
ar
X

iv
:1

01
1.

16
04

v1
  [

he
p-

th
] 

 7
 N

ov
 2

01
0

Noncommutative (generalized) sine-Gordon/massive Thirring correspondence,

integrability and solitons

H. Blas a and H. L. Carrion b

a) Instituto de F́ısica, Universidade Federal de Mato Grosso

Av. Fernando Correa, s/n, Coxipó
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Abstract

Some properties of the correspondence between the non-commutative versions of the (generalized)

sine-Gordon (NCGSG1,2) and the massive Thirring (NCGMT1,2) models are studied. Our method relies

on the master Lagrangian approach to deal with dual theories. The master Lagrangians turn out to

be the NC versions of the so-called affine Toda model coupled to matter fields (NCATM1,2), in which

the Toda field g belongs to certain subgroups of GL(3), and the matter fields lie in the higher grading

directions of an affine Lie algebra. Depending on the form of g one arrives at two different NC versions

of the NCGSG1,2/NCGMT1,2 correspondence. In the NCGSG1,2 sectors, through consistent reduction

procedures, we find NC versions of some well-known models, such as the NC sine-Gordon (NCSG1,2)

(Lechtenfeld et al. and Grisaru-Penati proposals, respectively), NC (bosonized) Bukhvostov-Lipatov

(NCbBL1,2) and NC double sine-Gordon (NCDSG1,2) models. The NCGMT1,2 models correspond to

Moyal product extension of the generalized massive Thirring model. The NCGMT1,2 models posses

constrained versions with relevant Lax pair formulations, and other sub-models such as the NC massive

Thirring (NCMT1,2), the NC Bukhvostov-Lipatov (NCBL1,2) and constrained versions of the last models

with Lax pair formulations. We have established that, except for the well known NCMT1,2 zero-curvature

formulations, generalizations (nF ≥ 2, nF =number of flavors) of the massive Thirring model allow

zero-curvature formulations only for constrained versions of the models and for each one of the various

constrained sub-models defined for less than nF flavors, in the both NCGMT1,2 and ordinary space-time

descriptions (GMT), respectively. The non-commutative solitons and kinks of the GL(3) NCGSG1,2

models are investigated.

http://arxiv.org/abs/1011.1604v1


1 Introduction

Field theories in non-commutative (NC) space-times are receiving considerable attention in recent years in

connection to the low-energy dynamics of D-branes in the presence of background B-field (see e.g. [1]). In

particular, the NC versions of integrable systems (in two dimensions) are being considered [2]. On the other

hand, conformal theories on the usual two-dimensional space-time play an important role in various aspects

of modern physics, from string theory to applications in condensed matter. So, one might ask about the

role played by QFTs in (1 + 1)-dimensional non-commutative space-time. Indeed there is reason to believe

that similar applications would emerge and they deserve further investigations, since it is possible to define

notions of conformal invariance, Kac-Moody and Virasoro symmetries in this context [3]. Furthermore, there

is some optimism regarding the following analogy with the usual known relationship: it is believed that the

integrable models, defined on two-dimensional NC Euclidean space, would be the NC versions of statistical

models in the critical points and in the off-critical integrable directions.

The sine-Gordon type and other related integrable systems have appeared frequently in diverse areas

of physics, from condensed matter to string theory, in connection to such properties as soliton solutions,

integrability and duality. So, the study of their properties and the search for their solutions have greatly

attracted the interest of the scientific community. In condensed matter, we can mention for example the

work [4] on the nonlinear dynamics of the inhomogeneous DNA double helices chain. In topics of string

theory we can mention the recent works on the magnon-type solutions on the R× Sn (n = 2, 3) background

geometry [5, 6].

Some non-commutative versions of the sine-Gordon model (NCSG) have been proposed in the literature

[7, 8, 9, 10, 11, 12]. The relevant equations of motion have the general property of reproducing the ordinary

sine-Gordon equation when the non-commutativity parameter is removed. The Grisaru-Penati version [7, 8]

introduces a constraint which is non-trivial only in the non-commutative case. The constraint is required by

integrability but it is satisfied by the one-soliton solutions. However, at the quantum level this model gives

rise to particle production as was discovered by evaluating tree-level scattering amplitudes [8]. On the other

hand, introducing an auxiliary field, Lechtenfeld et al. [12] proposed a novel NCSG model which seems to

possess a factorisable and causal S-matrix.

Recently, in ordinary commutative space the so-called sl(2) affine Toda model coupled to matter (Dirac)

fields (ATM) has been shown to be a Master Lagrangian (ML) from which one can derive the sine-Gordon and

massive Thirring models, describing the strong/weak phases of the model, respectively [13]-[16]. Besides, the

ML approach was successfully applied in the non-commutative case to uncover related problems in (2 + 1)

dimensions regarding the duality equivalence between the Maxwell-Chern-Simons theory (MCS) and the

Self-Dual (SD) model [17].

In this paper we extend some properties of the so-called sl(3) generalized affine Toda model coupled to

matter fields (GATM) [15] to the NC case. We define the NCGATM model by replacing the products of
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fields by the ⋆−products on the level of its effective action. The effective action associated to this model

in ordinary space gives rise to equations of motion which can be derived from a zero-curvature equation

plus some constraints. In fact, the ATM model is a constrained sub-model of an off-critical model related

to the so-called conformal affine Toda model coupled to matter fields (CATM) which possesses a Lax pair

formulation [18]. So, we expect the NCGATM model defined in this way does not belong to those class of NC

field theories associated to a Lax pair formulation [11]. The NC GL(2) case has been considered in [9], there

the master Lagrangians turn out to be the NC versions of the ATM model associated to the group GL(2),

in which the Toda field belongs to certain representations of either U(1)× U(1) or the complexified U(1)C ,

such that they correspond to the Lechtenfeld et al. (NCSG1) or Grisaru-Penati (NCSG2) proposals for the

NC versions of the sine-Gordon model, respectively. Besides, the relevant NC massive Thirring (NCMT1,2)

sectors are written for two (four) types of Dirac fields corresponding to the Moyal product extension of one

(two) copy(ies) of the ordinary massive Thirring model. The NCSG1,2 models share the same one-soliton (real

Toda field sector of model 2) exact solutions with their commutative counterparts, which are found without

expansion in the NC parameter θ for the corresponding Toda field. Here the GL(3) extension presents the

above known feature regarding the appearance of two versions of the NC (generalized) sine-Gordon model

(NCGSG1,2) and the corresponding NC (generalized) massive Thirring models (NCGMT1,2), and some new

phenomena such as the appearance of the associated sub-models: three copies for each version of the NC sine-

Gordon (NCSG1,2) models, (bosonized) Bukhvostov-Lipatovmodels (NCbBL1,2), double sine-Gordon models

(NCDSG1,2), and three copies for each version of the NC massive Thirring models(NCMT1,2), Bukhvostov-

Lipatov models (NCBL1,2) and the constrained NCBL1,2 models, respectively. In addition, we have the

known NC soliton solutions in the NCGSG1,2 sectors and the appearance of a NC kink type solutions for the

NCDSG1,2 sub-models. Even though we have discussed the integrability properties of the NCGSG1,2 models

only for certain integrable directions in field space, i.e. in the NCSG1,2 sub-models, the NC generalized

massive Thirring (NCGMT1,2) sectors present intriguing properties regarding integrability: the NCGMT1,2

models encompass a Lax pair formulation only for a sub-model with certain eqs. of motion provided that

some constraints are satisfied. Moreover, we established the integrability of certain constrained versions of

the NCBL1,2 models by providing a corresponding recipe to construct a Lax pair for each of them. The

extension of the above features for the GL(n) NCATM1,2 models are straightforward.

The study of these models become interesting since the su(n) ATM theories constitute excellent labo-

ratories to test ideas about confinement [16, 19], the role of solitons in quantum field theories [13], duality

transformations interchanging solitons and particles [13, 20], as well as the reduction processes of the (two-

loop) Wess-Zumino-Novikov-Witten (WZNW) theory from which the ATM models are derivable [18, 15].

Moreover, the ATM type systems may also describe some low dimensional condensed matter phenomena,

such as self-trapping of electrons into solitons, see e.g. [21], tunneling in the integer quantum Hall effect [22],

and, in particular, polyacetylene molecule systems in connection with fermion number fractionization [23].

It has been shown that the su(2) ATM model describes the low-energy spectrum of QCD2 (one flavor and
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N colors in the fundamental and N = 2 in the adjoint representations, respectively)[19]. The sl(3) ATM

model and its related dual sub-models GSG/GMT have been used to provide a bag model like confinement

mechanism for “quarks” and it has been shown that the ATM spectrum comprises of solitons as baryons

and qualitons as constituent quarks in two-dimensional QCD [24]. Moreover, the sl(3) GSG model has been

found to describe the low energy effective action of QCD2 with unequal ’quark’ masses, three flavors and N

colors. This model has recently been used to describe the normal and exotic baryon spectrum of QCD2 [25].

The paper is organized as follows. In the next section we present the NC extensions of the ATM model

relevant to our discussions. It deals with the choice of the group representation for the Toda field g. We

introduce two types of master Lagrangians (NCATM1,2), the first one defined for g ∈ [U(1)]3 with the

same content of matter fields as the ordinary ATM; the second one defined for two copies of the NCATM1

such that in this case g, ḡ ∈ H ⊂ SL(3,C). In section 3 the non-commutative versions (NCGSG1,2) of the

generalized sine-Gordon model (GSG) are derived from the relevant master Lagrangians through reduction

procedures resembling the one performed in the ordinary GATM → GSG reduction. In section 4 we present

the two NC extensions (NCGSG1,2) of the GSG model, as well as their associated sub-models such as the

NCSG1,2, NCbBL1,2 and NCDSG1,2 models. In section 5 we ’decouple’ on shell the theories NCGSG1,2

and NCGMT1,2, respectively. We discuss the conditions which must satisfy the constraints in order to

have a complete decoupling, in particular for the soliton solutions. In section 6 we consider the NCGMT1,2

models, as well as their global symmetries, associated currents and integrability properties of the constrained

sub-models. In these developments the double-gauging of a U(1) symmetry in the star-localized Noether

procedure to get the currents deserve a careful treatment. We discuss their associated sub-models such as

the integrable NCMT1,2, the non-integrable NCBL1,2, and the (constrained) NCBL1,2 models regarded as

integrable sub-models. In section 7 we present the soliton and kink type solutions as a sub-set of solutions

satisfying the both GSG and NCGSG1,2 models simultaneously. Some discussions and possible directions of

research to pursue in the future are presented in section 8. The Appendix A provides the usual GSG model

as a reduced sl(3) affine Toda model couple to matter. Some results of the zero-curvature formulation of the

CATM model are provided in Appendix B, and the Lagrangian formulation of the ordinary ATM model is

summarized in Appendix C.

2 The NC affine Toda models coupled to matter fields (NCATM1,2)

In this section we present the NC versions of the so-called affine Toda model coupled to matter fields

(NCATM1,2). The case of GL(2) NCATM model has been studied at the classical level in [9] and the

related NC sine-Gordon/massive Thirring correspondence has been considered at the quantum level in [10].

Even though we present detailed computations for the GL(3) case it can follow directly for any GL(n).

Two different NC extensions of the ATM model (182) are possible as long as each of them reproduce its

ordinary equations of motion in the commutative limit. The commutative Toda field g in (172) belongs to
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the complexified abelian subgroup of SL(3,C). The symmetry group SL(3) of the ordinary ATM model

(see Appendix B) when considered in the NC case is not closed under the Moyal product ⋆; then, the NC

extension requires the GL(3) group. In the next steps we define two versions of the non-commutative GL(3)

affine Toda model coupled to matter fields (NCATM1,2). Let us define the first NC extension (NCATM1) as

SNCATM1
≡ S[g,W±, F±]

= IWZW [g] +

∫
d2x

2∑

m=1

{1
2
< ∂−W

−
3−m ⋆ [E3 , W

−
m ] > −1

2
< [E−3 , W

+
m ] ⋆ ∂+W

+
3−m > +

< F−
m ⋆ ∂+W

+
m > + < ∂−W

−
m ⋆ F+

m > + < F−
m ⋆ g ⋆ F+

m ⋆ g−1 >}, (1)

where F ⋆ G = F exp
(
θ
2 (
←−
∂+
−→
∂− −←−∂−−→∂+)

)
G and g ∈ [U(1)]3. In fact, we have written the NC version of the

ATM model presented in the eq. (182) of Appendix C. The fields W±
m , F

±
m , as well as the generators E±3 of

the model are defined in eqs. (166)-(171). IWZW [g] is a NC generalization of the WZNW action for g

IWZW [g] =

∫
d2x

[
∂+g ⋆ ∂−g

−1 +

∫ 1

0

dyĝ−1 ⋆ ∂y ĝ ⋆
[
ĝ−1 ⋆ ∂+ĝ, ĝ

−1 ⋆ ∂−ĝ
]

⋆

]
, (2)

where the homotopy path ĝ(y) such that ĝ(0) = 1, ĝ(1) = g ([y, x+] = [y, x−] = 0) has been defined. The

WZW term in this case gives a non-vanishing contribution due to the non-commutativity. This is in contrast

with the action in ordinary space, i.e. the WZW term in (182)-(183) vanishes for g belonging to an abelian

subgroup of SL(3,C). From (1) one can derive the set of equations of motion for the corresponding fields

∂−(g
−1 ⋆ ∂+g) =

2∑

m=1

[
F−
m , g ⋆ F+

m ⋆ g−1
]

⋆
(3)

∂+F
−
m = [E−3, ∂+W

+
3−m], ∂−F

+
m = −[E3, ∂−W

−
3−m], (4)

∂+W
+
m = −g ⋆ F+

m ⋆ g−1, ∂−W
−
m = −g−1 ⋆ F−

m ⋆ g. (5)

Notice that these set of eqs. closely resemble their commutative counterparts (184)-(186) of Appendix

C. Substituting the derivatives of W±’s given in the eqs. (5) into the eqs. (4) one can get the equivalent set

of equations

∂+F
−
m = −[E−3 , g ⋆ F

+
3−m ⋆ g−1], ∂−F

+
m = [E3 , g

−1 ⋆ F−
3−m ⋆ g]. (6)

Notice that in the action (1) one can use simultaneously the cyclic properties of the group trace and the

⋆ product. Then, the action (1) and the equations of motion (3)-(5) have the left-right local symmetries

given by

g → hL(x−) ⋆ g(x+, x−) ⋆ hR(x+), (7)

F+
m → h−1

R (x+) ⋆ F
+
m(x+, x−) ⋆ hR(x+), W−

m → h−1
R (x+) ⋆ W

−
m(x+, x−) ⋆ hR(x+), (8)

F−
m → hL(x−) ⋆ F

−
m(x+, x−) ⋆ h

−1
L (x−), W+

m → hL(x−) ⋆ W
+
m(x+, x−) ⋆ h

−1
L (x−). (9)

The system of eqs. (3)-(5) is invariant under the above symmetries if the following conditions are supplied

hR(x+) ⋆ E3 h
−1
R (x+) = E3, h−1

L (x−) ⋆ E−3 hL(x−) = E−3, (10)
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where hL/R(x∓) ∈ HL/R0 , HL/R0 being Abelian sub-groups of GL(3). These symmetry transformations

written in matrix form [15] are extensions of the ordinary ones to the NC case in a straightforward manner.

Notice that in the ordinary space-time, in terms of the field components, the above transformations are given

in the Appendix A [see eqs. (150) and (152)-(153)]; obviously, the form of the expressions given in these eqs.

will change in the NC case.

Next, we define the second version of the GL(3) NC affine Toda model coupled to matter NCATM2 as

SNCATM2
≡ S[g,W±, F±] + S[ḡ,W±,F±], (11)

where the independent fields g and ḡ, related to the set of matter fields {W±, F±} and {W±,F±}, respec-
tively, belong to a complexified subgroup H of GL(3) to be specified in the subsection 4.2. As above the

action S[. , . , .] is defined as the Moyal extension of (182). The motivation to introduce a copy of the action

functional with the set of fields ḡ,W±,F± will be clarified below. Let us mention, in the mean time, that

the second version of the NCATM2 model has also been considered in [9] for the SL(2) case.

The equations of motion for the NCATM2 model (11 ) comprise the eqs. (3)-(5) written for g ∈ H ⊂
GL(3) and a set of analogous equations for the remaining fields ḡ, F± and W±. Moreover, in addition to

the symmetry transformations (7)-(9) one must consider similar expressions for ḡ, F± and W±.

3 NC versions of the generalized sine-Gordon model (NCGSG1,2)

In order to derive the NC versions of the generalized sine-Gordon model (NCGSG1,2) we follow the master

Lagrangian approach [26, 15], starting from the NCATM1,2 models (1) and (11), respectively, as performed

in the GL(2) case [9]. So, let us consider first the equations of motion (3)-(5). We proceed by integrating

the eqs. (4)

F− = [E−3,W
+
3−m] + f−

m(x−), F+ = −[E3,W
−
3−m]− f+

m(x+). (12)

with the f±(x±)’s being analytic functions. Next, we replace the F± of eqs. (12) and the ∂±W
± of (5),

written in terms of W±, into the action (1) to get

S′[g,W±, f±] = IWZW [g] +

∫
d2x

2∑

m=1

{1
2
< [E−3,W

+
3−m] ⋆ g ⋆ f+

m ⋆ g−1 > +

1

2
< g−1 ⋆ f−

m ⋆ g ⋆ [E3,W
−
3−m] > + < g−1 ⋆ f−

m ⋆ g ⋆ f+
m >}. (13)

As the next step, one writes the equations of motion for the f±(x±)’s and solves for them; afterwards,

substitutes those expressions into the intermediate action (13) getting

S′′[g,W±] = IWZW [g]− 1

4

∫
d2x

2∑

m=1

< [E−3,W
+
3−m] ⋆ g ⋆ [E3,W

−
3−m] ⋆ g−1 > . (14)
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Notice that (14) has inherited from the NCATM action the local symmetries (7)-(9). Therefore, one

considers the gauge fixing

2iΛ−
m = [E−3,W

+
3−m], 2iΛ+

m = [E3,W
−
3−m], (15)

where Λ± ∈ Ĝ±1 are some constant generators in the subspaces of grade ±1 in (180)-(181).

Then for this gauge fixing the effective action (14) becomes

SNCGSG1
[g] ≡ S[g]

= IWZW [g] +

∫
d2x

2∑

m=1

[< Λ−
m ⋆ g ⋆ Λ+

m ⋆ g−1 >]. (16)

Thus, we get the equation of motion for the field g as

∂−(g
−1 ⋆ ∂+g) =

2∑

m=1

[
Λ−
m , g ⋆ Λ

+
mg

−1
]

(17)

The action (16) for g ∈ [U(1)]3 will define the first version of the non-commutative generalized sine-

Gordon model (NCGSG1). The second version requires a copy of the above action for the field ḡ

SNCGSG2
[g] ≡ S[g] + S[ḡ], (18)

where g ∈ H ⊂ SL(3) (H will be specified below).

Thus, the actions (16) and (18) are the multi-field extensions of the NC sine-Gordon models proposed

earlier by Lechtenfeld et al. and Grisaru-Penati, respectively. As we will see below, these models contain

as sub-models the relevant versions of the NCSG1,2 model (in fact, each version contains three NCSG1,2

sub-models) proposed in the literature, i.e. the Lechtenfeld et al. and Grisaru-Penati proposals for the

NC extension of the sine-Gordon model, respectively. Moreover, the NCGSG1,2 models give rise to new

phenomena with interesting properties, such as the appearance of two versions of the NC Bukhvostov-

Lipatov model and the NC double sine-Gordon model, respectively, as well as their NC soliton and kink type

solutions.

We present below the two NCGSG1,2 versions related to GL(3), each one involving multi-field scalar

fields.

4 The Toda field g parametrizations

In this section we present the two possible parametrizations of the field g, thus obtaining the two NC

versions NCGSG1,2 of the GSG model, and furthermore we obtain their relevant sub-models associated to

them through consistent reductions.
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4.1 First parametrization: g ∈ [U(1)]3 ⊂ GL(3,C)

Let us write the field g in the representation

g =




eiφ1

⋆ 0 0

0 eiφ2
⋆ 0

0 0 eiφ3

⋆


 ≡ g1 ∗ g2 ∗ g3, where (19)

g1 =




eiφ1

⋆ 0

0 1 0

0 0 1


 , g2 =




1 0 0

0 eiφ2
⋆ 0

0 0 1


 , g3 =




0 0 0

0 1 0

0 0 eiφ3

⋆


 (20)

with φi being real fields (i = 1, 2, 3). As we will see below, this parametrization constitutes the GL(3,C)

extension of the Lechtenfeld et al. proposal of the non-commutative version of the sine-Gordon model

(NCSG1) [12].

For the Λi’s taken as

Λ+
1 = Λ1

RE
0
α1

+ Λ2
RE

0
α + Λ̃3

RE
1
−α3

,

Λ−
1 = Λ3

LE
−1
α3

+ Λ̃1
LE

0
−α1

+ Λ̃2
LE

0
−α2

,

Λ+
2 = Λ3

RE
0
α3

+ Λ̃1
RE

1
−α1

+ Λ̃2
RE

1
−α2

.

Λ−
2 = Λ1

LE
−1
α1

+ Λ2
LE

−1
α2

+ Λ̃3
LE

0
−α3

, (21)

the action (16) for g given in (19), upon using twice the Polyakov-Wiegmann identity

IWZW (g1 ∗ g2) = IWZW (g1) + IWZW (g2) +

∫
dz2 < g−1

1 ⋆ ∂−g1 ⋆ ∂+g2 ⋆ g
−1
2 >, (22)

can be written as

SNCSG1
[g1, g2, g3] = IWZW [g1] + IWZW [g2] + IWZW [g3] +∫

d2x
(
[Λ3
LΛ̃

3
Re

iφ1

⋆ ⋆ e−iφ3

⋆ + Λ̃3
LΛ

3
Re

iφ3

⋆ ⋆ e−iφ1

⋆ ] +

[Λ1
LΛ̃

1
Re

iφ1

⋆ ⋆ e−iφ2

⋆ + Λ̃1
LΛ

1
Re

iφ2

⋆ ⋆ e−iφ1

⋆ ] +

[Λ2
LΛ̃

2
Re

iφ2

⋆ ⋆ e−iφ3

⋆ + Λ̃2
LΛ

2
Re

iφ3

⋆ ⋆ e−iφ2

⋆ ]
)
. (23)

Notice that the last term in the Polyakov-Wiegmann identity (22) vanishes when written for each pair of

the fields in the parametrizations (20). Then, the relevant eqs. of motion become

∂−

(
e−iφ1

⋆ ⋆ ∂+e
iφ1

⋆

)
= [Λ1

LΛ̃
1
Re

iφ2

⋆ ⋆ e−iφ1

⋆ − Λ̃1
LΛ

1
Re

iφ1

⋆ ⋆ e−iφ2

⋆ ] +

[Λ3
LΛ̃

3
Re

iφ3

⋆ ⋆ e−iφ1

⋆ − Λ̃3
LΛ

3
Re

iφ1

⋆ ⋆ e−iφ3

⋆ ] (24)

∂−

(
e−iφ2

⋆ ⋆ ∂+e
iφ2

⋆

)
= [Λ2

LΛ̃
2
Re

iφ3

⋆ ⋆ e−iφ2

⋆ − Λ̃2
LΛ

2
Re

iφ2

⋆ ⋆ e−iφ3

⋆ ] +

[Λ̃1
LΛ

1
Re

iφ1

⋆ ⋆ e−iφ2

⋆ − Λ1
LΛ̃

1
Re

iφ2

⋆ ⋆ e−iφ1

⋆ ]. (25)

∂−

(
e−iφ3

⋆ ⋆ ∂+e
iφ3

⋆

)
= [Λ̃3

LΛ
3
Re

iφ1

⋆ ⋆ e−iφ3

⋆ − Λ3
LΛ̃

3
Re

iφ3

⋆ ⋆ e−iφ1

⋆ ] +

[Λ̃2
LΛ

2
Re

iφ2

⋆ ⋆ e−iφ3

⋆ − Λ2
LΛ̃

2
Re

iφ3

⋆ ⋆ e−iφ2

⋆ ]. (26)
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Setting

ΛjLΛ̃
j
R = eiδjMj/8, j = 1, 2, 3; (27)

forMj , δj some constants, we define the system of eqs. (24)-(26) as the first version of the non-commutative

generalized GL(3,C) sine-Gordon model (NCGSG1). Notice that it is defined for three real scalar fields.

In the commutative limit θ → 0 the above equations can be written as

∂2 φ1 = M1 sin(φ2 − φ1 + δ1) +M3 sin(φ3 − φ1 + δ3); (28)

∂2 φ2 = M2 sin(φ3 − φ2 + δ2) +M1 sin(φ1 − φ2 − δ1); (29)

∂2 φ3 = M2 sin(φ2 − φ3 − δ2) +M3 sin(φ1 − φ3 − δ3). (30)

From the above system of equations one gets a free scalar equation of motion

∂2Φ = 0, Φ ≡ φ1 + φ2 + φ3. (31)

For the particular solution Φ ≡ 0 of (31) and making Mj → −Mj, φ1 → −φ1, one can write the first

two equations (28)-(29) as

∂2 φ1 = M1 sin(φ2 + φ1 + δ1) +M3 sin(2φ1 − φ2 + δ3); (32)

∂2 φ2 = M2 sin(2φ2 − φ1 − δ2) +M1 sin(φ1 + φ2 + δ1). (33)

This system of eqs. is precisely the commutative generalized sine-Gordon model (GSG) [24, 25] [the form

written in (32)-(33) corresponds to eqs. (161)-(162) of Appendix A].

In the following subsections we will examine certain sub-models obtained through consistent reductions

of the NCGSG1 system (24)-(26).

4.1.1 Non-commutative sine-Gordon model (NCSG1): Lechtenfeld et al. proposal

We show that the model (24)-(26) contains as sub-models the Lechtenfeld et al. proposal for the NCSG1

model. So, setting M2 = M3 = 0, M1 = 8M, φ3 = δj = 0 and changing φ2 → −φ2 we get the system of

equations [12]

∂−

(
e−iφ1

⋆ ⋆ ∂+e
iφ1

⋆

)
= M [e−iφ2

⋆ ⋆ e−iφ1

⋆ − eiφ1

⋆ ⋆ eiφ2

⋆ ] (34)

∂−

(
eiφ2

⋆ ⋆ ∂+e
−iφ2

⋆

)
= M [eiφ1

⋆ ⋆ eiφ2

⋆ − e−iφ2

⋆ ⋆ e−iφ1

⋆ ]. (35)

In fact, there are additional two possibilities for meaningful reductions, i.e., 1) M1 = M2 = 0, M3 =

8M, φ2 = δj = 0; φ3 → −φ3 and 2) M1 = M3 = 0, M2 = 8M, φ1 = δj = 0; φ3 → −φ3 respectively,

providing in each case a Lechtenfeld et al. NCSG1 model.
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4.1.2 Non-commutative (bosonized) Bukhvostov-Lipatov model (NCbBLzx1). First version

Another reduction is possible by making M1 = 0, M2 =M3 = −M , and φ1 → −φ1, in the eqs. (24)-(26)

followed by the substitution φ3 = φ1 − φ2. So, one gets the set of equations

∂−

(
e±iφa
⋆ ⋆ ∂+e

∓iφa
⋆

)
= −M

8

[
e
i(φ1−φ2)
⋆ ⋆ e±iφa

⋆ − e∓iφa
⋆ ⋆ e

−i(φ1−φ2)
⋆

]
, a = 1, 2 (36)

0 = ∂−

[
eiφ1

⋆ ⋆ ∂+e
−iφ1

⋆ + e−iφ2

⋆ ⋆ ∂+e
iφ2

⋆ + e
−i(φ1−φ2)
⋆ ⋆ ∂+e

i(φ1−φ2)
⋆

]
, (37)

where the upper (lower) signs in (36) correspond to the index a = 1(2) for the field φa. In the commutative

limit the eq. (37) becomes trivial, whereas the set of equations (36) become ∂2φ1 = Msin(2φ1 − φ2) and

∂2φ2 = Msin(2φ2 − φ1). Defining the new fields ψ1 = 1
2 (φ1 + φ2), ψ2 =

√
3
2 (φ1 − φ2) we arrive at the

model ∂2ψ1 = Msin(ψ1)cos(
√
3ψ2), ∂

2ψ2 = M
√
3cos(ψ1)sen(

√
3ψ2). This system of equations is precisely

the bosonized form of the so-called Bukhvostov-Lipatov model [27, 28, 29, 20]. In view of these relationships

we define the model (36)-(37) as the first version of the non-commutative bosonized Bukhvostov-Lipatov

model(NCbBL1).

4.1.3 Non-commutative double sine-Gordon model (NCDSG1). First version

The usual double sine-Gordon model (DSG) is defined in terms of just one scalar field φ and the potential

terms [cos(φ) + cos(2φ)] in the action. So, we would like to reduce the above model in a consistent way

in order to get a sub-model defined for just one scalar field. Let us take advantage of a particular solution

of the free field equation (31). So, we consider the reduction φ1 = −φ3 = φ, φ2 = 0 and substitute these

relations into the equations (24)-(26). Then we obtain the next two equations

∂−

(
e−iφ⋆ ⋆ ∂+e

iφ
⋆

)
= M1(e

−iφ
⋆ − eiφ⋆ ) +M3(e

−iφ
⋆ ⋆ e−iφ⋆ − eiφ⋆ ⋆ eiφ⋆ ), (38)

∂−

(
eiφ⋆ ⋆ ∂+e

−iφ
⋆

)
= M1(e

iφ
⋆ − e−iφ⋆ ) +M3(e

iφ
⋆ ⋆ eiφ⋆ − e−iφ⋆ ⋆ e−iφ⋆ ) (39)

plus an equation which reduces to a trivial identity (we have imposed M1 =M2, δi = 0).

The above two equations can be written in the equivalent form

∂−

(
eiφ⋆ ⋆ ∂+e

−iφ
⋆ − e−iφ⋆ ⋆ ∂+e

iφ
⋆

)
= 4iM1 sin⋆φ+ 4iM3 sin⋆2φ (40)

∂−

(
e−iφ⋆ ⋆ ∂+e

iφ
⋆ + eiφ⋆ ⋆ ∂+e

−iφ
⋆

)
= 0. (41)

The system (40)-(41) constitutes the first version of the non-commutative double sine-Gordon model

(NCDSG1) defined for just one scalar field.

The first equation (40) contains the potential terms which is the natural generalization of the ordinary

double sine-Gordon potential, whereas the other one (41) has the structure of a conservation law and it can

be seen as imposing an extra condition on the system. In the commutative limit, the first equation reduces

to the ordinary double sine-Gordon equation (DSG), whereas the second one becomes trivial. The equations

are in general complex and possess the ZZ2 symmetry of the ordinary DSG (the invariance under φ→ −φ is

easily seen in (38)-(39).
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4.2 Second parametrization: g ∈ H ⊂ GL(3,C)

Let us consider the parametrization

g =




eϕ1

⋆ ⋆ eϕ0

⋆ 0 0

0 e−ϕ1+ϕ2

⋆ ⋆ eϕ0

⋆ 0

0 0 e−ϕ2

⋆ ⋆ eϕ0

⋆


 ≡ g1 ∗ g2, (42)

with

g1 =




eϕ1

⋆ 0 0

0 e−ϕ1+ϕ2

⋆ 0

0 0 e−ϕ2
⋆


 , g2 = eϕ0

⋆




1 0

0 1 0

0 0 1


 , (43)

where the fields ϕj , j = 0, 1, 2 are general complex fields. The additional field ḡ is defined by substituting

the fields ϕj above as ϕ†
j . The fields g and ḡ are formally considered to be independent fields.

This parametrization becomes theGL(3) extension of the Grisaru-Penati proposal for the non-commutative

version of the sine-Gordon model (NCSG2) [7, 8].

The following equations of motion can be obtained directly from the first term S[g] of the action (18) for

the parametrization (42)

∂−

(
e−ϕ0

⋆ ⋆ e−ϕ1

⋆ ⋆ ∂+

(
eϕ1

⋆ ⋆ eϕ0

⋆

))
= [Λ1

LΛ̃
1
Re

−ϕ1+ϕ2

⋆ ⋆ e−ϕ1

⋆ − Λ̃1
LΛ

1
Re

ϕ1

⋆ ⋆ eϕ1−ϕ2

⋆ ] +

[Λ3
LΛ̃

3
Re

−ϕ2

⋆ ⋆ e−ϕ1

⋆ − Λ̃3
LΛ

3
Re

ϕ1

⋆ ⋆ eϕ2

⋆ ]. (44)

∂−

(
e−ϕ0

⋆ ⋆ eϕ1−ϕ2

⋆ ⋆ ∂+

(
e−ϕ1+ϕ2

⋆ ⋆ eϕ0

⋆

))
= [Λ2

LΛ̃
2
Re

−ϕ2

⋆ ⋆ eϕ1−ϕ2

⋆ − Λ̃2
LΛ

2
Re

−ϕ1+ϕ2

⋆ ⋆ eϕ2

⋆ ] +

[Λ̃1
LΛ

1
Re

ϕ1

⋆ ⋆ eϕ1−ϕ2

⋆ − Λ1
LΛ̃

1
Re

−ϕ1+ϕ2

⋆ ⋆ e−ϕ1

⋆ ] (45)

∂−

(
e−ϕ0

⋆ ⋆ eϕ2

⋆ ⋆ ∂+

(
e−ϕ2

⋆ ⋆ eϕ0

⋆

))
= [Λ̃3

LΛ
3
Re

ϕ1

⋆ ⋆ eϕ2

⋆ − Λ3
LΛ̃

3
Re

−ϕ2

⋆ ⋆ e−ϕ1

⋆ ] +

[Λ̃2
LΛ

2
Re

−ϕ1+ϕ2

⋆ ⋆ eϕ2

⋆ − Λ2
LΛ̃

2
Re

−ϕ2

⋆ ⋆ eϕ1−ϕ2

⋆ ]. (46)

Introduce the parameters Mi, δi as in (27). So, we define the system of eqs. (44)-(46), supplied with the

relevant eqs. of motion for the fields ϕ†
j derived from the second term S[ḡ] of the action (18), as the second

version of the non-commutative generalized GL(3,C) sine-Gordon model (NCGSG2), where the three scalar

fields ϕj are in general complex.

Next, let us examine the commutative limit. Redefining ϕa → i ϕa (where the new ϕ′
as are real), using

definition (27) and taking the limit θ → 0 in the above system of equations (44)-(46) one can get

∂2ϕ1 = M1 sin(2ϕ1 − ϕ2 − δ1) +M3 sin(ϕ1 + ϕ2 − δ3) (47)

∂2ϕ2 = M2 sin(2ϕ2 − ϕ1 − δ2) +M3 sin(ϕ1 + ϕ2 − δ3) (48)

∂2ϕ0 = 0. (49)

Thus, in (47)-(48) we recover again the equations of motion of the commutative generalized sine-Gordon

model (GSG) [24, 25]. Notice that the field ϕ0 decouples completely from the other fields in this limit,

becoming simply a free field.
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In analogy to the results of the first parametrization it is possible to get some sub-models as consistent

reductions of the system (44)-(46). In the following we discuss the reductions associated to this second

parametrization.

4.2.1 Non-commutative sine-Gordon model (NCSG2): Grisaru-Penati proposal

A reduced single field model follows by setting M2 = M3 = δi = 0, ϕ0 = ϕ2 = 0, M1 = −M and ϕ1 = iϕ

(ϕ, complex field). So, one gets the model

∂−(e
∓iϕ∂+e

±iϕ) = ±M(e±2iϕ − e∓2iϕ), (50)

which is the Grisaru-Penati proposal for the NC extension of the sine-Gordon model (NCSG2) [7, 8]. In

fact, in this proposal one must consider additionally a couple of equations for ϕ† obtained from the second

piece in the action (18). Additional reductions, each one providing a Grisaru-Penati NCSG2 model, are

achieved by setting M1 = M3 = δi = 0, ϕ0 = ϕ1 = 0, M2 = −M ϕ2 = iϕ, and M1 = M2 = δi = 0, ϕ0 = 0,

M3 = −M ϕ1 = ϕ2 = iϕ, respectively.

4.2.2 Non-commutative (bosonized) Bukhvostov-Lipatov model (NCbBL2). Second version

A reduction leading to a two field model follows as M3 = 0, M1 = M2 = −M, ϕn → iϕn (n = 0, 1, 2). So,

one gets the model

∂−

(
e−iϕ0

⋆ ⋆ e∓iϕa
⋆ ⋆ ∂+(e

±iϕa
⋆ ⋆ eiϕ0

⋆ )
)

= −M
8

[
e
−i(ϕ1−ϕ2)
⋆ ⋆ e∓iϕa

⋆ − e±iϕa
⋆ ⋆ e

i(ϕ1−ϕ2)
⋆

]
, a = 1, 2 (51)

0 = ∂−

[
e−iϕ0

⋆ ⋆ e−iϕ1

⋆ ⋆ ∂+(e
iϕ1

⋆ ⋆ eiϕ0

⋆ ) + e−iϕ0

⋆ ⋆ eiϕ2

⋆ ⋆

∂+(e
−iϕ2

⋆ ⋆ eiϕ0

⋆ ) + e−iϕ0

⋆ ⋆ e
i(ϕ1−ϕ2)
⋆ ⋆ ∂+(e

−i(ϕ1−ϕ2)
⋆ ⋆ eiϕ0

⋆ )
]
,

(52)

where the upper (lower) signs in (51) correspond to the index a = 1(2) of the field ϕa. In the commutative

limit the eq. (52) reduces to a free scalar field equation of motion ∂2ϕ0 = 0, whereas the set of equations (51)

become ∂2ϕ1 =Msin(2ϕ1−ϕ2) and ∂2ϕ2 =Msin(2ϕ2−ϕ1). Defining the new fields ψ1 = 1
2 (ϕ1+ϕ2), ψ2 =

√
3
2 (ϕ1 − ϕ2) we arrive at the model ∂2ψ1 = Msin(ψ1)cos(

√
3ψ2), ∂

2ψ2 = M
√
3cos(ψ1)sen(

√
3ψ2). As we

have seen before this is just the bosonized form of the so-called Bukhvostov-Lipatov model [27, 28, 29, 20].

In view of these relationships we define the model (51)-(52) as the second version of the non-commutative

(bosonized) Bukhvostov-Lipatov model(NCbBL2).

4.2.3 Non-commutative double sine-Gordon model (NCDSG2). Second version

In order to reduce the NCGSG2 system of equations into another version of the NC double sine-Gordon model

one takes advantage of certain properties of its commutative counterpart. In fact, the above commutative

model (47)-(49) possesses the symmetry ϕ1 ↔ ϕ2; M1 ↔ M2 in the GSG sector, whereas the auxiliary
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ϕ0 field completely decouples in this limit. So, in the second parametrization case (42) we can impose the

conditions ϕ1 = ϕ2 ≡ −iϕ, M1 = M2, δi = 0 into the system of eqs. (44)-(46) and obtain the following

system of equations for complex ϕ

∂−

(
e−ϕ0

⋆ ⋆ eiϕ⋆ ⋆ ∂+

(
e−iϕ⋆ ⋆ eϕ0

⋆

))
= 2iM1 sin⋆ ϕ+ 2iM3 sin⋆ 2ϕ

(53)

∂−

(
e−ϕ0

⋆ ⋆ ∂+e
ϕ0

⋆

)
= 0 (54)

∂−

[
e−ϕ0

⋆ ⋆ eiϕ⋆ ⋆ ∂+

(
e−iϕ⋆ ⋆ eϕ0

⋆

)
+ e−ϕ0

⋆ ⋆ e−iϕ⋆ ⋆ ∂+

(
eiϕ⋆ ⋆ eϕ0

⋆

)]
= 0. (55)

The system (53)-(55) constitutes the second version of the non-commutative double sine-Gordon model

(NCDSG2) defined for two complex scalar fields.

The first equation (53) contains the potential terms generalizing the ordinary double sine-Gordon po-

tential. The second and third ones (54)-(55) have the structure of conservation laws and can be seen as

imposing extra conditions on the system. Let us examine the commutative limit θ → 0 of the NCDSG2

system. In this limit it reduces to the usual DSG model plus a free field ϕ0 equations of motion

∂−∂+ϕ = −2M1 sinϕ− 2M3 sin 2ϕ (56)

∂−∂+ϕ0 = 0. (57)

Notice that in this limit the field ϕ0 decouples completely from the DSG field ϕ.

Some comments are in order here.

1) The NC models obtained above reproduce the usual models in the commutative limit θ → 0. So, the

both versions of the GL(3,C) non-commutative generalized sine-Gordon model (NCGSG1, 2) reproduce the

ordinary GL(3) GSG model in this limit. The both versions of the non-commutative double sine-Gordon

model NCDSG1, 2 reproduce the usual DSG model in the ordinary space. Likewise, the both versions of the

non-commutative bosonized Bukhvostov-Lipatov model NCbBL1, 2 lead to the usual BL model. Notice that

the GSG model in ordinary space-time also contains as sub-models the variety of theories we have uncovered

above, i.e. the usual SG model, Bukhvostov-Lipatov model, and the double sine-Gordon model [20, 24].

2) Regarding the integrability of the NCGSG1,2 models they are hardly expected to possess this property

since they contain as sub-models the relevant NCDSG1,2 and NCBL1,2 theories. The NCDSG1,2 models

are not expected to posses this property since their commutative counterpart is not integrable. The same

behavior may be expected for the NCBL1,2 models since their commutative counterpart is not classically

integrable (see [20] and refs. therein), except for some restricted region in parameters space. Nevertheless,

see more on this point in subsection 6.1.2 when the relevant spinor version of the (constrained) NCBL1 model

is discussed in relation to integrability.

Related to this issue, let us mention that we have not been able to write in a zero-curvature form the eq.

of motion (17) of the NCGSG1 model (17), it mainly happens due to the presence of the summation index
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m = 1, 2 on both entries of the commutator. Actually, the eq. (17) differs from the integrable system of

non-abelian affine Toda equations [30, 18].

3) The Letchenfeld et al. (34)-(35) and Grisaru-Penati (50) NC sine-Gordon models proposed in the

literature appear in the context of the generalized NC sine-Gordon models as reduced sub-models of the

corresponding NCGSG1 and NCGSG2 models, respectively. So, they are analogous to the results obtained

in the commutative case in which the GL(3) GSG model contains three SG sub-models as reduced models,

each one associated to the positive root of the gl(3) Lie algebra[24]. The group structure of the GL(3)

NCGSG1,2 models allowed us to get three NCSG1,2 sub-models, respectively, for each version, as in the

commutative case.

4) In the three-field space of the NCGSG1, 2 models it is remarkable the appearance of three integrable

directions as NCSG1, 2 sub-models, respectively. It suggests that there are at least three integrable directions

in reduced field space of each one of the NCGSG1, 2 models . Examples of non-integrable reduced directions

are provided by the relevant NCDSG1, 2 and NCBL1, 2 models. However, the existence of more integrable

directions is suggested by the presence of certain integrable sub-models in the spinor sector of the NCGMT1,2

models, i.e. the scalar duals of the corresponding NC(c)GMT1,2 and NC(c)BL1,2 spinor models, respectively

(see section (6.1.1) and subsection (6.1.2)).

5) Finally, the role played by the SG model in the context of the generalized SG models is analogous to

the one which happens with the correspondence between the λφ4 model and the deformed linear O(N)-sigma

model, as it was first noticed in [31]. It could be interesting to study several properties of the generalized

SG models, including their non-commutative counterparts, as for example by applying and improving the

quantization method described in the last reference. Let us mention that the ordinary DSG model has

recently been in the center of some controversy regarding the computation of its semi-classical spectrum, see

[32, 33].

5 Decoupling of NCGSG1,2 and NCGMT1,2 models

In the commutative case some approaches have been proposed in order to recover the GSG and GMT dual

models out of the ordinary sl(n) ATM model [24, 13, 14, 15, 20]. Among them, the one which proceeds by

decoupling the set of equations of motion of the ATM model into the corresponding dual models [13, 15] has

turned out to be more suitable in the NC case [9]. This procedure is adapted to the NC case by writing a

set of mappings between the fields of the model such that the eqs. (3) and (6) when rewritten using those

mappings decouple the scalar and the matter fields. So, following the procedures employed in the ordinary

sl(n) case [15] and in the non-commutative GL(2) ATM case [9] to the case at hand, let us consider the

mappings

2∑

n=1

[
F−
n , gF+

n g
−1

]

⋆
=

2∑

n=1

[
Λ−
n , gΛ

+
n g

−1
]

⋆
, (58)
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[
E−3 , gF

+
3−mg

−1
]

⋆
=

[
E−3 , F

+
3−m

]

⋆
− k2

2
(L+

m)−1
[∑

n

Ĵ−
n , F̂

−
m

]

⋆
L+
m, (59)

[
E3 , g

−1F−
3−mg

]

⋆
=

[
E3 , F

−
3−m

]

⋆
− k1

2
(L−

m)−1
[∑

n

Ĵ+
n , F̂

+
m

]

⋆
L−
m, (60)

F±
m = ∓[E±3 , W

∓
3−m]⋆, (61)

[
F±
2 , g∓1F∓

1 g
±1

]

⋆
= 0, (62)

where

Ĵ∓
n ≡

[
F̂±
3−n , Ŵ

∓
3−n

]
; k1, k2 = constant parameters. (63)

The hatted fields have the same algebraic structure as the corresponding unhatted ones except that

they incorporate some parameters re-scaling the fields, those parameters will give rise to certain coupling

constants between the currents of the model. Notice that the fields Ĵ±
m and the constant matrices L±

m carry

zero gradation and these will be defined below. The field g in the relations above, as defined in section 2, is

assumed to belong to either [U(1)]3, as in subsection 4.1, or H ⊂ GL(3,C) , as in the second parametrization

in subsection 4.2.

The relationships (58)-(61) when conveniently substituted into the ATM eqs. of motion (3) and (6)

decouple them, respectively, into the NCGSG1 eq. (17) and certain equations of motion incorporating only

matter fields, which in matrix form become

[
E−3, ∂+W

+
3−m

]

⋆
= +[E−3, [E3,W

−
m ]]⋆ −

k2
2

2∑

n=1

(L+
m)−1[Ĵ−

n , [E−3, Ŵ
+
3−m]]⋆L

+
m (64)

[
E3, ∂−W

−
3−m

]

⋆
= −[E3, [E−3,W

+
m ]]⋆ −

k1
2

2∑

n=1

(L−
m)−1[Ĵ+

n , [E3, Ŵ
−
3−m]]⋆L

−
m (65)

We define these set of eqs. as the first version of the non-commutative (generalized) massive Thirring

model (NCGMT1).

The eqs. (62) are the constraints imposed in ref. [15] written in a compact form. These constraints, which

are missing in the GL(2) case, have been imposed in the non-trivial GL(3) extension in order to be able to

write a local Lagrangian for the off-critical and constrained ATM model out of the full set of equations of

motion of the so-called conformal affine Toda model coupled to matter (CATM) [15, 18] (see the Appendices).

Actually, the above ’decoupling’ eqs. maintain the same form as their commutative analogs presented in

eqs. (6.1)-(6.5) of the ref. [15]. We must clarify that the above ’decoupling’ eqs. (58)-(60) do not completely

decouple the scalar fields from the spinor-like fields due to the presence of the constraints (62). There are

some instances of total decoupling, e.g. in the soliton sector of the commutative limit [20, 15]. Notice that

we have not used the constraint equations (62) in order to get the eqs. (64)-(65). In order to be more specific
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in the discussions below we provide, in the following set of equations, the constraint eqs. (62) in terms of

the component fields. Let us take the spinors as defined in (166)-(171) and the scalar field g presented in

the first parametrization eq. (19), so one has

eiφ1

⋆ ⋆ ψ1
R ⋆ e

−iφ2

⋆ ⋆ ψ2
L = ψ1

L ⋆ e
iφ2

⋆ ⋆ψ2
R ⋆ e

−iφ3

⋆ , (66)

eiφ2

⋆ ⋆ ψ2
R ⋆ e

−iφ3

⋆ ⋆ ψ̃3
L = −ψ2

L ⋆ e
iφ3

⋆ ⋆ψ̃3
R ⋆ e

−iφ1

⋆ ; eiφ3

⋆ ⋆ ψ̃3
R ⋆ e

−iφ1

⋆ ⋆ ψ1
L = −ψ̃3

L ⋆ e
iφ1

⋆ ⋆ψ1
R ⋆ e

−iφ2

⋆ (67)

and

e−iφ3

⋆ ⋆ ψ̃2
L ⋆ e

iφ2

⋆ ⋆ ψ̃1
R = ψ̃2

R ⋆ e
−iφ2

⋆ ⋆ψ̃1
L ⋆ e

iφ1

⋆ , (68)

e−iφ1

⋆ ⋆ ψ3
L ⋆ e

iφ3

⋆ ⋆ ψ̃2
R = −ψ3

R ⋆ e
−iφ3

⋆ ⋆ψ̃2
L ⋆ e

iφ2

⋆ ; e−iφ2

⋆ ⋆ ψ̃1
L ⋆ e

iφ1

⋆ ⋆ ψ3
R = −ψ̃1

R ⋆ e
−iφ1

⋆ ⋆ψ3
L ⋆ e

iφ3

⋆ (69)

associated to the grades (−1) and (+1) of (62), respectively.

Analogously, one can write another set of equations for the second parametrization (42) of g

eϕ1

⋆ ⋆ eϕ0

⋆ ⋆ ψ1
R ⋆ e

−ϕ0

⋆ ⋆ eϕ1−ϕ2

⋆ ⋆ ψ2
L = ψ1

L ⋆ e
ϕ2−ϕ1

⋆ ⋆ eϕ0

⋆ ⋆ ψ2
R ⋆ e

−ϕ0

⋆ ⋆ eϕ2

⋆ , (70)

eϕ2−ϕ1

⋆ ⋆ eϕ0

⋆ ⋆ ψ2
R ⋆ e

−ϕ0

⋆ ⋆ eϕ2

⋆ ⋆ ψ3
L = −ψ2

L ⋆ e
−ϕ2

⋆ ⋆ eϕ0

⋆ ⋆ ψ̃3
R ⋆ e

−ϕ0

⋆ ⋆ e−ϕ1

⋆ , (71)

e−ϕ2

⋆ ⋆ eϕ0

⋆ ⋆ ψ̃3
R ⋆ e

−ϕ0

⋆ ⋆ e−ϕ1

⋆ ⋆ ψ1
L = −ψ̃3

L ⋆ e
ϕ1

⋆ ⋆ eϕ0

⋆ ⋆ ψ1
R ⋆ e

−ϕ0

⋆ ⋆ eϕ1−ϕ2

⋆ , (72)

and

eϕ0

⋆ ⋆ ψ̃2
R ⋆ e

−ϕ0

⋆ ⋆ eϕ1−ϕ2

⋆ ⋆ ψ̃1
L ⋆ e

ϕ1

⋆ = eϕ2

⋆ ⋆ ψ̃2
L ⋆ e

ϕ2−ϕ1

⋆ ⋆ eϕ0

⋆ ⋆ ψ̃1
R ⋆ e

−ϕ0

⋆ , (73)

eϕ0

⋆ ⋆ ψ3
R ⋆ e

−ϕ0

⋆ ⋆ eϕ2

⋆ ⋆ ψ̃2
L ⋆ e

ϕ2−ϕ1

⋆ = −e−ϕ1

⋆ ⋆ ψ3
L ⋆ e

−ϕ2

⋆ ⋆ eϕ0

⋆ ⋆ ψ̃2
R ⋆ e

−ϕ0

⋆ , (74)

eϕ0

⋆ ⋆ ψ̃1
R ⋆ e

−ϕ0

⋆ ⋆ e−ϕ1

⋆ ⋆ ψ3
L ⋆ e

−ϕ2

⋆ = −eϕ1−ϕ2

⋆ ⋆ ψ̃1
L ⋆ e

ϕ1

⋆ ⋆ eϕ0

⋆ ⋆ ψ3
R ⋆ e

−ϕ0

⋆ , (75)

associated to the grades (−1) and (+1) of (62), respectively.

Even though that the full set of the ’decoupling’ equations have not been used in order to write the

eqs. (64)-(65), we expect that a non-commutative version of the usual (generalized) massive Thirring model

(GMT1) [15] defined for the fields W± will emerge from these equations. In fact, we assume this point

of view and study the properties of the system (64)-(65) in its own right. Nevertheless, we will recognize

below certain relationships between the relevant sub-models of the both NCGSG1,2 and NCGMT1,2 sectors.

Remarkably, these relationships will arise for certain reduced sectors obtained such that the constraints (62)

become trivial, or completely decouple the spinors from the scalars in the soliton sector, which is equivalent

to take the commutative limit (see below). The model (NCGMT1) (64)-(65) is new in the literature and it is

expected to correspond to the weak coupling sector of the NCGATM1 model whose strong coupling sector is

described by the first version of the non-commutative generalized sine-Gordon model (NCGSG1) presented

in subsection 4.1.

In the ordinary space the GMT equations of motion can be achieved through Hamiltonian reduction

procedures, such as the Faddeev-Jackiw method, as employed in [15] for first order in time Lagrangian;
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however, in the NC case, to our knowledge, there is no a similar procedure since the action of the NC GATM

model involves higher order in time derivatives; actually, an infinite number of terms of increasing order in

time derivatives. So, we have used the decoupling method and assumed the forms of the decoupling equations

(58)-(63) to resemble the ones in the ordinary case [15], important guiding lines being the gradation structure

and further, the locality of the Lagrangian in the NCGMT sector which will depend on the nature of the

terms appearing in the eqs. of motion; e.g, notice the absence of terms bilinear in the spinors in the right

hand side of the eqs. (64)-(65). In fact, the terms appearing in the above equations will give rise to usual

kinetic and mass terms, and four-spinor coupling terms in the relevant action. The Lagrangian for the model

(64)-(65) and a Lax pair formulation for a constrained version of it will be discussed below.

In order to recover the dual of the second version NCGSG2 one must write similar decoupling expressions

for the full set of fields {g, F±,W±} and {ḡ,F±,W±}. Thus, following similar steps to the previous

construction we expect to recover another version of the NC generalized massive Thirring model (NCGMT2)

defined for the fields {W±,W±}. In the next section we propose two versions of the non-commutative

(generalized) massive Thirring theories (NCGMT1,2) by providing the relevant equations of motion and

discussing their zero-curvature formulations.

6 The NC generalized massive Thirring models NCGMT1,2

We will consider the fields ψj , ψ̃j as c-number ones [9] in order to define the NC generalization of the so-called

(c-number) massive Thirring model (MT) [34, 35]. In ordinary space-time these type of classical c-number

multi-field massive Thirring theories have long been considered in relation to one-dimensional Dirac model

of extended particles [36]. The quantization of the two-dimensional fermion model with Thirring interaction

among N different massive Fermi field species has recently been performed in the functional integral approach

[37].

The assumption for the fields to be c-number fields will allow the zero-curvature formulations of the

NCGMT1,2 models to be constructed resembling analogous algebraic structures present in the GATM model

in the context of the affine Lie algebra SL(3). This means that the c-number fields ψj , ψ̃j will lie in certain

higher grading directions of the principal gradation of the affine SL(3) Lie algebra, as it is presented in the

eqs. (168)-(171) of the Appendix B.

In ordinary space the field components of the MT model are considered to be either anti-commuting

Grassmannian fields or some ordinary commuting fields (see [9] and refs. therein). Notice that the relevant

(Grassmannian) GMT model would need a slightly different algebraic formulation from the one followed here

for the c-number case.
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6.1 NCGMT1

We propose the NCGMT1 action related to the eqs. of motion (64)-(65) for the fields W±
m as

S[W±
m ] =

∫
dx2

[ 2∑

m=1

{1
2
< [E−3,W

+
3−m] ⋆ ∂+W

+
m > −1

2
< [E3,W

−
3−m] ⋆ ∂−W

−
m > −

< [E−3,W
+
m ] ⋆ [E3,W

−
m ] >} − 1

2

2∑

m,n=1

< Ĵ+
m ⋆ Ĵ−

n >
]
. (76)

In the last action the first two terms inside the summation provide the kinetic terms, the third one

the mass terms and the last term the current-current interactions. The current-like matrices Ĵ±
m with zero

gradation appearing in the eq. (63) have the same algebraic structure as the matrix-valued currents [15]

J±
m = ±1

4
[[E∓3,W

±
m ],W±

3−m]⋆, (77)

except that they are defined in terms of some hatted variables Ŵ±
m which are constructed from the relevant

unhatted ones W±
m in eqs. (168)-(171) by making the re-scalings

ψ̃1
L → (

λ1
2
)1/4ψ̃1

L, ψ̃2
L → (

λ2
2
)1/4ψ̃2

L, ψ3
L → (

λ3
2
)1/4ψ3

L. (78)

ψ1
L → (

δ1
2
)1/4ψ1

L, ψ2
L → (

δ2
2
)1/4ψ2

L, ψ̃3
L → (

δ3
2
)1/4ψ̃3

L. (79)

ψ̃1
R → (

α1

2
)1/4ψ̃1

R, ψ̃2
R → (

α2

2
)1/4ψ̃2

L, ψ3
R → (

α3

2
)1/4ψ3

R. (80)

ψ1
R → (

β1
2
)1/4ψ1

R, ψ
2
R → (

β2
2
)1/4ψ2

R, ψ̃3
R → (

β3
2
)1/4ψ̃3

R, (81)

where the λj δj , αj , βj are constant parameters. These constants are introduced with the aim of recovering

some coupling constants between the currents of the model.

Actually, in matrix form we have the following relationships Ŵ+
m = L+

mW
+
m(L+

m)−1 and Ŵ−
m = L−

mW
−
m(L−

m)−1.

The L±
2 , L

∓
1 matrices, respectively, take the following forms




12

√
x3

x1
0 0

0 12

√
x1

x2
0

0 0 12

√
x2

x3




and




12

√
y1
y3

0 0

0 12

√
y2
y1

0

0 0 12

√
y3
y2



, (82)

supplied with the replacements x→ λ for L+
2 , y → β for L−

2 , x→ α for L−
1 , and y → δ for L+

1 .

Some relationships between these parameters will emerge below mainly arising from the consideration of

current-current (generalized Thirring) type interactions among the various flavor species and integrability

requirement through the zero-curvature formulation of the equations of motion.

In the following we will consider the eqs. of motion (64)-(65) in term of the field components. For future

convenience let us introduce the fields AiR, L as

A1
R =

4

√
α1β1
4

ψ1
R ⋆ ψ̃

1
R +

4

√
β3α3

4
ψ3
R ⋆ ψ̃

3
R (83)
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A2
R =

4

√
α2β2
4

ψ2
R ⋆ ψ̃

2
R −

4

√
α1β1
4

ψ̃1
R ⋆ ψ

1
R (84)

A3
R =

4

√
β3α3

4
ψ̃3
R ⋆ ψ

3
R +

4

√
α2β2
4

ψ̃2
R ⋆ ψ

2
R. (85)

and

A1
L =

4

√
δ1λ1
4

ψ1
L ⋆ ψ̃

1
L +

4

√
δ3λ3
4

ψ3
L ⋆ ψ̃

3
L (86)

A2
L =

4

√
δ2λ2
4

ψ2
L ⋆ ψ̃

2
L −

4

√
δ1λ1
4

ψ̃1
L ⋆ ψ

1
L (87)

A3
L =

4

√
δ3λ3
4

ψ̃3
L ⋆ ψ

3
L +

4

√
δ2λ2
4

ψ̃2
L ⋆ ψ

2
L. (88)

In terms of these fields the currents in (76) become

Ĵ−
1 = Ĵ−

2 = − i
2




A1
R 0 0

0 A2
R 0

0 0 −A3
R


 and Ĵ+

1 = Ĵ+
2 = − i

2




A1
L 0 0

0 A2
L 0

0 0 −A3
L


 (89)

Therefore the action of the NCGMT1 model (76) in terms of the Thirring field components become

SNCGMT1
=

∫
dx2

i=3∑

i=1

{[
2iψ̃iL ⋆ ∂+ψ

i
L + 2iψ̃iR ⋆ ∂−ψ

i
R + imi(ψ̃

i
L ⋆ ψ

i
R − ψiL ⋆ ψ̃iR)

]

− 2(AiL ⋆ A
i
R)

}
, (90)

Next let us write the equations of motion for the field components derived from the action above. The

following three equations of motion

∂+ψ
3
L = −1

2
m3ψ

3
R − i

4

√
δ3λ3
4
{ψ3

L ⋆ A
3
R +A1

R ⋆ ψ
3
L} (91)

∂+ψ̃
1
L = −1

2
m1ψ̃

1
R + i

4

√
δ1λ1
4
{ψ̃1

L ⋆ A
1
R −A2

R ⋆ ψ̃
1
L} (92)

∂+ψ̃
2
L = −1

2
m2ψ̃

2
R + i

4

√
δ2λ2
4
{ψ̃2

L ⋆ A
2
R +A3

R ⋆ ψ̃
2
L}, (93)

will correspond to the matrix form (64) for m = 1.

One can obtain the equations of motion

∂+ψ̃
3
L = −1

2
m3ψ̃

3
R + i

4

√
δ3λ3
4
{A3

R ⋆ ψ̃
3
L + ψ̃3

L ⋆ A
1
R} (94)

∂+ψ
1
L = −1

2
m1ψ

1
R − i

4

√
δ1λ1
4
{A1

R ⋆ ψ
1
L − ψ1

L ⋆ A
2
R} (95)

∂+ψ
2
L = −1

2
m2ψ

2
R − i

4

√
δ2λ2
4
{A2

R ⋆ ψ
2
L + ψ2

L ⋆ A
3
R}, (96)

which in matrix form corresponds to eq. (64) for m = 2.
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Similarly, one can obtain the equations of motion

∂−ψ
3
R =

1

2
m3ψ

3
L − i

4

√
α3β3
4
{ψ3

R ⋆ A
3
L +A1

L ⋆ ψ
3
R} (97)

∂−ψ̃
1
R =

1

2
m1ψ̃

1
L + i

4

√
α1β1
4
{ψ̃1

R ⋆ A
1
L −A2

L ⋆ ψ̃
1
R} (98)

∂−ψ̃
2
R =

1

2
m2ψ̃

2
L + i

4

√
α2β2
4
{ψ̃2

R ⋆ A
2
L +A3

L ⋆ ψ̃
2
R}, (99)

corresponding to m = 2 in (65).

Finally, the equations

∂−ψ̃
3
R =

1

2
m3ψ̃

3
L + i

4

√
α3β3
4
{A3

L ⋆ ψ̃
3
R + ψ̃3

R ⋆ A
1
L} (100)

∂−ψ
1
R =

1

2
m1ψ

1
L − i

4

√
α1β1
4
{A1

L ⋆ ψ
1
R − ψ1

R ⋆ A
2
L} (101)

∂−ψ
2
R =

1

2
m2ψ

2
L − i

4

√
α2β2
4
{A2

L ⋆ ψ
2
R + ψ2

R ⋆ A
3
L}, (102)

can be obtained from (65) in the case m = 1.

The set of equations of motions (91)-(102) are the GL(3) extension of the equations of motion given

before for the case GL(2) NCMT1 ( see eqs. (5.11)-(5.14) of ref. [9]). In fact, the later system is contained

in the GL(3) extended model. For example, if one considers ψ1
L = ψ2

L = ψ̃1
L = ψ̃1

L = 0 in the eq. (91) then

it is reproduced the equation (5.13) of reference [9] describing the single Thirring field ψ3 provided that the

parameters expression 4

√
δ3λ3β3α3

16 corresponds to the coupling constant λ
2 of that reference.

The four field interaction terms in the action (90) can be re-written as a sum of Dirac type current-current

terms for the various flavors (j = 1, 2, 3). In the constructions of the relevant currents the double-gauging of

a U(1) symmetry in the star-localized Noether procedure deserves a careful treatment [38, 9]. So, one has

two types of currents for each flavor [9]

j
(1)µ
k = ψ̄kγ

µ ⋆ ψk, (103)

j
(2)µ
k = −ψTk γ0γµ ⋆ ψ̃k, k = 1, 2, 3.. (104)

Notice that in the commutative limit one has j
(1)µ
k = j

(2)µ
k . In order to write as a sum of current-current

interaction terms it is necessary to impose the next constraints on the αi, βi, δi, λi parameters

δjλj
αjβj

= κ = const.; j = 1, 2, 3. (105)

Then the four-spinor interactions terms in (90), provided that (105) is taken into account, can be written

as current-current interaction terms

−2
3∑

i=1

AiLA
i
R = −g11 (j(1)1µ ⋆ j

(1)µ
1 + j

(2)
1µ ⋆ j

(2)µ
1 )− g22 (j(1)2µ ⋆ j

(1)µ
2 + j

(2)
2µ ⋆ j

(2)µ
2 )−

g33 (j
(1
3µ ⋆ j

(1)µ
3 + j

(2)
3µ ⋆ j

(2)µ
3 ) + g12 (j

(1)
1µ ⋆ j

(2)µ
2 )−

g23 (j
(1)
2µ ⋆ j

(1)µ
3 )− g13(j(2)1µ ⋆ j

(2)µ
3 ), (106)
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where

gjj =
1

4
4
√
αjβjδjλj , gjk =

1

2
4
√
αjβjδkλk, (j 6= k); j, k = 1, 2, 3. (107)

These parameters gij define the coupling constants of the NC generalized Thirring model (NCGMT1),

even though that they are not mutually independent. Notice that considering the relationships (105) and

(107) one has the three constraints

gij = 2
√
gii gjj , i 6= j. (108)

Taking into account the constraints (108) we are left with three independent coupling parameters at our

disposal, so in order to study further properties such as the integrability and the zero-curvature formulations

of the model one must consider the remaining three parameters, say the independent coupling parameters

g11, g22, g33. Then, substituting in the action (90) the current-current interaction terms (106) one has

SNCGMT1
=

∫
dx2

{ i=3∑

i=1

[
2iψ̃iL ⋆ ∂+ψ

i
L + 2iψ̃iR ⋆ ∂−ψ

i
R + imi(ψ̃

i
L ⋆ ψ

i
R − ψiL ⋆ ψ̃iR)

]

− g11 (j
(1)
1µ ⋆ j

(1)µ
1 + j

(2)
1µ ⋆ j

(2)µ
1 )− g22 (j(1)2µ ⋆ j

(1)µ
2 + j

(2)
2µ ⋆ j

(2)µ
2 )−

g33 (j
(1
3µ ⋆ j

(1)µ
3 + j

(2)
3µ ⋆ j

(2)µ
3 ) + g12 (j

(1)
1µ ⋆ j

(2)µ
2 )−

g23 (j
(1)
2µ ⋆ j

(1)µ
3 )− g13(j(2)1µ ⋆ j

(2)µ
3 )

}
. (109)

We define this model as the NC (generalized) massive Thirring model NCGMT1 written in terms of the

component fields. Its matrix version is understood to be the action (76) once the parameters relationships

(105) are taken into account.

The two types of U(1) currents j
(1)
k µ, j

(2)
k µ (k=1,2,3), respectively, satisfy the conservation equations

∂+(ψ̃
k
L ⋆ ψ

k
L) + ∂−(ψ̃

k
R ⋆ ψ

k
R) = 0, ∂+(ψ

k
L ⋆ ψ̃

k
L) + ∂−(ψ

k
R ⋆ ψ̃

k
R) = 0, k = 1, 2, 3. (110)

6.1.1 (Constrained) NC(c)GMT1 zero-curvature formulation

The zero-curvature condition encodes integrability even in the NC extension of integrable models (see e.g. [9]

and references therein), as this condition allows, for example, the construction of infinite conserved charges for

them. In order to tackle this problem it is convenient to consider the matrix form of the equations of motion

of the GL(3) NC Thirring model (64)-(65) and intend to write them as originating from a zero-curvature

condition. So, taking into account the gradation structure of the model let us consider the following Lax

pair

A− = E−3 + a[E−3,W
+
1 ]⋆ + b[E−3,W

+
2 ]⋆ + g1[[E−3, Ŵ

+
1 ], Ŵ+

2 ]⋆ + g2[[E−3, Ŵ
+
2 ], Ŵ+

1 ]⋆. (111)

A+ = −E+3 + b[E+3,W
−
1 ]⋆ + a[E+3,W

−
2 ]⋆ + g̃1[[E+3, Ŵ

−
1 ], Ŵ−

2 ]⋆ + g̃2[[E+3, Ŵ
−
2 ], Ŵ−

1 ]⋆, (112)

where a, b, g1, g2, g̃1, g̃2 are some parameters to be determined below. Notice that the potentials A± lie in

the directions of the affine Lie algebra generators of grade G0,1,2,3 and G0,−1,−2,−3, respectively.
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These matrix valued fields must be replaced into the zero-curvature equation

[
∂+ +A+ , ∂− +A−

]

⋆
= 0, (113)

We will use the following relationships which can easily be established

4Ĵ−
1 = 4Ĵ−

2 = −[[E+3, Ŵ
−
1 ], Ŵ−

2 ]⋆ = −[[E+3, Ŵ
−
2 ], Ŵ−

1 ]⋆, (114)

4Ĵ+
1 = 4Ĵ+

2 = [[E−3, Ŵ
+
1 ], Ŵ+

2 ]⋆ = [[E−3, Ŵ
+
2 ], Ŵ+

1 ]⋆ (115)

So, the Lax pair can be rewritten as

A− = E−3 + a[E−3,W
+
1 ]⋆ + b[E−3,W

+
2 ]⋆ + k1Ĵ

+
1 . (116)

A+ = −E+3 + b[E+3,W
−
1 ]⋆ + a[E+3,W

−
2 ]⋆ + k2Ĵ

−
1 , (117)

where we have introduced the new parameters k1, 2 such that g̃1 + g̃2 = −k24 , and g1 + g2 =
k1
4

In order to get the relevant equations of motion (64)-(65) it is useful to take into consideration the

gradation structure of the various terms. So, the terms of gradation (−1) in (113), taking into account

(114), become

[
E−3, ∂+W

+
2

]

⋆
= +[E−3, [E3,W

−
1 ]]⋆ − k2(L+

2 )
−1[Ĵ−

1 , [E−3, Ŵ
+
2 ]]⋆L

+
2 +

[
F+
1 , F

−
2

]

⋆
(118)

The equation (118) has the same structure as the equation of motion (64) ( for m = 1) provided that we

set L+
2 = L+

1 , and impose the constraint

[
F+
1 , F

−
2

]

⋆
= 0. (119)

Next, looking for the gradation (+1) terms in (113) and using (115) we may get the equation

[
E3, ∂−W

−
2

]

⋆
= −[E3, [E−3,W

+
1 ]]⋆ − k1(L−

2 )
−1[Ĵ+

1 , [E3, Ŵ
−
2 ]]⋆L

−
2 +

[
F+
2 , F

−
1

]

⋆
. (120)

In a similar way, identifying L−
2 = L−

1 , and imposing the constraint

[
F+
2 , F

−
1

]

⋆
= 0, (121)

one notices that the equation (120) is equal to the equation of motion (65) (for m = 1).

Following the process we can write for the (±2) gradations and conclude that in order to obtain the two

equations of motion in (64)-(65) for m = 2, it is required the same conditions L±
2 = L±

1 as above, without

any new constraint.

We notice that the conditions L±
2 = L±

1 which are related to the equations of motion for the gradations

(±1), (±2) provide the following constraints between the initial parameters (αi, βi, λi, δi)

αiβi = r1; λiδi = r2, i = 1, 2, 3; r1, r2 = constants. (122)
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In fact, these constraints are consistent with the parameters relationships (105) established above; how-

ever, eqs. (122) incorporate additional constant parameters r1, r2 such that κ = r2/r1. Additional re-

lationships between the parameters arise by requiring that the above matrix equations derived from the

zero-curvature equation to be consistent with the eqs. of motion (91)-(102). So, together with the relation-

ships (122), it is required

α1α2α3 = β1β2β3 ≡ r3/21 ; λ1λ2λ3 = δ1δ2δ3 ≡ r3/22 , k1 = 23/4r
1/8
1 , k2 = 23/4r

1/8
2 (123)

So, the set of current-current coupling constants gij in (109), which in the last section have been assumed

to be equivalent to three independent parameters, in view of the additional relationships (123) they reduce

to only one independent parameter g defined by

g12 = g23 = g13 =
1

2
g; gii =

1

4
g, i = 1, 2, 3; g ≡ (r1r2)

1/4. (124)

Finally, for the zero gradation term there appears the following equation

k1∂+Ĵ
+
1 − k2∂−Ĵ−

1 − ab[F+
2 , F

−
2 ]− ab[F+

1 , F
−
1 ] + k1k2[Ĵ

−
1 , Ĵ

+
1 ] = 0. (125)

We require this equation to be consistent with the full equations of motion (91)-(102) and the constraints

(119) and (121). These constraints in terms of the fundamental fields become

ψ1
R ∗ ψ2

L = ψ1
L ∗ ψ2

R, ψ2
R ∗ ψ̃3

L = −ψ2
L ∗ ψ̃3

R, ψ̃3
L ∗ ψ1

R = −ψ̃3
R ∗ ψ1

L (126)

and

ψ3
R ∗ ψ̃2

L = −ψ3
L ∗ ψ̃2

R, ψ̃1
L ∗ ψ3

R = −ψ̃1
R ∗ ψ3

L, ψ̃2
R ∗ ψ̃1

L = ψ̃2
L ∗ ψ̃1

R, (127)

respectively.

In order to establish specific relationships between the parameters a, b and r1, r2 let us write (125) in

terms of the fundamental fields

i(k1∂+A
1
L − k2∂−A1

R) = −k1k2
2

(A1
R ⋆ A

1
L −A1

L ⋆ A
1
R)− 2ab{im1(

4

√
β1λ1
4

ψ1
R ⋆ ψ̃

1
L +

4

√
α1δ1
4

ψ1
L ⋆ ψ̃

1
R) +

im3(
4

√
α3δ3
4

ψ3
R ⋆ ψ̃

3
L +

4

√
β3λ3
4

ψ3
L ⋆ ψ̃

3
R)} (128)

i(k1∂+A
2
L − k2∂−A2

R)⋆ = −k1k2
2

(A2
R ⋆ A

2
L −A2

L ⋆ A
2
R)− 2ab{im2(

4

√
β2λ2
4

ψ2
R ⋆ ψ̃

2
L +

4

√
α2δ2
4

ψ2
L ⋆ ψ̃

2
R)−

im1(
4

√
δ2α2

4
ψ̃1
R ⋆ ψ

1
L +

4

√
β1λ1
4

ψ̃1
L ⋆ ψ

1
R)} (129)

i(k1∂+A
3
L − k2∂−A3

R)⋆ =
k1k2
2

(A3
R ⋆ A

3
L −A3

L ⋆ A
3
R)− 2ab{im3(

4

√
β3λ3
4

ψ̃3
R ⋆ ψ

3
L +

4

√
δ3α3

4
ψ̃3
L ⋆ ψ

3
R) +

im2(
4

√
δ2α2

4
ψ̃2
R ⋆ ψ

2
L +

4

√
β2λ2
4

ψ̃2
L ⋆ ψ

2
R)}. (130)
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Substituting the fields AjR,L, j = 1, 2, 3 in the form (83)-(88) into the eqs. (128)-(130) and taking into

account the set of equations of motion (91)-(102) one gets the following relationships

2ab =

√
g

2
; (2)1/4 = r

1/8
1 + r

1/8
2 . (131)

Therefore, we have established a zero-curvature formulation of a constrained version of the NCGMT1

model. From this point forward this constrained model will be dubbed as NC(c)GMT1.

Notice that the set of equations (128)-(130) contain the relevant eq. associated to the SL(2) NC massive

Thirring model written for its relevant zero gradation sector analogous to (125). So, for example, if one

reduces the eq. (130) to get an equation for just one field, say ψ3, one has

i
[
k1

4

√
r2
4
∂+(ψ̃

3
L ⋆ ψ

3
L)− k2 4

√
r1
4
∂−(ψ̃

3
R ⋆ ψ

3
R)

]
= −2iabm3

(
4

√
β3λ3
4

ψ̃3
R ⋆ ψ

3
L +

4

√
δ3α3

4
ψ̃3
L ⋆ ψ

3
R

)
+

k1k2
2

4

√
r1r2
16

(ψ̃3
R ⋆ ψ

3
R ⋆ ψ̃

3
L ⋆ ψ

3
L − ψ̃3

L ⋆ ψ
3
L ⋆ ψ̃

3
R ⋆ ψ

3
R)

. (132)

Now, taking into account α3 = β3 = δ3 = λ3 [r1 = r2 ≡ r] and the identifications ψ3 → i r1/16ψ,

r1/2 → λ, [m3
r1/8

25/4
] → mψ we arrive at the equation ∂−(ψ̃R ⋆ ψR) − ∂+(ψ̃L ⋆ ψL) = mψ

(
ψ̃R ⋆ ψL + ψ̃L ⋆

ψR

)
− iλ(ψ̃R ⋆ ψR ⋆ ψ̃L ⋆ ψL − ψ̃L ⋆ ψL ⋆ ψ̃R ⋆ ψR), which is the eq. (5.18) of the ref. [9] .

6.1.2 NCGMT1 sub-models

In the following we discuss some reduced models associated to the action (109) and its equations of motion

(91)-(102).

NC massive Thirring (NCMT1) models

The reduction of the NCGMT1 model equations of motion (91)-(102) to a model with just one spinor

field, say the components ψ1
R,L, ψ̃

1
R,L (consider the reduction ψ2,3

R,L = ψ̃2,3
R, L = 0) reproduces the NCMT1

model which has been presented in [9, 10]. Notice that in this case the constraints (126) and (127), as well

as the decoupling equations (62) [or in components (66)-(69)] become trivial. Let us emphasize that the full

decoupling eqs. are satisfied by a subset of soliton solutions of the field equations of the GL(2) NCATM1

model such that the two sectors NCSG1/NCMT1 completely decouple [9]. Reducing in this way it is clear

the appearance of three copies of the NCMT1 model associated to the spinors ψ1, ψ2 and ψ3, respectively.

NC Bukhvostov-Lipatov (NCBL1) model

Consider a reduced model with two fields, say ψ1,2
R,L, ψ̃

1,2
R,L, achieved through the reduction ψ3

R, L = ψ̃3
R, L =

0. So, the Lagrangian (109) becomes

SNCTM =

∫
dx2

{ i=2∑

i=1

[
2iψ̃iL ⋆ ∂+ψ

i
L + 2iψ̃iR ⋆ ∂−ψ

i
R + imi(ψ̃

i
L ⋆ ψ

i
R − ψiL ⋆ ψ̃iR)

]

−g11 (j(1)1µ ⋆ j
(1)µ
1 + j

(2)
1µ ⋆ j

(2)µ
1 )− g22 (j(1)2µ ⋆ j

(1)µ
2 + j

(2)
2µ ⋆ j

(2)µ
2 )

+g12 (j
(1)
1µ ⋆ j

(2)µ
2 )

}
. (133)
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Remember that in ordinary space there is no distinction between the type of j
(1)
i and j

(2)
i currents for

each flavor i ; so, the model (133) when written in ordinary space-time is known in the literature as the

Bukhvostov-Lipatov model (BL) [29]. It has been claimed the classical integrability of the model in two

special cases g12 = 0 (2× MT model) and g11 = g22 = 0 (BL model) [in both cases consider m1 = m2](see

[27] and refs. therein). The quantum integrability of the BL model has been discussed in [28]. In view of

the above discussion we define the model (133) as the first version of the NC Bukhvostov-Lipatov model

(NCBL1). Actually, there are additionally two reduction processes to arrive at NCBL1 models, i.e. by setting

ψ1 = 0 and ψ2 = 0 in (109), respectively.

(Constrained) NC Bukhvostov-Lipatov (NC(c)BL1) and Lax pair formulation

Let us discuss a constrained version of the model (133). In view of the developments above one can

establish the zero-curvature formulation of a constrained model associated to the model (133) by setting

ψ3
L.R = ψ̃3

L.R = 0 in the matrices W±
1,2 of the Lax pair eqs. (111)-(112), provided the constraints (126) and

(127) given in the form ψ1
R ∗ ψ2

L = ψ1
L ∗ ψ2

R and ψ̃2
R ∗ ψ̃1

L = ψ̃2
L ∗ ψ̃1

R, are considered. So, we claim that the

model (133) is classically integrable provided that the above constraints are taken into account. In this way,

provided that for version 2 one writes a copy of the model and their relevant constraints, one defines the

(constrained) NC(c)BL1,2 models amenable to a Lax pair formulation .

In connection to this development, let us mention that a version of the BL model for Grassmanian fields

in usual space-time has also been recently shown to be associated to a Lax pair formulation provided some

constraints are imposed [39].

In Fig. 1 we have outlined the various relationships. Notice that we have the two versions of NCGATM1, 2

and their strong/weak sectors described by the models NCGSG1, 2 and NCGMT1, 2, respectively, as well as

the relevant sub-models. We have emphasized the field contents in each stage of the reductions.

Some comments are in order here.

1. The action (109) (or its matrix form (76)) defines a three species NC generalized massive Thirring

model. We have tried to write its eqs. of motion (64)-(65) [or in components (91)-(102)] as deriving from a

zero-curvature formulation. We have proposed a Lax pair reproducing the same equations of motion provided

that the constraints (119) and (121)[or in components (126) and (127)] are imposed. This fact suggests that

the NCGMT1 model (76) becomes integrable only for a sub-model defined by the eqs. of motion (91)-(102)

provided the constraints (119) and (121) are satisfied [40]. So, one expects that a careful introduction of the

constraints trough certain Lagrange multipliers into the action will provide the Lagrangian formulation of

an integrable sub-model of the NCGMT1 theory.

2. Regarding the action related to the full zero-curvature equations of motion without constraints,

determined by the set of eqs. (118) and (120), and the relevant eqs. in (64)-(65) written for m = 2, it is

interesting to notice that the quadratic terms in the spinors present in the first couple of eqs. of motion

(118) and (120) make it difficult to believe that one can find a local Lagrangian for the theory. Obviously, in

that case we could not have a generalized massive Thirring model with a local Lagrangian involving bilinear
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(kinetic and mass terms) and usual current-current terms. This fact is intimately related to the presence of

the eqs. (62) [or in components (66)-(69)] in the set of decoupling eqs. (58)-(63). In the commutative case

the equations of type (62) have been incorporated in order to write a local Lagrangian for the GATM model

in ref. [15]. Notice that the original theory (without constraints) allows a zero-curvature formulation; in

fact, its Lax pair is just the one of the so-called conformal affine Toda model coupled to matter fields [18].

However, it does not posses a local Lagrangian formulation in terms of the fields of the model; namely, the

Toda and the spinor (Dirac) fields.

3. Notice that in Fig. 1 we have emphasized the duality relationship NCGSG1 ↔ NCGMT1 since in

this case the symmetry U(1) × U(1) × U(1) of the NCGSG1 model is implemented in the star-localized

Noether procedure to get the three U(1) currents of the NCGMT1 sector. Regarding the relationships

between the sub-models of the both sectors NCGSG1 and NCGMT1, it is clear the appearance of the duality

NCSG1 ↔ NCMT1 which has been discussed in the literature [9, 10]. In addition, it is expected the duality

relationship NCbBL1 ↔ NCBL1, since in the ordinary space-time the former is the bosonized version of the

later model [27, 28]. Regarding this type of duality relationships between the remaining models a more careful

investigation is needed, e.g. we have not been able to describe neither the spinor model corresponding to the

NCDSG1 model, nor the scalar sectors of the (constrained) NC(c)GMT1 and NC(c)BL1 models, respectively.

6.2 NCGMT2

As mentioned in the last paragraph of section 5 we expect that another NCGMT2 version, with twice the

number of fields of the NCGMT1 theory, will appear when one performs a similar decoupling procedure for

the extended system with {F±
m ,W

±
m} and {F±

m,W±
m} fields. In fact, a copy of the NCGMT1 action (76), as

well as the relevant zero-curvature equation of motion can be written for the fields {F±
m,W±

m}. Following

similar steps one can construct a copy for each one of the sub-models presented above. Since it involves

a direct generalization we will not present more details; however, see a corresponding construction for the

GL(2) case in ref. [9]. In this way one can get the NCGMT2 model which is expected to be related to the

NCGSG2 model. Similarly to the NCGMT1 case, one can expect that only a sub-model of NCGMT2 will

posses a zero-curvature formulation provided that a set of constraints similar to the eqs. (119) and (121),

and a copy of them written for the fields F±
m (m = 1, 2) are considered.

7 Non-commutative solitons and kinks

It is a well known fact that the one-soliton solutions of certain models solve their NC counterparts. This

feature holds for the SG model and its NCSG1,2 counterparts [9]. In the multi-field models, this feature

means that the GSG model and its NCGSG1,2 extensions have a common subset of solutions, in particular

the one-soliton and kink type solutions as we will see below. Of course the additional constraints, in the

form of conservation laws which we have described before, e.g. the eqs. (41) and (54)-(55), respectively in
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the two versions of NCDSG models, must also be verified for the common subset of solutions. In fact, as we

have noticed before they become trivial equations in the commutative limit.

The properties mentioned above reside on a simple observation: it is known that if f(x0, x1) and g(x0, x1)

depend only on the combination (x1 − vx0), then the product f ⋆ g coincides with the ordinary product

f.g [11, 41]. Therefore, all the ⋆ products in the NCGSG1 system (24)-(26) reduce to the ordinary ones,

so for these types of functions one has: NCGSG1 → GSG model; the GSG model was defined in (32)-(33)

[see also eqs. (161)-(162)]. In the following we record the solutions with this property, i.e, the one-soliton

solutions of the NCGSG1 model and the kink type solution of the NCDSG1 sub-model. Actually, the same

analysis can be done for the NCGSG2 case.

7.1 Solitons and kinks

Next we write the 1-soliton and 1-kink type solutions associated to the fields φ1,2 of the NCGSG1 model,

which in accordance to the discussion above reduce to the GSG system of eqs. (32)-(33). We will see that

these solitons are, in fact, associated to the various sine-Gordon models obtained as sub-models of the GSG

theory, and the kink type solution corresponds to the double sine-Gordon sub-model [24].

1. Taking φ1 = −φ2 and M3 =M2, δi = 0 in (32)-(33) one has

φ1 = 4arctan{d exp[γ1(x− vt)]}. (134)

2. For φ1 = φ2 and M2 =M3, M1 = 0 one has

φ1 = 4 arctan{d exp[γ2(x− vt)]}. (135)

Another SG model is given by setting φ1 = φ2 and M2 = M3 = 0 in (32)-(33) which leads to another

soliton solution.

3. The kink solution is associated to the reduced double sine-Gordon model obtained by taking φ1 =

φ2 ≡ φ and M3 =M2, Mj 6= 0. So, one has

φ := 4 arctan [dK sinh[γK (x− vt)]] , (136)

which is the usual DSG kink solution [42].

The γ1,2, γK , d, dK , v above are some constant parameters.

8 Conclusions and discussions

Some properties of the NC extensions of the GATM model and their weak-strong phases described by

the NCGMT1,2 and NCGSG1,2 models, respectively, have been considered. The Fig. 1 summarizes the

relationships we have established, as well as the field contents in each sub-model.
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In the θ → 0 limit we have the following correspondences: NCGATM1,2 → GATM; NCGSG1,2 (the real

sector of model 2) → GSG(plus a free scalar in the case of model 2); NCbBL1,2 → bBL; NCDSG1,2 (the

real sector of model 2) → DSG(plus a free scalar in the case of model 2); NCGMT1,2 → GMT (two copies

in case of model 2); NCBL1,2 → BL (two copies in case of model 2). In addition, the constrained versions

NC(c)GMT1,2 and NC(c)BL1,2 give rise, in this limit, to the relevant (constrained) GMT and BL models,

respectively, in ordinary space. To our knowledge, these are novel spinor integrable models.

The NCGMT1,2 Lagrangians describe three flavor massive spinors (case 2 considers twice the number

of spinors) with current-current interactions among themselves. In the process of constructing the Noether

currents one recognizes the [U(1)]3 symmetry in both NCGMT1,2 models (in fact, as a subgroup of [U(1)C ]
3

in the model 2). We have provided the zero-curvature formulation of certain sub-models of the NCGMT1,2.

In fact, in order to write the eqs. of motion (91)-(102) as a zero-curvature equation for a suitable Lax pair

one needs to impose the constraints (126)-(127), defining in this way the NC(c)GMT1,2 models. Likewise,

the (constrained) NC(c)BL1,2 models possess certain Lax pairs.

The generalized sine-Gordon model, the usual SG model, the Bukhvostov-Lipatov model and the double

sine-Gordon theory appear in the commutative limit of the both versions of the NCGSG1,2 models. We have

concluded that the NCGSG1,2 models possess the same soliton and kink type solutions as their commutative

counterparts. The appearance of the non-integrable double sine-Gordon model as a sub-model of the GSG

model suggests that even the NCGSG1,2 models are non-integrable theories for the arbitrary set of values of

the parameter space, since they possess as sub-models the corresponding NCDSG1,2 models. However, the

NCGSG1,2 models possess certain integrable directions in field space, as remarkable examples one has the

NCSG1,2 sub-models. In view of the presence of the (constrained) NC(c)GMT1,2 and NC(c)BL1,2 models

with corresponding zero-curvature formulations, it is expected the existence of other integrable directions in

the scalar sector, which we have not pursued further in the present work.

Actually, the procedures presented so far can directly be extended to the NCATM model for the affine Lie

algebra sl(n). Therefore one can conclude that, except for the usual MT model, a multi-flavor generalization

(nF ≥ 2, nF =number of flavors) of the massive Thirring model allows certain zero-curvature formulations

only for its various constrained sub-models, in the both NC and ordinary space-time descriptions.

Except for the NCSG1,2 models, which must correspond to the NCMT1,2 models, whose Lax pair formu-

lations have already been provided in the literature, we have not been able to find the Lax pair formulations

of the NCGSG1,2 remaining sub-models. The relevant scalar field models, and their Lax pair formulations,

which must be the counterparts of the (constrained) NC(c)GMT1,2 and NC(c)BL1,2 models are missing; if

such Lax pairs exist they are expected to contain certain nonlocal expressions of the fields of the NCGSG1,2

models. These points deserve a careful consideration in future research.

Various aspects of the models studied above deserve attention in future research, e.g. the NC solitons and

kinks of the NCGATM1,2 models and their relations with the confinement mechanism studied in ordinary

space [24], the bosonization of the NCGMT1,2 and their sub-models, the NC zero-curvature formulation of
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the bosonic sector of the NC(c)GMT1,2 and NC(c)BL1,2 models, as discussed above. In particular, in the

bosonization process of the NCGMT1,2 models, initiated in [10] for the NCMT1,2 case, we believe that a

careful understanding of the star-localized NC Noether symmetries, as well as the classical soliton spectrum

would be desirable. In view of the rich spectra and relationships present in the above models it could be

interesting to apply and improve some quantization methods, such as the one proposed in [31], in order to

compute the soliton and kink masses quantum corrections. Another direction of research constitutes the NC

zero-curvature formulations of the NCGMT1,2 type models defined for Grassmannian fields.
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A GSG as a reduced affine Toda model coupled to matter

We provide the algebraic construction of the sl(3,C) conformal affine Toda model coupled to matter fields

(CATM) following refs. [15, 18]. The reduction process to arrive at the classical GSG model closely follows

the ref. [24]. The sl(3,C) CATM model is a two-dimensional field theory involving four scalar fields and six

Dirac spinors. The interactions among the fields are as follows: 1) in the scalars equations of motion there

are the coupling of bilinears in the spinors to exponentials of the scalars. 2) Some of the equations of motion

for the spinors have certain bilinear terms in the spinors themselves. That fact makes it difficult to find

a local Lagrangian for the theory. Nevertheless, the model presents a lot of symmetries. It is conformally

invariant, possesses local gauge symmetries as well as vector and axial conserved currents bilinear in the

spinors. One of the most remarkable properties of the model is that it presents an equivalence between a

U(1) vector conserved current, bilinear in the spinors, and a topological currents depending only on the first

derivative of some scalars. This property allow us to implement a bag model like confinement mechanism

resembling what one expects to happen in QCD. The model possesses a zero-curvature representation based

on the ŝl3(C) affine Kac Moody algebra. It constitutes a particular example of the so-called conformal affine

Toda models coupled to matter fields which has been introduced in [18]. The corresponding model associated

to ŝl2(C) has been studied in [16] where it was shown, using bosonization techniques, that the equivalence

between the currents holds true at the quantum level and so the confinement mechanism does take place in

the quantum theory.

The off-critical affine Toda model coupled to matter (ATM) is defined by gauge fixing the conformal

symmetry [14] and imposing certain constraints in order to write a local Lagrangian for the model [15]. These

treatments of the sl(3,C) ATM model used the symplectic and on-shell decoupling methods to unravel the
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classical generalized sine-Gordon (GSG) and generalized massive Thirring (GMT) dual theories describing

the strong/weak coupling sectors of the ATM model [20, 15, 14]. As mentioned above the ATM model

describes some scalars coupled to spinor (Dirac) fields in which the system of equations of motion has a local

gauge symmetry. Conveniently gauge fixing the local symmetry by setting some spinor bilinears to constants

we are able to decouple the scalar (Toda) fields from the spinors, the final result is a direct construction of

the classical generalized sine-Gordon model (GSG) involving only the scalar fields. In the spinor sector we

are left with a system of equations in which the Dirac fields couple to the GSG fields. Another instance

in which the quantum version of the generalized sine-Gordon theory arises is in the process of bosonization

of the generalized massive Thirring model (GMT), which is a multi-flavor extension of the usual massive

Thirring model such that, apart from the usual current-current self-interaction for each flavor, it presents

current-current interactions terms among the various U(1) flavor currents [43].

The zero-curvature condition (163) supplied with the potentials (164) gives the following equations of

motion for the CATM model [18]

∂2φa
4i eη

= m1[e
η−iθaψ̃lRψ

l
L + eiθaψ̃lLψ

l
R] +m3[e

−iθ3 ψ̃3
Rψ

3
L + eη+iθ3 ψ̃3

Lψ
3
R]; a = 1, 2 (137)

−∂
2ν̃

4
= im1e

2η−θ1 ψ̃1
Rψ

1
L + im2e

2η−θ2ψ̃2
Rψ

2
L + im3e

η−θ3ψ̃3
Rψ

3
L +m2e3η, (138)

−2∂+ψ1
L = m1e

η+iθ1ψ1
R, −2∂+ψ2

L = m2e
η+iθ2ψ2

R, (139)

2∂−ψ
1
R = m1e

2η−iθ1ψ1
L + 2i

(m2m3

im1

)1/2

eη(−ψ3
Rψ̃

2
Le

iθ2 − ψ̃2
Rψ

3
Le

−iθ3), (140)

2∂−ψ
2
R = m2e

2η−iθ2ψ2
L + 2i

(m1m3

im2

)1/2

eη(ψ3
Rψ̃

1
Le

iθ1 + ψ̃1
Rψ

3
Le

−iθ3), (141)

−2∂+ψ3
L = m3e

2η+iθ3ψ3
R + 2i

(m1m2

im3

)1/2

eη(−ψ1
Lψ

2
Re

iθ2 + ψ2
Lψ

1
Re

iθ1), (142)

2∂−ψ
3
R = m3e

η−iθ3ψ3
L, 2∂−ψ̃

1
R = m1e

η+iθ1ψ̃1
L, (143)

−2∂+ψ̃1
L = m1e

2η−iθ1ψ̃1
R + 2i

(m2m3

im1

)1/2

eη(−ψ2
Lψ̃

3
Re

−iθ3 − ψ̃3
Lψ

2
Re

iθ2), (144)

−2∂+ψ̃2
L = m2e

2η−iθ2ψ̃2
R + 2i

(m1m3

im2

)1/2

eη(ψ1
Lψ̃

3
Re

−iθ3 + ψ̃3
Lψ

1
Re

iθ1), (145)

2∂−ψ̃
2
R = m2e

η+iθ2ψ̃2
L, −2∂+ψ̃3

L = m3e
η−iθ3 ψ̃3

R, (146)

2∂−ψ̃
3
R = m3e

2η+iθ3 ψ̃3
L + 2i

(m1m2

im3

)1/2

eη(ψ̃1
Rψ̃

2
Le

iθ2 − ψ̃2
Rψ̃

1
Le

iθ1), (147)

∂2η = 0, (148)

where θ1 ≡ 2φ1 − φ2, θ2 ≡ 2φ2 − φ1, θ3 ≡ φ1 + φ2. Therefore, one has

θ3 = θ1 + θ2 (149)

The φ fields are considered to be in general complex fields. In order to define the classical generalized

sine-Gordon model we will consider these fields to be real.

Apart from the conformal invariance the above equations exhibit the
(
U(1)L

)2

⊗
(
U(1)R

)2

left-right
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local gauge symmetry

φa → φa + ξa+(x+) + ξa−(x−), a = 1, 2 (150)

ν̃ → ν̃ ; η → η (151)

ψi → ei(1+γ5)Ξ
i
+(x+)+i(1−γ5)Ξi

−

(x
−
) ψi, (152)

ψ̃i → e−i(1+γ5)(Ξ
i
+)(x+)−i(1−γ5)(Ξi

−

)(x
−
) ψ̃i, i = 1, 2, 3; (153)

Ξ1
± ≡ ±ξ2± ∓ 2ξ1±, Ξ

2
± ≡ ±ξ1± ∓ 2ξ2±, Ξ

3
± ≡ Ξ1

± + Ξ2
±.

One can get global symmetries for ξa± = ∓ξa∓ = constants. For a model defined by a Lagrangian these

would imply the presence of two vector and two chiral conserved currents. However, it was found only half

of such currents [44]. This is a consequence of the lack of a Lagrangian description for the sl(3)(1) CATM in

terms of the B and F± fields (however see Appendix C for a local Lagrangian description of an off-critical

and constrained sub-model). So, the vector current

Jµ =

3∑

j=1

mjψ̄
jγµψj (154)

and the chiral current

J5µ =

3∑

j=1

mjψ̄
jγµγ5ψ

j + 2∂µ(m1φ1 +m2φ2) (155)

are conserved

∂µJ
µ = 0, ∂µJ

5µ = 0. (156)

The conformal symmetry is gauge fixed by setting [14]

η = const. (157)

The off-critical ATM model obtained in this way exhibits the vector and topological currents equivalence

[18, 14]

3∑

j=1

mjψ̄
jγµψj ≡ ǫµν∂ν(m1φ1 +m2φ2), m3 = m1 +m2, mi > 0. (158)

In the next steps we implement the reduction process to get the GSG model through a gauge fixing of

the ATM theory [24]. The local symmetries (150)-(153) can be gauge fixed through

iψ̄jψj = iAj = const.; ψ̄jγ5ψ
j = 0. (159)

From the gauge fixing (159) one can write the following bilinears

ψ̃jRψ
j
L + ψ̃jLψ

j
R = 0, j = 1, 2, 3; (160)
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so, the eqs. (159) effectively comprises three gauge fixing conditions.

It can be directly verified that the gauge fixing (159) preserves the currents conservation laws (156), i.e.

from the equations of motion (137)-(148) and the gauge fixing (159) together with (157) it is possible to

obtain the currents conservation laws (156).

Taking into account the constraints (159) in the scalar sector, eqs. (137), we arrive at the following

system of equations (set η = 0)

∂2φ1 = M1
ψ sin(2φ1 − φ2) +M3

ψ sin(φ1 + φ2), (161)

∂2φ2 = M2
ψ sin(2φ2 − φ1) +M3

ψ sin(φ1 + φ2), M i
ψ ≡ 4Aimi, i = 1, 2, 3. (162)

The system of equations above considered for real fields φ1, 2 as well as for real parameters M i
ψ defines

the generalized sine-Gordon model (GSG).

B The zero-curvature formulation of the ŝl(3) CATM model

We summarize the zero-curvature formulation of the ŝl(3) CATM model [18, 44]. Consider the zero-curvature

condition

∂+A− − ∂−A+ + [A+, A−] = 0. (163)

The potentials take the form

A+ = −BF+B−1, A− = −∂−BB−1 + F−, (164)

with

F+ = F+
1 + F+

2 , F− = F−
1 + F−

2 , (165)

where B and F±
i contain the fields of the model. Let us define

F±
m = ∓[E±3 , W

∓
3−m] (166)

E±3 =
1

6
[(2m1 +m2)H

±1
1 + (2m2 +m1)H

±1
2 ], m3 = m1 +m2 (167)

W−
1 = −

√
4i

m3
ψ3
RE

−1
α3 +

√
4i

m1
ψ̃1
RE

0
−α1 +

√
4i

m2
ψ̃2
RE

0
−α2 (168)

W+
1 =

√
4i

m1
ψ1
LE

0
α1 +

√
4i

m2
ψ2
LE

0
α2 −

√
4i

m3
ψ̃3
LE

1
−α3 (169)

W−
2 = −

√
4i

m1
ψ1
RE

−1
α1 −

√
4i

m2
ψ2
RE

−1
α2 +

√
4i

m3
ψ̃3
RE

0
−α3 (170)

W+
2 =

√
4i

m3
ψ3
LE

0
α3 −

√
4i

m1
ψ̃1
LE

1
−α1 −

√
4i

m2
ψ̃2
LE

1
−α2 (171)

B = eiθ1H
0
1+iθ2H

0
2 eν̃C eηQppal ≡ g eν̃C eηQppal . (172)
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Enαi
, Hn

1 , H
n
2 and C (i = 1, 2, 3; n = 0,±1) are some generators of sl(3)(1); Qppal being the principal

gradation operator. The commutation relations for an affine Lie algebra in the Chevalley basis are

[Hma ,H
n
b ] = mC

2

α2
a

Kabδm+n,0 (173)

[
Hma , E

n
±α

]
= ±KαaE

m+n
±α (174)

[
Emα , E

n
−α

]
=

r∑

a=1

lαaH
m+n
a +

2

α2
mCδm+n,0 (175)

[
Emα , E

n
β

]
= ε(α, β)Em+n

α+β ; if α+ β is a root (176)

[D,Enα] = nEnα, [D,Hna ] = nHna . (177)

where Kαa = 2α.αa/α
2
a = nαbKba, with nαa and lαa being the integers in the expansions α = nαaαa and

α/α2 = lαaαa/α
2
a, and ε(α, β) the relevant structure constants.

Take K11 = K22 = 2 and K12 = K21 = −1 as the Cartan matrix elements of the simple Lie algebra sl(3).

Denoting by α1 and α2 the simple roots and the highest one by ψ(= α1 + α2), one has lψa = 1(a = 1, 2),

and Kψ1 = Kψ2 = 1. Take ε(α, β) = −ε(−α,−β), ε1,2 ≡ ε(α1, α2) = 1, ε−1,3 ≡ ε(−α1, ψ) = 1 and ε−2,3 ≡
ε(−α2, ψ) = −1.

One has Qppal ≡
∑2

a=1 saλ
v
a.H+3D, where λva are the fundamental co-weights of sl(3), and the principal

gradation vector is s = (1, 1, 1) [45]. This gradation decomposes ŝl3(C) into the following subspaces

Ĝ0 = CH1 ⊕ CH2 ⊕ CC ⊕ CD = CH1 ⊕ CH2 ⊕ CC ⊕ CQppal, (178)

and

Ĝ3m = CHm
1 ⊕ CHm

2 , m 6= 0, (179)

Ĝ3m+1 = CEmα1
⊕ CEmα2

⊕ CEm+1
−α3

, (180)

Ĝ3m+2 = CEm+1
−α1

⊕ CEm+1
−α2

⊕ CEmα3
. (181)

C The off-critical and constrained sl(3) ATM model

The off-critical and constrained sl(3) affine Toda model coupled to matter fields (ATM) is defined by the

action [15]

1

k
I
(3)

ATM = IWZNW [g] +

∫

M

d2x{
2∑

m=1

[
< F−

m , gF+
mg

−1 >

−1

2
< E−3 , [W

+
m , ∂+W

+
3−m] > + < F−

m , ∂+W
+
m >

+
1

2
< [W−

m , ∂−W
−
3−m] , E3 > + < ∂−W

−
m , F+

m >
]
}, (182)

where

IWZNW [g] =
1

8

∫

M

d2xTr(∂µg∂
µg−1) +

1

12

∫

D

d3x ǫijkTr(g−1∂igg
−1∂jgg

−1∂kg), (183)
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is the Wess-Zumino-Novikov-Witten (WZNW) action for the matrix scalar field of the model. The first term

inside the summation of (182) defines the form of the interactions and the remaining terms are the kinetic

terms for the matrix fields associated to the spinors. The equations of motion derived from this action

∂−(g
−1∂+g) =

2∑

m=1

[
F−
m , gF+

mg
−1

]
(184)

∂+F
−
m = [E−3, ∂+W

+
3−m], ∂−F

+
m = −[E3, ∂−W

−
3−m], (185)

∂+W
+
m = −gF+

mg
−1, ∂−W

−
m = −g−1F−

mg, (186)

are equivalent to the above CATM equations of motion (137)-(148) provided the following constraints

η = 0 (187)
[
F±
2 , g∓1F∓

1 g
±1

]
= 0, (188)

are imposed. The first constraint defines an off-critical model, whereas the second ones allow a local La-

grangian description of the model. Let us emphasize that the constraints (188) amount to drop all the terms

with spinor bilinears on the right hand side of the set of equations (140)-(142), (144)-(145) and (147), re-

spectively. These constraints were introduced in refs. [20, 15] since they are trivially satisfied by the soliton

type solutions of the full CATM model.
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Fig. 1: NCGATM1,2: dual sectors, sub-models and field contents.

Duality: S= strong sector; W= weak sector; D= S - W duality. A Lax pair is

available for NCSG1,2/NCMT1,2, NC(c)GMT1,2 and NC(c)BL1,2, respectively.

Dual sectors of the models NC(c)GMT1,2, NC(c)BL1,2 and NCDSG1,2 are missing

in the table above and deserve future investigations.
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