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Compactons in Nonlinear Schrödinger Lattices with Strong Nonlinearity Management
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The existence of compactons in the discrete nonlinear Schrödinger equation in the presence of fast
periodic time modulations of the nonlinearity is demonstrated. In the averaged DNLS equation the
resulting effective inter-well tunneling depends on modulation parameters and on the field amplitude.
This introduces nonlinear dispersion in the system and can lead to a prototypical realization of
single- or multi-site stable discrete compactons in nonlinear optical waveguide and BEC arrays.
These structures can dynamically arise out of Gaussian or compactly supported initial data.

PACS numbers: 42.65.-k, 42.81.Dp, 03.75.Lm

Introduction. One of the most remarkable phenomena
occurring in nonlinear lattices is the existence of discrete
breathers which arise from the interplay between discrete-
ness, dispersion and nonlinearity [1]. These excitations
are quite generic in nonlinear lattices with usual (e.g. lin-
ear) dispersion and have typical spatial profiles with ex-
ponential tails. In presence of nonlinear dispersion these
excitations (as well as their continuous counterparts) may
acquire spatial profiles with compact support and for this
reason they are known as compactons [2]. Unlike other
nonlinear excitations, compactons (having no tails) can-
not interact with each other until they are in contact,
this being an attractive feature for potential applications.
Similarly to discrete breathers, compactons are intrinsi-
cally localized and robust excitations. The lack of expo-
nential tails is a consequence of the nonlinear dispersive
interactions which permit the vanishing of the intersite
tunneling at compacton edges. The difficulty of imple-
menting this condition in physical contexts has restricted
until now investigations mainly to the mathematical side.
The development of management techniques for soliton
control, however, can rapidly change the situation.

Periodic management of parameters of nonlinear sys-
tems has been shown to be an effective technique for the
generation of solitons with new types of properties [3].
Examples of the management technique in continuous
systems are the dispersion management of solitons in op-
tical fibers which allows to improve communication ca-
pacities [4], and the nonlinearity management of 2D and
3D Bose-Einstein condensates (BEC) or optically lay-
ered media which provides partial stabilization against
collapse in the case of attractive interatomic interac-
tions [5]. In discrete systems the diffraction management
technique was used to generate spatial discrete solitons
with novel properties [6, 7] which have been observed
in experiments [7]. The resonant spreading and steering
of discrete solitons in arrays of waveguides, induced by
nonlinearity management was also investigated [8]. To
date, the nonlinear management technique for nonlin-

ear lattices has been considered only in the limit of weak
modulations of the nonlinearity [9, 10]. The inter-well
tunneling suppression has been discussed in [11] for the

Bose-Hubbard chain with time periodic ramp potential
and in [12] for a two-sites Bose-Hubbard model with mod-
ulated in time interactions. In both cases the tunneling
suppression was uniform in the system and no appar-
ent link with compacton formation was established. The
phenomenon has also been recently observed in experi-
ments of light propagation in waveguide arrays [13] and
in BEC’s in strongly driven optical lattices [14].
The aim of the present Letter is to demonstrate the

existence of stable compacton excitations in the dis-
crete nonlinear Schrödinger (DNLS) system subjected to
strong nonlinearity management (SNLM), e.g. to fast pe-
riodic time variations of the nonlinearity. To that effect,
we use an averaged DNLS Hamiltonian system to show
that in the SNLM limit the inter-well tunneling can be
totally suppressed for field amplitudes matching zeros of
the Bessel function, introducing effective nonlinear dis-
persion which leads to compacton formation. We show
that these compact structures not only exist in single
and multi-site realizations but they generically are struc-
turally and dynamically stable and can be generated from
general classes of initial conditions. These results should
enable the observation of discrete compactons in BEC
and in nonlinear optical systems, both being described
by the discrete NLS equation.
Theory. Consider the following lattice Hamiltonian

H = −
∑

n

{κ(unu
∗
n+1 + un+1u

∗
n) +

1

2
(γ0 + γ(t))|un|

4},

(1)
with the coupling constant κ quantifying the tunneling
between adjacent sites (wells), γ0 denoting the onsite
constant nonlinearity and γ(t) representing the time-
dependent modulation. In the following we assume a
strong management case with γ(t) being a periodic, e.g.
γ(t) = γ(t + T ), and rapidly varying function. As a
prototypical example, we use γ(t) = γ1

ε cos(Ωτ), with
γ1 ∼ O(1), ε ≪ 1, τ = t/ε denoting the fast time vari-
able and T = 2π/Ω the period. The dynamical system
associated with (1) is the well known DNLS equation [15]

iu̇n + κ(un+1 + un−1) + (γ0 + γ(t))|un|
2un = 0, (2)
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which serves, under suitable conditions [16], as a model
for the dynamics of BEC in optical lattices subjected
to SNLM (through varying the interatomic scattering
length by external time-dependent magnetic fields via a
Feshbach resonance), as well as for light propagation in
optical waveguide arrays (here the evolution variable is
the propagation distance and the SNLM consists of peri-
odic space variations of the Kerr nonlinearity).
The existence of compacton solutions can be inferred

from the fact that the averaged DNLS Hamiltonian (av-
eraged with respect to the fast time τ), coincides with
the original time independent Hamiltonian except for a
rescaling of the coupling constant which depends on the
Bessel function of the field amplitude. To show this, it
is convenient to perform the transformation [17] un(t) =

vn(t)e
iΓ|vn(t)|2 with Γ = 1

ǫ

∫ t

0
dt γ(τ) = γ1Ω

−1 sin(Ωτ),
which allows to rewrite Eq. (2) as

iv̇n = Γvn(|vn|
2)t − κX − γ0|vn|

2vn, (3)

withX = vn+1e
iΓθ++vn−1e

iΓθ− and θ± = |vn±1|
2−|vn|

2.
On the other hand, (i|vn|

2)t = i(v̇nv
∗
n+vnv̇

∗
n) = iκ(v∗nX−

vnX
∗), with the star denoting the complex conjugation.

Substituting this expression into Eq. (3) and averaging
the resulting equation over the period T of the rapid
modulation, we obtain

iv̇n = iκ|vn|
2〈ΓX〉−iκv2n〈ΓX

∗〉−κ〈X〉−γ0|vn|
2vn, (4)

with 〈·〉 ≡ 1
T

∫ T

0 (·)dτ denoting the fast time average.
The averaged terms in Eq. (4) can be calculated by
means of the elementary integrals 〈e±iΓθ±〉 = αJ0(αθ±),
〈Γe±iΓθ±〉 = ±iαJ1(αθ±), with Ji being Bessel functions
of order i = 0, 1 and α = γ1/Ω, thus giving

iv̇n = −ακvn[(vn+1v
∗
n + v∗n+1vn)J1(αθ+) +

(vn−1v
∗
n + v∗n−1vn)J1(αθ−)]−

κ[vn+1J0(αθ+) + vn−1J0(αθ−)]− γ0|vn|
2vn. (5)

Note that parameters γ1,Ω ∼ 1, and the averaged equa-
tion is valid for times t ≤ 1/ǫ. This modified DNLS
equation can be written as iv̇n = δHav/δv

∗
n, with aver-

aged Hamiltonian

Hav = −
∑

n

{κJ0(αθ+)
[

vn+1v
∗
n + v∗n+1vn

]

+
γ0
2
|vn|

4}.

(6)
A comparison with Eq. (1) gives the anticipated rescal-
ing as κ → κJ0(αθ+); a similar rescaling was recently
reported also for a quantum Bose-Hubbard dimer with
time dependent onsite interaction [12].
It is worth noting that while the appearance of the

Bessel function is intimately connected with harmonic
modulations, the existence of compacton solutions and
the lattice tunneling suppression is generic for peri-
odic SNLM. Thus, for example, for a two-step mod-
ulation of the form γ(t) = (−1)iγ1 with i = 0, 1

and i
2 < τ < (i+1)

2 , we obtain for the first term
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FIG. 1: Typical examples for κ = 0.5, α = 1 of compact local-
ized mode solutions of Eq. (7) (top panels) and of the plane
(λr, λi) of their linearization eigenvalues λ = λr+iλi. 1st col-
umn: on-site, 2nd column: inter-site, in-phase, 3rd column:
inter-site, out-of-phase, 4th column: three-sites. Remarkably,
all solutions are dynamically stable.

in the averaged Hamiltonian (6) κ(v∗n+1vne
iγ1θ+/4 +

v∗nvn+1e
−iγ1θ+/4)sinc(γ1θ+/4), where sinc(x) = sin(x)/x,

thus, in this case the suppression of tunneling exists at
zeros of the sinc function. We also remark that for small
αθ+ the series expansion of J0 yields the averaged Hamil-
tonian of the DNLS equation obtained in [9] in the limit
of weak management.
Exact compactons and numerics. To demonstrate the

existence of exact stable compactons in the averaged
system, we seek for stationary solutions of the form
vn = Ane

−iµt for which Eq. (5) becomes

µAn + γ0A
3
n + κ(An+1J0(αθ+) +An−1J0(αθ−)) +

2ακA2
n[An+1J1(αθ+) +An−1J1(αθ−)] = 0. (7)

As is well known, discrete breathers can be numerically
constructed with high precision using continuation pro-
cedures from the anti-continuous limit. The application
of this method to Eq. (7) gives, quite surprisingly, that
such modes cannot be continued past a critical point (of
κ ≈ 0.32 for −µ = γ0 = 1). The fact that the solu-
tions cease to exist before reaching the limit of resonance
with the linear modes (κ = −µ/2) naturally raises the
question of what type of modes may be present in the
system for larger values of the coupling. In the following
we show that in agreement with our theoretical predic-
tion, the emerging excitations are genuine compactons
e.g. they have vanishing tails (rather than fast double
exponential decaying tails as in granular crystals [19]).
To search for compactly supported solutions one needs

to consider [18] the last site of vanishing amplitude, de-
noted as n0 below. In the setting of Eq. (7), this directly
establishes the condition

J0(αA
2
n0+1) = 0 ⇒ A2

n0+1 = 2.4048/α (8)
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FIG. 2: Space-time evolution of a one-site (left column) and
a two-sites (right column) compacton solution as obtained
from direct numerical integrations of Eq. (2). Top panels in
each case show the square modulus of the solution itself (large
amplitude colorbar), while bottom panels (small amplitude
colorbar) show the deviation from the exact solution of Eq.
(7) taken as corresponding initial condition.

which yields the solution (based on the first zero of the
Bessel function) for the “boundary” of the compactly
supported site. Then, for µ = −γ0A

2
n0+1, both the con-

dition for compact support at n0 ± 1, and the equation
for n = n0 are satisfied. Hence Eq. (8) yields a single-site
discrete compacton. Numerical linear stability analysis
illustrates that this solution is generically stable (see Fig.
1). The bottom panel’s eigenvalues are associated with
perturbations growing as eλt. The absence of a positive
real part in λ (i.e. of any λ’s in the right half plane) is
tantamount to linear stability. Similar results are found
for two-site compactons, which are either in phase (2nd
column of Fig. 1) or out-of-phase (3rd column of Fig.
1). The only thing that changes here is that in order to
satisfy the equation at the non-vanishing sites, one must
have µ = −κ−γ0A

2
n0+1, µ = κ−γ0A

2
n0+1, respectively

for the in-phase and out-of-phase two-site compactons
(note from Fig. 1 that these solutions are both stable).
With some additional effort, one can generalize these

considerations to an arbitrary number of sites. As a typ-
ical example, a three-sites compacton with amplitudes
(. . . , 0, A1, A2, A1, 0, . . .) will satisfy in addition to the
“no tunneling condition” J0(αA

2
1) = 0, the constraints:

µA1+i + 2(i+ 1)ακA2
1+iA2−iJ1(α(A

2
2−i −A2

1+i)) +

γ0A
3
1+i + κA2−iJ0(α(A

2
2−i −A2

1+i)) = 0, i = 0, 1 (9)

which can be easily solved to yield a solution as the one
shown in the 4th column of Fig. 1. We find that even
such more complex solutions (which are highly unstable
in DNLS [15]) are dynamically robust herein. This depar-
ture from the standard DNLS model can be rationalized
by the fact that in the latter case the instability is me-
diated by the intersite tunneling/coupling [15], which for
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FIG. 3: Left panel: dynamical evolution for κ = 1 of a per-
turbed 3-sites compacton for ǫ = 0.1 (top, leading to single-
site evolution) and for ǫ = 0.025 (bottom). Right panel: Ex-
amples of stable large amplitude compact modes with one-,
two- (in-phase and out-of-phase) and 3-sites emerging from
the second zero of the Bessel function.

our special compacton solutions vanishes, hence endow-
ing the solutions herein with dynamical stability.

The dynamical stability of the solutions of Fig. 1 with
respect to the original DNLS model in Eq. (2) has been
investigated in Fig. 2 for the one-site (left panels) and
the two-site, in-phase (right panels) modes (similar find-
ings were obtained for other modes). The top panels
show the space-time contour map of the solution mod-
ulus, while the bottom panels illustrates the deviation
from the initial condition. The structural stability of
these compactons was ensured by adding a uniformly dis-
tributed random perturbation of small amplitude to the
original solution. Both for the averaged equation (not
shown here) and for the original system (see Fig. 2),
the relevant perturbation stays bounded and never ex-
ceeds 2% of the solution amplitude. The waveforms re-
main remarkably localized in their compact shape (after
a transient stage of shedding off small amplitude “radia-
tion”) and their tails never exceed an O(ǫ) correction, as
theoretically expected for timescales of O(1/ǫ). Notice
that for Eq. (2), γ(t) = 1 + 1

ǫ cos(t/ǫ), with ǫ = 0.1 was
used. However, if one departs from the regime of validity
of the averaging and from the SNLM limit, interesting
deviations from the above behavior (and stability) arise.
An example of this is shown in the left panels of Fig. 3.
In this case, the three-site solution was initialized in Eq.
(2) with ǫ = 0.1 in the top panel, while ǫ = 0.025 in
the bottom one. In the latter, the above argued robust-
ness of the averaged modes was observed. Yet, in the
former one, the apparent lack thereof was clearly due to
the use of an ǫ outside of the regime of applicability of
the averaging approximation. Nevertheless, the result-
ing evolution has two interesting by-products. Firstly, it
confirms the general preference of the system towards set-
tling in compact modes, since the evolution asymptotes
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FIG. 4: Left panel: Space-time evolution of a Gaussian

wavepacket un(0) = 1.5e−0.1n
2

under Eq. (2) for κ = 0.5.
Clearly, an essentially compact single-site excitation is pro-
duced (see the inset for t = 200). Right panel: Three-
site compacton at time t = 200 generated from uniform i.c.
ui = 2.8, i = −1, 0, 1 for κ = 0.5. The inset shows time evo-
lution curves (from top to bottom) of amplitudes at 0, 1, 2, 3,
respectively (the first two curves overlap in this scale).

to an essentially single-site solution. Secondly, the larger
amplitude of this solution in comparison to those of Fig.
1 led us to explore the possibility of compactly supported
modes associated with higher zeros of the Bessel function
in the right panels of Fig. 3. Remarkably, such solutions
again, not only exist but are stable in all the cases shown
in the figure (numerical linear stability graphs are omit-
ted). This indicates the existence of an infinite sequence
of such modes, connected with the zeros of the Bessel
structure of the (averaged) tunneling.
To address the robust emergence of such compact ex-

citations, we used both few-sites uniform and even Gaus-
sian type excitations. While in the former (experimen-
tally realizable, see e.g. [20]) case, discrete compactons
can be expected, remarkably, in either case such exci-
tations can result. A typical example is shown for a
Gaussian initial profile in the left panel of Fig. 4, which

yields a single-site compact mode differing in amplitude
by more than two orders of magnitude between the cen-
tral site and its nearest neighbor and showing no signs

whatsoever of an exponential tail, even in a semilog plot.
In the right panel of Fig. 4 a multi-site compacton gener-
ated from uniform compactly supported data is depicted.
We see that the amplitude reduces by five orders of mag-
nitude 3-sites away from the central peak.

Let us estimate the parameters for the experimental
observation of such modes, e.g. for the case of 7Li con-
densate in a deep optical lattice. The Feshbach reso-
nance in Li occurs at the value of external magnetic field
B = 720G. By varying the magnetic field around this
value we can easily obtain variations of the scattering
length as1 around the order of the background scatter-
ing length as0 yielding γ1/γ0 ∼ 10. In the deep optical
lattice with V0 > 10ER, where V0 is the depth of the lat-
tice and ER = ~

2k2/2m is the recoil energy, the Gross-
Pitaevskii equation can be mapped into the DNLS equa-
tion (2) [16]. Thus by changing periodically in time the
magnetic field between these values with the frequency
Ω ∼ 10ωR, where ωR = ER/~, we can generate matter
wave compactons.

Conclusions. We predicted the existence of discrete com-
pactons in the DNLSE with strong nonlinearity manage-
ment. We found stable single and few-sites compactons
of odd and even parity. They are robust and can be gen-
erated from different classes of initial conditions. Such
structures may be observable in experiments on BECs in
deep optical lattices with periodically varying scattering
length and arrays of nonlinear optical waveguides with
variable Kerr coefficient along the propagation distance.

FKA acknowledges the European Community for two
years grant PIIF-GA-2009-236099. PGK acknowledges
support from NSF-DMS-0349023, NSF-DMS-0806762
and the A. von Humboldt Foundation. MS thanks the
MIUR for support through a PRIN-2008 initiative.

[1] S. Flach and A.V. Gorbach, Phys. Rep. 467 1-116 (2008).
[2] P. Rosenau, J.M. Hyman, Phys. Rev. Lett. 70, 564

(1993); P. Rosenau, Phys. Rev. Lett 73 1737 (1994).
[3] B.A. Malomed, Soliton management in periodic systems,

Springer-Verlag (Berlin, 2007).
[4] N.J. Smith et al., Electron. Lett. 32, 54 (1996); I.

Gabitov, S.K. Turytsin, Optics Lett. 21, 327 (1996).
[5] H. Saito and M. Ueda, Phys. Rev. Lett. 90, 040403

(2003); F.Kh. Abdullaev et al., Phys. Rev. Lett. 90,
230402 (2003); M. Centurion et al., Phys. Rev. Lett. 97,
033903 (2006)

[6] M.J. Ablowitz and Z.H. Musslimani, Phys. Rev. Lett. 87,
254102 (2001).

[7] H.S. Eisenberg, Y. Silberberg, R. Morandotti and J.S.
Aitchison, Phys. Rev. Lett. 85, 1863 (2000).

[8] G. Assanto et al., Phys. Rev. Lett. 104, 053903 (2010).
[9] F.Kh. Abdullaev et al., Phys. Rev. A 67 013605 (2003).

[10] Y.V. Kartashov, V.A. Vysloukh, Phys. Rev. E 70,
026606 (2004).

[11] A. Eckardt et al., Phys. Rev. Lett. 95, 260404 (2005).
[12] J. Gong et al., Phys. Rev. Lett. 103, 133002 (2009).
[13] A. Szameit, et al., Phys. Rev. Lett. 102, 153901 (2009).
[14] H. Lignier et al. Phys. Rev. Lett. 99, 220403 (2007).
[15] P.G. Kevrekidis, The discrete nonlinear Schrödinger

equation, Springer-Verlag (Heidelberg, 2009).
[16] A. Trombettoni, A. Smerzi, Phys.Rev.Lett. 86, 2353

(2001); F.Kh. Abdullaev et al., Phys.Rev. A 64, 043606
(2001); G. Alfimov et al., Phys. Rev. E 66, 046608 (2002).

[17] D.E. Pelinovsky et al., Phys. Rev. E 70, 047604 (2004)
[18] P.G. Kevrekidis, V.V. Konotop, Phys. Rev. E 65, 066614

(2002).
[19] see e.g. J.M. English, R.L. Pego, Proceedings of AMS

133, 1763 (2005), V.F. Nesterenko, Dynamics of Hetero-
geneous Materials, (Springer-Verlag, New York 2001).



5

[20] H.S. Eisenberg et al. Phys. Rev. Lett. 81, 3383 (1998).



n

t

 

 

0 20 40 60 80

−5

0

5
0.5
1
1.5
2

t

n

 

 

0 20 40 60 80

−10

0

10 −0.04

−0.02

0



n

t
 

 

20 40 60 80

−5

0

5 0.5
1
1.5
2

n

t

 

 

20 40 60 80

−10

0

10 −0.02
−0.01
0
0.01


