (from A^0), then f(z, w) holomorphic extended in $(D \times A) \setminus S$, where S- some of analytic subset $D \times A$.

¹ Navoi State Pedagogical Institute (Uzbekistan). E-mail: <u>sevdi@rambler.ru</u>

² Urgench State University (Uzbekistan). E-mail: jumanazar-1971@mail.ru

§1. Holomorphic functions on algebraic set.

Any algebraic curve $A \subset \mathbb{C}^2$ in sufficiently small neighborhood U (each its point $a \in A$) is ramified covering over neighborhood of projection point a in some plane $C \subset \mathbb{C}^2$ (see. [1], chapter 2. §8. Page 175).

Observe, that on algebraic curves defining correctly not only holomorphic functions, its derivatives also. Holomorphic function and its derivatives in a point defining with the help following equality:

$$D^{k}f|_{a} = \frac{\partial^{k}}{\partial z^{k}}f(\pi^{-1}(z))|_{U}, \quad k = 0, 1, 2, 3, \dots,$$

where $\pi : A \to \mathbb{C}$ locally biholomorphic mapping, called projection and U – neighborhood of point a, in which a restriction $\pi|_U$ - biholoorphic, $\pi^{-1}|_U$ inverse mapping and in second member is a derivative in a point $z = \pi(a)$.

§2. The Jacoby – Hartogs series

We consider the function f(z, w) holomorphic in a domain $D \times V$, $D \subset C^n$, $V \subset A$. Assume, that $\pi^{-1}(0) \in V$. Let $g(\zeta)$ - rational function on $\zeta \in C$ such that g(0) = 0. Then at small ρ there exist connected component Λ_{ρ} of set $\{\zeta : |g(\zeta) < \rho|\}$ such that $O \in \Lambda_{\rho}, \pi^{-1}(\Lambda_{\rho}) \subset V$. Since f(z, w) holomorphic in the domain $D \times \pi^{-1}(\Lambda_{\rho})$ then, at every fixed point $z \in D$ it can be expanded in a series Jacoby - Hartogs (see [4])

$$f(z,w) = \sum_{k=0}^{\infty} c_k(z,\pi(w)) g^k(\pi(w)), \qquad (1)$$

where an coefficients of series defining as follows

$$c_k(z,w) = \frac{1}{2\pi i} \int_{\partial(\pi^{-1}(\Lambda_{\rho}))} f(z,\,\pi(\eta)) \frac{g(\pi(\eta)) - g(\pi(w))}{g^{k+1}(\pi(\eta))(\eta-w)} d\eta$$

, $k = 0, 1, 2, \dots$

It follows, that $c_k(z, w)$ holomorphic functions in $D \times A$. At a fixed point $z \in D$ the series (1) converge in a lemniscates $\{|g(\pi(w))| < R^{(g)}(z)\}$, where $R^{(g)}(z)$ defining as follows

$$R^{(g)}(z) = \frac{1}{\lim_{k \to \infty} \sqrt[k]{\|c_k(z,w)\|_{\pi^{-1}(K)}}},$$

Here $K \subset C$ - arbitrary nonpolar compact, which does not hold poles g, and the limit in right-hand member of equality does not depend on choice of such compact. Notice, that the value $R^{(g)}(z)$ is a maximal radius, for which the function f is holomorphic inside of lemniscates $\{|g(w)| < R^{(g)}(z)\}$.

Lemma 1. The Jacoby – Hartogs series (1) converge uniformly inside of open set

$$G_g = \left\{ (z, w) \in D \times A : |g(\pi(w))| < R_*^{(g)}(z) \right\}, \ z \in D,$$

where $R_*^{(g)}(z) = \underline{\lim}_{\xi \to z} R^{(g)}(\xi)$ - normalization from below. The function $-\ln R_*^{(g)}(z)$ is plurisubharmonic in $D, R_*^{(g)}(z) \le R^{(g)}(z), z \in D$ and the set $\{z \in D : R_*^{(g)}(z) < R^{(g)}(z)\}$ is pluripolar.

We denote by $\Re = \{g(\zeta)\}$ - countable family of all rational functions with coefficients from the set Q + iQ (Q - the set of rational number) such that, each function $\Re = \{g(\zeta)\}$ has a zero only in a point w = 0. In order to study convergence domain, corresponding Jacoby – Hartogs series will be useful following lemma about approximation of flat sets by rational lemniscates.

Lemma 2. ([4],[6],[7]). Let Σ - close polar set from $C \setminus \{0\}$ and Kcompact in $C \setminus \{\Sigma\}$. Then, there exist rational function $g \in \Re$ such that the lemniscates $\{\zeta : |g(z)| < 1\}$ is connected, belong to $C \setminus \{\Sigma\}$ and holding K.

$\S3$. Some properties of pseudoconcave sets.

The properties of pseudoconcave sets has been studied in works [10-13]. Let S- pseudoconcave subset of domain $D \times V$. Assume, that S does not cross $D \times \partial V$ and

$$S_a = S \cap \{z = a\}.$$

Then:

1) the function $\ln(capS_z)$, where cap – capacity (îáîçîà÷àåò åìêîñòü (transfinite diameter) of flat set, is plurisubharmonic in D(see [13]).

2) if S_z is finite for all z from some pluripolar set $E \subset D$, then S is analytic set (see[12]).

3) if S_z is polar for all z from some nonpluripolar set $E \subset D$, then S is pluripolar set (see [10], [11]).

Defenition. The close set $S \subset D \times A$ called pseudoconcave set in the domain $D \times A$ if for any point $a \in S$ there exist some neighborhood $U \subset D \times A$ and holomorphic in $U \setminus S$ function f such that it does not converge holomorphically to the point a.

Lemma 3. Let D - a domain from \mathbb{C}^n and V - a domain from irreducible algebraic curve A, such that $0 \in \pi(V)$. Let S - pseudoconcave subset of the domain $D \times V$. Assume, that S does not cross $D \times \partial V$. Then, if S_z - finite for all $z \in D$, then S- analytic subset of the domain $D \times V$.

§4. The proof of theorem.

We expand of function f(z, w) in Jacoby – Hartogs series by degrees of function $g(\pi(w)), (g(\zeta) \in \Re, \zeta = \pi(w), 0 \in \pi(V)),$

$$f(z,w) = \sum_{k=0}^{\infty} c_k(z,w) g^k(\pi(w)),$$
 (2)

where $c_k(z, w) \in O(D \times V)$. It is possible, because f(z, w) - holomorphic in $D \times V$ and at sufficiently small $\rho > 0$ the lemniscates $\{w : |g(w)| < \rho\}$ belong to V. According to lemma 1 the series (2) uniformly converge inside of set

$$G_g = \left\{ (z, w) : |g(\pi(w))| < R^{(g)}_*(z) \right\}, \ z \in D$$

and consequently, its sum holomorphic in it. According to definition of family of rational functions \Re the set G_g is a domain, which contain $D \times {\pi^{-1}(0)}$. The sum of constructed series (2) is coincident with f(z, w) in neighborhood $D \times {\pi^{-1}(0)}$ and, thus, (2) is holomorphic continuation of f(z, w) in G_g .

2. Let g_1 and g_2 an arbitrary rational functions from family \Re and let $f_1(z, w)$ and $f_2(z, w)$ are analytic continuation of function f(z, w) in a domains G_{g_1} and G_{g_2} correspondingly. Since, for any point $z^0 \in D$ the function $f_1(z^0, w)$ single-valued by w and $f_1(z^0, w) = f_2(z^0, w) = f(z^0, w)$ for any $(z^0, w) \in G_{g_1} \cap G_{g_2}$, then f(z, w) holomorphic in $(G_{g_1} \cup G_{g_2}) \cap \{z = z^0\}$ so, f(z, w) uniquely converge in $G_{g_1} \cup G_{g_2}$, and it follows that the function

f(z, w) uniquely converge in domain $G = \bigcup G_g$, where union is taken by all rational functions family \Re .

3. Since, at each fixed point $z^0 \in D$ the function $f(z^0, w)$ single-valued in A, then it follows that analytic continuation of function f(z, w) (in $D \times A$) is uniquely. Let $\tilde{G} \subset D \times A$ an original domain for existence of function f(z, w) regarding to $D \times A$. So, \tilde{G} nonexpendable holomorphic in every point $(z^0, w^0) \in S = (D \times A) \setminus \tilde{G}$. From here we receive, that S - pseudoconcave subset of the domain $D \times A$.

4. Now, using lemma 2, we show, that for any point $z^0 \in D$, a set of singular point of function $f(z^0, w)$ of variable $w \in A$ coincide with layer S_{z^0} of the set S. In fact, by the terms of theorem singular set Λ of function $f(z^0, w)$ consist finite number of points, then according to lemma 2, for any compact $K \subset A \setminus \Lambda$, there exist rational function $g \in \Re$ such that, the lemniscates $\{|g(\pi(w))| < 1\}$ contains K. Consequently, the lemniscates $\{|g(\pi(w))| < R^{(g)}(z^0)\}$, so and $\{|g(\pi(w))| < R^{(g)}_*(z^0)\}$ contains (since, $R^{(g)}_*(z^0) \ge$ $R^{(g)}(z^0)$).

5. Let Ω - an image of domain $\tilde{G} = (D \times A) \setminus S$ in maping $(z, \pi^{-1}(\zeta)) \to (z, \pi^{-1}(\frac{1}{\zeta}))$. The set $(D \times A') \setminus \Omega = L$ is also pseudoconcave. Since, S does not cross the set $D \times \{\pi^{-1}(0)\}$, then L is bounded and intersection $L \cap A'$ for any point $z^0 \in D$, consist from finite number of points, i.e. the set L is satisfying all conditions of lemma 3. Consequently, L - analytic set from here it is easy to see, that S- analytic. The proof of theorem is complete.

REFERENCES

Shabat B.V. Introduction to complex analysis. Part 2. Moscow, "Nauka", 1985.

Rothstein W. Ein neuer Beweis des hartogsshen hauptsatzes und sline ausdehnung auf meromorphe functionen // Math. Z. -1950.-V.53.-P.84

Kazaryan M.V. On holomorpgic extension of functions with special singularities in C^n . Doc. Acad. Nauk Arm.SSR. 1983. v. 76. p. 13-17.

Sadullaev A.S. and Chirka E.M. On extension of functions with polar singularities. Math. Sb. 1987. v. 132(174) ¹3. p. 383-390.

Tuychiev T.T. and Imomkulov S.A. Holomorphic extension of functions, having singularities on parallel multidimensional sections. Doc. Acad. Nauk of Uzbekistan. 2004. ¹2. p.12-15.

Imomkulov S.A., Khujamov J. U. On holomorphic continuation of functions along boundary sections. Mathematica Bohemica. (Czech Republic) – 2005. V. 130(3) P. 309-322.

Imomkulov S.A. On holomorphic continuation of functions, given on boundary beam of complex line// Izvestiya Russian Academy of Science. Series of math -2005. - V. 69, $^{1}2$. - p.125 -144.

Stoilov S. The theory of functions of complex variables. Volume 1. Moscow-1962.

Chirka E.M. Complex analytic sets. Moscow-1985.