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Abstract

We study integrable geodesic flows on Stiefel varieties Vn,r = SO(n)/SO(n−r) given
by the Euclidean, normal (standard), Manakov-type, and Einstein metrics. We also
consider natural generalizations of the Neumann systems on Vn,r with the above metrics
and proves their integrability in the non-commutative sense by presenting compatible
Poisson brackets on (T ∗Vn,r)/SO(r). Various reductions of the latter systems are
described, in particular, the generalized Neumann system on an oriented Grassmannian
Gn,r and on a sphere Sn−1 in presence of Yang-Mills fields or a magnetic monopole
field.

Apart from the known Lax pair for generalized Neumann systems, an alternative
(dual) Lax pair is presented, which enables one to formulate a generalization of the
Chasles theorem relating the trajectories of the systems and common linear spaces
tangent to confocal quadrics. Additionally, several extensions are considered: the
generalized Neumann system on the complex Stiefel variety Wn,r = U(n)/U(n − r),
the matrix analogs of the double and coupled Neumann systems.
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1 Introduction

A Stiefel variety Vn,r is the variety of r ordered orthogonal unit vectors (e1, . . . , er) in the
Euclidean space Rn or, equivalently, the set of n× r matrices

X = (e1 · · · er) ∈Mn,r(R)

satisfying the condition
XTX = Ir, (1.1)

where Ir is an r × r unit matrix (e.g, see [29]). In particular, Vn,1 is a sphere Sn−1, while
both Vn,n and Vn,n−1 are diffeomorphic to SO(n).

The integrable geodesic flows on Vn,2 and Vn,r, 2 < r < n − 1 are constructed in
[48] and [10], respectively. The geodesic flows were described in the homogeneous space
representation SO(n)/SO(n−r) following a general approach to the integrability of geodesic
flows on homogeneous spaces [10, 11, 12].

In the first part of our paper (Sections 2, 3, 4) we study geodesic flows in the redundant
coordinates X with constraints (1.1) by using a Dirac approach and the corresponding
Poisson structure. This allows us to describe the flows in a quite transparent way. Our
main tool is the theorem on non-commutative integrability of Hamiltonian systems (see
[39, 38]) and for various examples of integrable flows, we calculate the dimension of invariant
isotropic tori and give the matrix Lax representations (Section 4).

For the Manakov-type metric on Vn,r a geometric interpretation of the motion in the
form of the classical Chasles theorem for the geodesic flow on an ellipsoid is given (Section
8). In addition, the complete integrability of the geodesic flows of the SO(n)-invariant
Einstein metrics constructed by Jensen [27], and Arvanitoyeorgos, Dzhepko and Nikonorov
[4] are proved in Sections 4 and 6.

The second part of the paper (Sections 5, 6, 7, 8) considers integrable Neumann flows
on the Stiefel variety Vn,r = SO(n)/SO(n − r) and the oriented Grassmannian variety
Gn,r = SO(n)/SO(r)×SO(n− r), generalizing the famous Neumann system on the sphere
Sn−1. The latter is defined as a natural mechanical system with the Hamiltonian (see
[40, 35, 36]):

Hneum =
1

2
(p, p) +

1

2
(Ae, e), A = diag(a1, . . . , an), (1.2)

where the cotangent bundle T ∗Sn−1 is realized as a submanifold of R2n{e, p} given by the
constraints (e, e) = 1, (e, p) = 0. This system, together with the Jacobi problem on the
geodesic flow on an ellipsoid, provides one of the basic and most beautiful examples of
application of algebraic geometric tools to integrable systems (e.g, see [24, 37, 1, 2]). It is
also directly related to many other integrable models (e.g., see [36, 49, 30, 32, 22]).

The Neumann systems on Vn,r which we consider have the kinetic energy of SO(n)-
invariant metrics described in Section 3 and the potential function

V =
1

2
tr(XTAX) =

1

2

r
∑

i=1

(ei, Aei).

Two matrix Lax representations are presented. The first, a ”big” one, given by Theorem
5.2 is closely related to the symmetric Clebsch–Perelomov rigid body problem [41]. For
r = 1, it was given by Moser in [35] and for r > 1 and the case of the Manakov type
submersion metrics by Reyman and Semenov–Tian-Shanski [44] within the framework of
the R-matrix method. Note that for r > 1 this Lax pair does not define a Neumann system
on Vn,r uniquely and does not provide a non-commutative set of integrals, necessary for the
integrability.
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In contrast, the second (dual, or ”small”) Lax pairs, given by Theorem 8.1 are equivalent
to the Neumann systems with the Euclidean and normal metrics up to an action of a finite
discrete group. For the Neumann system with the Euclidean metric, the small Lax pair was
first given in the unpublished manuscript [28].

In Sections 6 and 7 we give a detailed proof of the non-commutative integrability of
the considered Neumann flows by using the Bolsinov completeness condition for a set of
Casimir functions of the pencil of compatible Poisson brackets (see [9]). We also indicate an
integrable generalization of the Neumann system on Grassmannians with a quartic potential.

In Section 8 we propose a geometric interpretation of the integrals of the Neumann
systems on Vn,r obtained from the dual Lax representation. Our geometric model generalizes
the celebrated Chasles theorem adopted by Moser for the case r = 1 (see, e.g, Theorem 4.10
in [37]).

Magnetic Neumann flows in the rank two case (on Gn,2 and Vn,2) as well as the motion
of a particle on a sphere Sn−1 under the influence of a Yang–Mills field are presented in
Appendix 1. Finally in Appendix 2, we briefly consider the rank r double and coupled
Neumann flows, as well as an extension of the Neumann system onto a complex Stiefel
variety Wn,r = U(n)/U(n− r).

The geodesic flows and Neumann systems considered in this paper are written in a form
appropriate for their integrable discretizations, which we describe in a separate paper [23].

2 Hamiltonian Flows on Stiefel Varieties

Stiefel varieties. As it was mentioned in Introduction, a Stiefel variety Vn,r is the vari-
ety of r ordered orthogonal unit vectors (e1, . . . , er) in the Euclidean space (Rn, (·, ·)), or,
equivalently, the set of n×r matrices satisfying constraints (1.1). Thus Vn,r is a smooth sub-
variety of dimension N = rn− r(r+1)/2 in the space of n× r real matrices Mn,r(R) = Rnr

and the components of X are redundant coordinates on it.
The left SO(n) action on Vn,r (X 7→ RX , R ∈ SO(n)) is transitive, hence Vn,r can be

realized as a homogeneous space of the Lie group SO(n) as well. If fix the orthonormal base
in R

n

E1 = (1, 0, , 0, . . . , 0)T , E2 = (0, 1, 0, . . . , 0)T , . . . , En = (0, 0, 0, . . . , 1)T (2.1)

and take the point X0 = (E1, . . . , Er) ∈ Vn,r, then the orthogonal transformation fixing X0

(relative to the above basis of Rn) must have the form
(

Ir 0
0 B

)

, B ∈ SO(n− r). (2.2)

Since the isotropy group of X0 is isomorphic to SO(n− r), the variety Vn,r can be identified
with SO(n)/SO(n− r).

The Poisson structure. The tangent bundle TVn,r is the set of pairs (X, Ẋ) subject to
the constraints

XTX = Ir, XT Ẋ + ẊTX = 0. (2.3)

On the other hand, the cotangent bundle T ∗Vn,r can be realized as the set of pairs of n× r
matrices (X,P ) that satisfy the constraints

XTX = Ir, XTP + PTX = 0 . (2.4)

The latter give r(r + 1) independent scalar constraints

Fij = (ei, ej)− δij = 0, Gij = (ei, pj) + (ej , pi) = 0, 1 ≤ i ≤ j ≤ r, (2.5)
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where pj is the j-th column of the matrix P . This realization of T ∗Vn,r is motivated by
description of the geodesic flows of the Euclidean and normal metric on Vn,r given below,
however there are other natural realizations of T ∗Vn,r (see Section 3).

The canonical symplectic structure ω on T ∗Vn,r is the restriction of the canonical 2-form
in the ambient space T ∗Mn,r(R),

ω0 =

n
∑

i=1

r
∑

s=1

dpis ∧ deis .

For our purposes it is convenient to work with the redundant variables (X,P ). The
canonical Poisson structure on T ∗Vn,r can then be described by using the Dirac construction
[3, 16, 35]. Namely, let {·, ·}0 be the canonical Poisson bracket on R2nr

{f1, f2}0 =

r
∑

i=1

((

∂f1
∂ei

,
∂f2
∂pi

)

−

(

∂f1
∂pi

,
∂f2
∂ei

))

and Ci,j be the inverse of the matrix {Fi, Fj}0, i, j = 1, . . . , r(r + 1), where, for the sake
of simplicity, we denoted constraints (2.5) by Fi = 0, i = 1, . . . , r(r + 1). Then the Dirac
bracket is given by

{f1, f2} = {f1, f2}0 +
∑

i,j

{Fi, f1}0Ci,j{Fj , f2}0. (2.6)

The subvariety T ∗Vn,r appears as a symplectic leaf of the Dirac bracket and the restriction
of {f1, f2} to T ∗Vn,r depends only on the restriction of f1 and f2 to T ∗Vn,r.

The Hamiltonian equation
ḟ = {f,H}

can be also described by the using Lagrange multipliers. We shall write them in the matrix
form:

Ẋ =
∂H

∂P
−XΠ,

Ṗ = −
∂H

∂X
+XΛ+ PΠ ,

(2.7)

where Λ and Π are r× r symmetric matrix Lagrange multipliers uniquely determined from
the condition for the trajectory (X(t), P (t)) to satisfy constraints (2.4).

Momentum mappings. The Lie group SO(n) naturally acts on T ∗Vn,r by left multipli-
cation:

R · (X,P ) = (RX,RP ), R ∈ SO(n). (2.8)

Below we use the well known identification of Λ2Rn with a subset of so(n): x ∧ y =
x ⊗ y − y ⊗ x = x · yT − y · xT , x, y ∈ Rn. Also, 〈·, ·〉 is proportional to the Killing metric
on so(n):

〈ξ1, ξ2〉 = −
1

2
tr(ξ1ξ2), (2.9)

ξ1, ξ2 ∈ so(n). By the use of the scalar product (2.9) we identify so(n) and so(n)∗.

Proposition 2.1 The left SO(n)-action (2.8) is Hamiltonian. The equivariant momentum
mapping Φ : T ∗Vn,r → so(n)∗ ∼= so(n) is given by

Φ(X,P ) =

r
∑

i=1

pi ∧ ei, (2.10)

or, in the matrix form Φ(X,P ) = PXT −XPT .
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Proof. The left SO(n)-action (2.8) on (T ∗Mn,r(R), {·, ·}0) is Hamiltonian with the momen-
tum map (2.10). The constraint functions XTX and XTP + PTX are SO(n)-invariant.
Therefore

{Φξ, Fi}0 = 0, i = 1, . . . , r(r + 1), (2.11)

where Φξ(X,P ) = 〈Φ(X,P ), ξ〉 is the Hamiltonian function of the action of the one-
parameter subgroup {exp(sξ), s ∈ R}.

In view of the definition of the Dirac bracket (2.6) and (2.11), the Hamiltonian flows
of Φξ on T ∗Vn,r with respect to the brackets {·, ·}0 and {·, ·} coincide. This proves the
proposition. 2

Together with a left SO(n)-action, we also have the natural right SO(r)-action:

(X,P ) ·Q = (XQ,PQ), Q ∈ SO(r). (2.12)

Following similar lines, one can prove

Proposition 2.2 The right SO(r)-action (2.12) is Hamiltonian. The equivariant momen-
tum mapping Ψ : T ∗Vn,r → so(r)∗ ∼= so(r) is given by

Ψ(X,P ) = XTP − PTX . (2.13)

The momentum mappings Φ and Ψ are Poisson with respect to the (+) and (-) Lie-
Poisson brackets on so(n) and so(r):

{h1 ◦ Φ(X,P ), h2 ◦ Φ(X,P )} = {h1(µ), h2(µ)}
+
so(n), µ = Φ(X,P ),

{f1 ◦Ψ(X,P ), f2 ◦Ψ(X,P )} = {f1(η), f2(η)}
−
so(r), η = Ψ(X,P ),

where

{h1(µ), h2(µ)}
+
so(n) = 〈µ, [∇h1(µ),∇h2(µ)]〉, h1, h2 : so(n) → R,

{f1(η), f2(η)}
−
so(r) = −〈η, [∇f1(η),∇f2(η)]〉, f1, f2 : so(r) → R

and where the brackets 〈·, ·〉 denote the scalar product (2.9) on so(n) and so(r), respectively.

The algebra of SO(n)-invariant functions. Let C∞(T ∗Vn,r)
SO(n) be the algebra of

SO(n)-invariant functions on T ∗Vn,r. Since SO(n) acts in a Hamiltonian way on T ∗Vn,r,
C∞(T ∗Vn,r)

SO(n) is closed under the Poisson bracket.
LetX0 = (E1, . . . , Er). The SO(n)-invariant functions, via restrictions, are in one-to-one

correspondence with the SO(n− r)-invariant functions on T ∗
X0
Vn,r.

We can write P0 ∈ T ∗
X0
Vn,r as a block matrix

P0 =

(

P1

P2

)

, (2.14)

where P1 and P2 are r×r and (n−r)×r matrixes, respectively. Then P0 satisfies constraints
(2.4) at X = X0 if PT

1 = −P1. Also, the SO(n− r)-action on T ∗
X0
Vn,r is given by

P1 7−→ P1, P2 7−→ B · P2, B ∈ SO(n− r). (2.15)

Lemma 2.3 The maximal number of functionally independent SO(n)-invariant functions,
i.e., the differential dimension of C∞(T ∗Vn,r)

SO(n), equals

ddimC∞(T ∗Vn,r)
SO(n) =

{

dimVn,r − dimSO(n− r), n ≤ 2r
dimVn,r − dimSO(n− r) + dimSO(n− 2r), n > 2r.

(2.16)
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Proof. The differential dimension of C∞(T ∗Vn,r)
SO(n) is just the codimension of the generic

SO(n− r) orbit in T ∗
X0
Vn,r. The dimension of the orbit SO(n− r) · P0 is

dimSO(n− r) − dimSO(n− r)P0 ,

where SO(n − r)P0 is the isotropy group of P0. Since SO(n − r)P0 = {In−r} for n ≤ 2r,
for a generic P0 we get the first relation in (2.16). Further, in the case n > 2r, we can take
P0 = (Er+1, Er+2, . . . , E2r). Then SO(n− r)P0 = SO(n− 2r). 2

It can easily be verified that the restrictions of the SO(n)-invariant functions

Ψij = (ei, pj)− (ej, pi), (PTP )ij = (pi, pj), i, j = 1, . . . , r (2.17)

to T ∗
X0
Vn,r define the generic orbits of the action (2.15). In particular, we get the following

simple statement.

Lemma 2.4 If a smooth function f ∈ C∞(T ∗Vn,r) Poisson commutes with functions (2.17),
then it Poisson commutes with all SO(n)-invariant functions on T ∗Vn,r.

The Poisson bracket on C∞(T ∗Vn,r)
SO(n) can be described as follows. The restriction

of momentum mapping Φ to T ∗
X0
Vn,r establish the isomorphism

T ∗
X0
Vn,r ∼= v, (2.18)

where v is the orthogonal complement of so(n−r) in so(n). Within identification (2.18), the
SO(n− r)-action (2.15) corresponds to the adjoint SO(n− r)-action on v and the Poisson
bracket on C∞(T ∗Vn,r)

SO(n) corresponds to the Poisson bracket

{f̃1(ξ), f̃2(ξ)}v = −〈ξ, [∇f̃1(ξ),∇f̃2(ξ)]〉.

on the algebra C∞(v)SO(n−r) of SO(n− r)-adjoint invariants on v (see Thimm [48]).
Recall that the set of commuting SO(n)-invariant functions A is complete if it contains

maximal possible number of independent functions, that is (see [10, 12]),

ddimA = dimVn,r − l,

where 2l is the dimension of a generic adjoint orbit in

Φ(T ∗Vn,r) = AdSO(n) Φ(T
∗
X0
Vn,r).

Note that, for n ≤ 2r + 1, the generic orbit in Φ(T ∗Vn,r) is regular, while it is singular
otherwise. One can prove the following relations.

Lemma 2.5

2l =

{

n(n−1)
2 −

[

n
2

]

, n ≤ 2r + 1,
2r(n− r − 1), n > 2r + 1.

Now consider the chain of subalgebras so(n− r+1) ⊂ so(n− r+2) ⊂ · · · ⊂ so(n), where
a matrix ξ ∈ so(n− r + i) is included in so(n) as a block matrix

(

0 0
0 ξ

)

. (2.19)

Let Ai be the algebra of invariants on so(n − r + i) considered as a polynomials on so(n)
and restricted to v. Then

A = A1 + · · ·+ Ar (2.20)

is a complete polynomial commutative subset of C∞(v)SO(n−r) (see again [10, 12]). Other
complete commutative sets of SO(n)-invariant functions are given in [17] and Theorem 6.4
below.
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3 Geodesic Flows

SO(n)-invariant metrics. An SO(n)-invariant metric g on Vn,r can be specified by a
positive definite, SO(n− r)-invariant scalar products g0 at the point X0 as follows:

g(R · η1, R · η2)X = g0(η1, η2), η1, η2 ∈ TX0Vn,r, X = R ·X0.

Equivalently, an SO(n)-invariant metric can be defined by using an SO(n)-invariant
Hamiltonian function H(X,P ), which is quadratic in momenta and positive definite on
T ∗Vn,r.

There are two natural SO(n)-invariant metrics on the Stiefel variety Vn,r: the metric
induced from the embedding of Vn,r in the Euclidean space Mn,r(R) and the normal metric
induced from a bi-invariant metric on the Lie group SO(n) (see below).

Concerning geometrical significance, one should also mention invariant Einstein metrics
(see [5]) constructed in [27], [4].

The Euclidean metric. The Euclidean metric in Mn,r(R) is given by the Lagrangian
function

LE(X, Ẋ) =
1

2
tr(ẊT Ẋ) =

1

2

r
∑

i=1

(ėi, ėi).

The Legendre transformation

P =
∂LE

∂Ẋ
= Ẋ (3.1)

yields the Hamiltonian function

HE(X,P ) =
1

2
tr(PTP ) =

r
∑

i=1

1

2
(pi, pi) (3.2)

defined on the cotangent bundle T ∗Mn,r(R).
We shall refer to the restriction of the above metric to Vn,r as the Euclidean metric, which

will be denoted by ds2E . The geodesic flow is described by the Euler–Lagrange equations
with multipliers

d

dt

∂LE

∂Ẋ
=
∂LE

∂X
+XΛ ⇐⇒ Ẍ = XΛ, Λ = −ẊT Ẋ ,

where the symmetric matrix Λ is uniquely determined from the condition for the trajectory
X(t) to satisfy the constraints XTX = Ir.

Taking into account constraints (2.3) and the Legendre transformation (3.1), we see that
the cotangent bundle T ∗Vn,r can be represent as a submanifold of T ∗Mn,r(R) given by (2.4).
The corresponding Hamiltonian flow of HE(X,P ) with respect to the Dirac bracket is

Ẋ = P,

Ṗ = −XPTP.
(3.3)

Submersion metrics. Let ḡ(·, ·) be a right-invariant metric on SO(n). The subgroup
SO(n − r) acts freely on SO(n) by isometries (right action). There is a ḡ-orthogonal de-
composition of TRSO(n)

SO(n− r)R +HR = TRSO(n), R ∈ SO(n),
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where SO(n − r)R is the tangent space to the fibre R · SO(n − r). By definition, the
submersion metric g(·, ·) on SO(n)/SO(n − r) is given by

g(ξ1, ξ2)ρ(R) = ḡ(ξ̄1, ξ̄2)R, ξi ∈ Tρ(R)(SO(n)/SO(n− r)), ξ̄i ∈ HR, ξi = dρ(ξ̄i),

where ρ : SO(n) → SO(n)/SO(n− r) is the canonical projection (e.g., see [5]). The vectors
in SO(n− r)R and HR are called vertical and horizontal respectively.

The Hamiltonian of a right invariant metric on SO(n) can be written in the form h ◦ Φ̄,
where h is a positive definite quadratic form on so(n) and Φ̄ : T ∗SO(n) → so(n) is the
momentum mapping of the natural left SO(n)-action. It follows that the class of submersion
metrics on SO(n)/SO(n − r) is given by Hamiltonian functions of the form h ◦ Φ, where
now Φ is the momentum mapping of a natural left SO(n)-action on T ∗(SO(n)/SO(n− r))
(e.g., see [14]).

The above observation helps us to write down the Hamiltonians and the geodesic flows
of the submersion metrics in the representation of the cotangent bundle T ∗Vn,r given by the
constraints (2.4). The Hamiltonians are

HA(X,P ) = hA ◦ Φ =
1

2
〈AΦ,Φ〉 = −

1

4
tr
(

A(PXT −XPT )(PXT −XPT )
)

, (3.4)

where hA(ξ) =
1
2 〈Aξ, ξ〉, ξ ∈ so(n) and A : so(n) → so(n) are positive definite operators.

Proposition 3.1 The equations of the submersion metrics geodesic flow generated by (3.4)
are

Ẋ = A(Φ) ·X,

Ṗ = A(Φ) · P.
(3.5)

Proof. By using the chain rule dH = dhA ◦ dΦ, one gets expressions (3.5) for the derivatives
of the Hamiltonian (3.4) with respect to P and −X . Further, it can easily be verified that
then the Lagrange matrix multipliers Λ and Π in (2.7) are zero. 2

Remark 3.1 In particular, for r = n, the system (3.5) describes the right-invariant geodesic
flow on the Lie group SO(n). The symmetric form of the equations differs from the sym-
metric representation of the rigid body equations given in [6].

The normal metric. If ḡ(·, ·) is a bi-invariant metric induced by the scalar product (2.9),
then the submersion metric is called the normal metric. It is proportional to the standard
metric induced by the negative Killing form [5]) on SO(n)/SO(n− r). We shall denote the
normal metric by ds20. Contrary to a generic submersion metric, the normal metric is also
SO(n)-invariant. The corresponding Hamiltonian has the form

H0(X,P ) =
1

2
〈Φ,Φ〉 =

1

2
tr(PTP )−

1

2
tr((XTP )2), (3.6)

and its geodesic flow is given by

Ẋ = Φ ·X = P −XPTX, (3.7)

Ṗ = Φ · P = −XPTP + PXTP. (3.8)

Under the conditions (2.4), the relation (3.7) can be uniquely inverted and one gets

P = Ẋ −
1

2
XXT Ẋ. (3.9)
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Relations (3.7), (3.9) give identification of TVn,r and T
∗Vn,r by means of the normal metric.

Therefore, the Lagrangian function for the metric ds20 is

L0(X, Ẋ) =
1

2
〈Φ0,Φ0〉, (3.10)

where Φ0(X, Ẋ) = Φ(X,P (X, Ẋ)):

Φ0(X, Ẋ) = ẊXT −XẊT −
1

2
X [XT Ẋ − ẊTX ]XT . (3.11)

For a right SO(n)-action (and therefore with opposite signs in the equations), the relation
(3.11) is established in [22] by studying nonholonomic LR systems on the Lie group SO(n).
Note that the realization of T ∗Vn,r via (2.4) is also natural if we consider the flow given by the

normal metric. Namely, defining momenta by the Legendre transformation P = ∂L0/∂Ẋ,
from the constraints (2.3) we get the conditions (2.4).

Einstein metrics. The momentum mappings Φ and Ψ are invariant under the SO(r) and
SO(n) actions, respectively. Therefore, the Hamiltonians of the form

Hκ(X,P ) =
1

2
〈Φ,Φ〉+

κ

2
〈Ψ,Ψ〉 =

1

2
tr(PTP )−

(

1

2
+ κ

)

tr((XTP )2) (3.12)

is SO(n)× SO(r) invariant. Within the class of the metrics ds2κ determined by the Hamil-
tonian functions (3.12) there is the normal metric (κ = 0) and the Euclidean metric
(κ = −1/2). Moreover, for r = 2 there is a unique value of κ, while for r > 2 there
are exactly two values, such that ds2κ is an Einstein metric (see [27, 4]). Following [4], we
refer to these metrics as the Jensen metrics.

Further, in [4], new examples of the Einstein metrics are obtained within the class of
metrics that we shall describe below.

Consider the Lie subalgebra

so(r1)⊕ so(r2)⊕ · · · ⊕ so(rk) ⊂ so(r), r1 + r2 + · · ·+ rk = r,

naturally embedded into so(r). Define the Hamiltonian HK via

HK =
1

2
〈Φ,Φ〉+K ◦Ψ, (3.13)

where the quadratic function K is

K(ξ) =
κ0
2
〈ξ, ξ〉 +

κ1
2
〈ξ1, ξ1〉+ · · ·+

κk
2
〈ξk, ξk〉. (3.14)

Here ξi are orthogonal projections (with respect to the so(r)-Killing metric) to so(ri) ⊂
so(r).

In [4] Arvanitoyeorgos, Dzhepko, and Nikonorov proved that if r1 = r2 = · · · = rk,
κ1 = κ2 = · · · = κk, k > 1, n− r > r1 ≥ 3, than among the metrics defined by Hamiltonians
(3.13) there are four Einstein metrics (two of them, with κ1 = 0, are the Jensen metrics).

SO(r)-invariant metrics. Let A be a symmetric, positive definite n × n matrix. The
geodesic flows on Vn,r with Lagrangians of the form

LA(X, Ẋ) =
1

2
tr(ẊTAẊ) =

1

2

r
∑

i=1

(ėi, Aėi),
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were studied in [7] from the point of view of the variational and optimal control problems.
The Lagrangian LA can be considered on the whole space Mn×r(R), where the Legendre
transformation

P =
∂LA

∂Ẋ
= AẊ, (3.15)

gives the following Hamiltonian on the cotangent bundle T ∗Mn,r(R)

HA(X,P ) =
1

2
tr(PTA−1P ) =

1

2

r
∑

i=1

(pi, A
−1pi).

¿From (2.3) and (3.15) we conclude that the cotangent bundle T ∗Vn,r can be represented
as a submanifold of T ∗Mn,r(R) given by the equations

XTX = Ir, XTA−1P + PTA−1X = 0. (3.16)

Again, one defines the Dirac bracket with respect to the constraints (3.16).
Let ds2A be the metric defined by the LagrangianLA and {·, ·}A be the new Dirac bracket.

Then the geodesic flow of ds2A can be described by the Hamilton equations

ḟ = {f,HA(X,P )}A

restricted to the symplectic leaf (3.16). The corresponding matrix form of the flow is

Ẋ = A−1P,

Ṗ = XΛ,
(3.17)

where Λ is a symmetric r × r matrix uniquely determined from the condition

ΛXTA−1X +XTA−1XΛ+ 2PTA−2P = 0.

Note that for r = 1, the metric ds2A is a standard metric on the ellipsoid (x,A−1x) = 1,
while for r it is a right-invariant Manakov rigid body metric on SO(n) (see [35]). Further-
more, ds2A is right SO(r)-invariant and, via submersion, induces a metric on the oriented
Grassmannian variety Gn,r (see Section 7). It would be interesting to prove integrability of
the corresponding geodesic flows.

4 Integrability of Geodesic Flows

The normal metric. As shown in [10, 11], the geodesic flows of the normal metrics ds20
on the homogeneous spaces G/H of compact Lie groups G are completely integrable in the
non-commutative sense. The proof is based on the following geometrical observation. Let
(M,G,Φ) be a Hamiltonian G-space with an equivariant momentum mapping Φ :M → g∗,
where G is a compact group. Consider the following two natural sets of functions onM : the
functions obtained by pulling-back the algebra C∞(g∗) by the moment map and the set of
G-invariant functions C∞(M)G. They are closed under the Poisson bracket and according to
the Noether theorem {Φ∗(C∞(g∗)), C∞(M)G} = 0 [26]. Moreover, Φ∗(C∞(g∗))+C∞(M)G

is a complete set of functions [11]. That is, any Hamiltonian system with those integrals
is non-commutatively integrable [39, 38]. In particular, consider the case when (M,G,Φ)
is a cotangent bundle T ∗(G/H) with a natural G action. Since the Hamiltonian H0 of the
normal metric is of the form h ◦ Φ, where h is an invariant quadratic polynomial on g∗,
the function H0 Poisson commutes with all G-invariant functions (the Noether theorem),
as well as with all the functions in Φ∗(C∞(g∗)) (the mapping h 7→ h ◦ Φ is a morphism of
Poisson structures). Therefore, the flow of H0 is non-commutatively integrable.

Let 2 l be the dimension of a generic orbit in Φ(T ∗Vn,r) (see Lemma 2.5).
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Theorem 4.1 [10, 11] The geodesic flow of the normal metric (3.7), (3.8) is completely
integrable in the non-commutative sense. The complete algebra of first integrals is

Φ∗(C∞(so(n)) + C∞(T ∗Vn,r)
SO(n).

The generic motions of the system are quasi-periodic over the isotropic tori of dimension

δ0 = 2dimVn,r − ddimC∞(T ∗Vn,r)
SO(n) − 2l.

Recall that the number of functionally independent SO(n)-invariant functions is given
by (2.16). Thus we have

δ0 =

{

r , n ≥ 2r
dimVn,r + dimSO(n− r) − dimSO(n) + rankSO(n) , n < 2r

.

It is interesting that for n ≥ 2r the dimension of the invariant tori coincides with
the dimension of invariant tori of geodesic flows of normal metrics on the corresponding
Grassmannian manifolds Gn,r.

Manakov metrics. The above construction has a natural generalization to a class of
geodesic flows of submersion metrics given by the Hamiltonians (3.4), such that the corre-
sponding Euler equations on so(n):

ḟ = {f, hA}
+
so(n) ⇐⇒ ξ̇ = [∇hA(ξ), ξ] = [Aξ, ξ], ξ ∈ so(n) (4.1)

are completely integrable. For example, choose the Manakov operator

A(Ei ∧ Ej) =
bi − bj
ai − aj

Ei ∧ Ej , 1 ≤ i < j ≤ n, i.e., A(ξ) = ad−1
A adB ξ, (4.2)

where all the eigenvalues of A = diag(a1, . . . , an) and B = diag(b1, . . . , bn) are distinct and
A is positive definite. Then the Euler equations (4.1) are completely integrable ([33, 20]).
Moreover, for generic A, among the integrals tr(ξ+λA)k one can always find a complete set
of commuting integrals h1, . . . , hl on a generic adjoint orbit in Φ(T ∗Vn,r) (see Brailov [14]
and Bolsinov [9]). Therefore, according to Theorem 2.2 in [11], we have

Theorem 4.2 The geodesic flow of the submersion metric (3.5) with the metric given by
the Manakov operator (4.2) is completely integrable in the non-commutative sense with a
complete set of polynomial integrals (2.17) and

tr

(

λA+
r
∑

i=1

pi ∧ ei

)k

, k = 1, . . . , n, λ ∈ R. (4.3)

The Generic motion of the system is quasi-periodic over the isotropic tori of dimension

δ = 2dimVn,r − ddimC∞(T ∗Vn,r)
SO(n) − l.

As in the case of geodesic flows of normal metrics, for n ≥ 2r the dimension of generic
invariant tori is simply δ = r(n − r).

Remark 4.1 The non-commutative integrability implies the usual commutative integrabil-
ity, at least by means of smooth commuting integrals [11]. For the case of the geodesic flows
considered above, the commuting integrals can be taken to be the polynomials (2.20) and
(4.3).
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Like in the case of the right-invariant metric on SO(n), the Manakov metric on Vn,r
possess a matrix Lax pair.

Theorem 4.3 Equations (3.5) with the metric given by the Manakov operator (4.2) imply
the matrix equation with a spectral parameter λ

d

dt
Lman(λ) = [Aman(λ),Lman(λ)] ,

Lman(λ) = Φ + λA, Aman(λ) = A(Φ) + λB .

The dual Lax pair for the Manakov flows. Consider the Manakov operator (4.2) for
B = A2. Then

A(ξ) = Aξ + ξA, (4.4)

and equations (3.5) become

Ẋ = A(PXT −XPT )X + (PXT −XPT )AX,

Ṗ = A(PXT −XPT )P + (PXT −XPT )AP.
(4.5)

Theorem 4.4 Up to the action of a discrete group Zn
2 generated by reflections with respect

to the coordinate hyperplanes in R
n,

(X,P ) 7−→ (SiX,SiP ), i = 1, . . . , n, (4.6)

Si(x1, . . . , xn) = (y1, . . . , yn), yj = xj , j 6= i, yi = −xi,

the geodesic flow (4.5) is equivalent to the matrix equation

d

dt
L∗
man(λ) = [L∗

man(λ),A
∗
man(λ)] (4.7)

with a spectral parameter λ and 2r × 2r matrices

L∗
man(λ) =

(

−XT (λIn −A)−1P −XT (λIn −A)−1X
PT (λIn −A)−1P PT (λIn −A)−1X

)

, (4.8)

A∗
man(λ) =

(

XT (A+ λIn)
−1P XT (A+ λIn)

−1X
−PT (A+ λIn)

−1P −PT (A+ λIn)
−1X

)

. (4.9)

Note that after imposing the condition XTP = 0, equations (4.5) formally coincide with
the equations describing rank r solutions of the Manakov system on so(n) (see [21]).

The Euclidean and Jensen’s metrics. Since the Hamiltonian (3.12) is SO(n)×SO(r)-
invariant, we can apply the general construction used in Theorem 4.1 with respect to the
SO(n) × SO(r)-action (see [11]). Let C∞(T ∗Vn,r)

SO(n)×SO(r) be the algebra of SO(n) ×
SO(r)-invariant functions on T ∗Vn,r.

Theorem 4.5 The geodesic flows of Jensen’s metrics ds2κ with the Hamiltonian functions
(3.12) are completely integrable in the non-commutative sense. The complete algebra of first
integrals is

Φ∗(C∞(so(n)) + Ψ∗(C∞(so(r)) + C∞(T ∗Vn,r)
SO(n)×SO(r). (4.10)

In particular, the geodesic flow (3.3) of the Euclidean metric is completely integrable.

The complete commutative set of polynomials F within C∞(T ∗Vn,r)
SO(n)×SO(r) as well

as the integrability of the geodesic flows with Hamiltonians (3.13) will be given below (see
(6.20) in Section 6, Theorem 6.4 and Corollary 6.5).
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Remark 4.2 Both the geodesic flows of the Euclidean and the normal metric share the
isotropic foliation defined by integrals (4.10), but do not share the isotropic foliation defined
in Theorem 4.1. Namely, the straightforward calculations show that functions (pi, pj) in
(2.17) do not Poisson commute with 〈Ψ,Ψ〉, and, therefore, the algebra of SO(n)-invariant
functions is not conserved along the geodesic flow of the Euclidean metric (see Lemma 2.4).

Here we note the following characterization of SO(n)× SO(r)-invariant metrics.

Proposition 4.6 If the metric ds2 on Vn,r is SO(n)× SO(r)-invariant, then, up to multi-
plication by a constant, it coincides with ds2κ for some κ.

Proof. The statement follows from the fact that the restriction of the Hamiltonian function
to T ∗

X0
Vn,r is a quadratic form invariant with respect to the transformations (2.15) and

P1 7−→ Q−1P1Q, P2 7−→ P2Q, Q ∈ SO(r),

where P1 and P2 are defined in (2.14). 2

5 The Neumann Systems on Stiefel Varieties

The celebrated Neumann system on a sphere Sn−1 is defined as a natural mechanical system
with the quadratic Hamiltonian (1.2). By analogy, we define a Neumann on the Stiefel
variety Vn,r as a natural mechanical system with an SO(n)-invariant kinetic energy and the
quadratic potential function

V =
1

2
tr(XTAX) =

1

2

r
∑

i=1

(ei, Aei). (5.1)

Note that the above potential is constant for r.
While on the sphere Sn−1 an SO(n)-invariant kinetic energy is unique (up to multi-

plication by a constant factor), on the variety Vn,r with r > 1 there are many different
SO(n)-invariant metrics. Following Sections 3 and 4, we consider the kinetic energy deter-
mined by the metrics ds2κ (see eq. (3.12)). Thus, the Hamiltonian has the form

Hneum,κ(X,P ) =
1

2
tr(PTP )−

(

1

2
+ κ

)

tr((XTP )2) +
1

2
tr(XTAX) . (5.2)

Proposition 5.1 The Neumann system with Hamiltonian (5.2) is given by

Ẋ = P − (1 + 2κ)XPTX,

Ṗ = −AX −XPTP + (1 + 2κ)PXTP +XXTAX.
(5.3)

Proof. It is a direct calculation. We have

Ẋ =
∂H

∂P
−XΠ = P − (1 + 2κ)XPTX −XΠ,

Ṗ = −
∂H

∂X
+XΛ+ PΠ = −AX + (1 + 2κ)PXTP +XΛ + PΠ.

Differentiating the constraints (2.4) with respect to time gives

ẊTX +XT Ẋ = 0, ẊTP +XT Ṗ + ṖTX + PT Ẋ = 0.
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The first equation implies that the Lagrange multiplier Π equals zero, while the second one
yields Λ = XTAX − PTP . 2

Note that Hamiltonians (5.2) are right SO(r)-invariant, so the momentum mapping
(2.13) is conserved by the flows (5.3) for any parameter κ. In particular, for κ = 0 we get
the Neumann system with the normal metric given by

Ẋ = P −XPTX,

Ṗ = −AX + PXTP +XΛ = −AX + PXTP −XPTP +XXTAX,
(5.4)

while for κ = −1/2 we get the Neumann system with the Euclidean metric with the corre-
sponding Hamilton equations

Ẋ = P,

Ṗ = −AX +XΛ = −AX −XPTP +XXTAX.
(5.5)

The Lax pair. Although for different κ the flows (5.3) do not coincide, the derivatives of
the momentum Φ and of the symmetric matrix XXT are the same:

d

dt
Φ = [XXT , A] ,

d

dt
(XXT ) = [Φ, XXT ] . (5.6)

As a result, the following theorem holds.

Theorem 5.2 Equations (5.3), in particular (5.4) and (5.5), imply the same n× n matrix
Lax representation with a spectral parameter λ:

d

dt
Lneum(λ) = [Aneum(λ),Lneum(λ)] (5.7)

Lneum(λ) = λΦ +XXT − λ2A, Aneum(λ) = Φ− λA. (5.8)

The proof is immediate. The coefficients of the spectral curve

Γ ⊂ C
2{λ, ν} : det(Lneum(λ)− µIn) = 0 (5.9)

give us the commuting integrals of both systems, which can be expressed in the form

F = {tr(λ(PXT −XPT ) +XXT − λ2A)k | k = 1, . . . , n, λ ∈ R}. (5.10)

The Lax representation (5.7) is closely related to the Clebsch–Perelomov rigid body
system [41]. For r = 1 it was given by Moser in [35] and for r > 1 in [44], without giving
explicitly the equations of motion. (As was mentioned above, the Lax pair does not define
the system itself.) The book [44] also describes the Neumann flows on Grassmannians Gn,r,
as well as the magnetic Neumann flow on Gn,2. We shall consider these systems together
with the magnetic Neumann flows on Vn,2 in detail in Section 7 and Appendix 2, respectively.

Alternative (or dual) Lax pairs, which are does equivalent to equations (5.5), (5.4) (up
to the action of a finite discrete group) are given below in Section 8.

6 Compatible Poisson Brackets and Integrability

The Neumann systems on Vn,r admitting Lax pairs with the Lax matrix (5.8) can be ob-
tained as appropriate reductions of integrable n-dimensional tops having symmetric inertia
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tensors and moving in a force field with a quadratic potential (the Bogoyavlenski general-
ization of the Clebsch–Perelomov system [8]), see Appendix 1 and [44]. However, these are
reductions on singular coadjoint orbits in the corresponding Lie coalgebras, hence the inte-
grability of the Neumann systems does not follow directly from that of the n-dimensional
tops.

We now prove a non-commutative integrability of systems (5.3) by using the Bolsinov
condition for a set of Casimir functions of the pencil of compatible Poisson brackets to be
complete [9].

Theorem 6.1 Let all the eigenvalues of A be distinct. Then the Neumann systems (5.3),
in particular (5.4) and (5.5), are completely integrable in the non-commutative sense with
the non-commutative set of integrals given by (5.10) and by the components of the SO(r)-
momentum mapping (2.13). The generic trajectory (X(t), P (t)) corresponding to the maxi-
mal rank of the momentum Ψ is quasi-periodic over isotropic tori of dimension

1

2

(

2r(n− r) +
r(r − 1)

2
−
[r

2

]

)

+
[ r

2

]

. (6.1)

Proof. First, we give the interpretation of the integrals (5.10) from the bi-Hamiltonian
point of view. Consider the Lie algebra gl(n) of n×n real matrices equipped with the scalar
product 〈X,Y 〉 = − 1

2 tr(XY ) and the orthogonal decomposition gl(n) = so(n) + Sym(n)
onto skew-symmetric and symmetric matrices:

[so(n), Sym(n)] ⊂ Sym(n), [Sym(n), Sym(n)] ⊂ so(n). (6.2)

The scalar product 〈·, ·〉 is positive definite on so(n) and negative definite on Sym(n).
Let us identify gl(n)∗ and gl(n) by means of 〈·, ·〉. On gl(n) we have a pair of compatible

Poisson brackets given by the following Poisson tensors

Λ1(ξ + η, ζ + θ)|x = 〈x, [ξ, ζ] + [ξ, θ] + [η, ζ]〉,

Λ2(ξ + η, ζ + θ)|x = 〈x−A, [ξ + η, ζ + θ]〉,
(6.3)

where x ∈ gl(n), ξ, ζ ∈ so(n), η, θ ∈ Sym(n) (see [43, 9]). The tensor Λ1 corresponds to the
canonical Lie–Poisson brackets in the dual to the semi-direct product so(n)⊕ad Sym(n).

Consider the Poisson pencil

Λλ1,λ2 = λ1Λ1 + λ2Λ2, Π = {Λλ1,λ2 | λ1, λ2 ∈ R, λ21 + λ22 6= 0}.

For λ2 6= 0, the bracket Λλ1,λ2 is isomorphic to the canonical Lie–Poisson bracket on gl(n)
and its Casimir functions have the form

f(x) = tr

(

√

λ2
λ1 + λ2

h+ v −
λ2

λ1 + λ2
A

)k

, k = 1, . . . , n,

where x = h+ v, h ∈ so(n), v ∈ Sym(n) (see [43, 9]). Let

F = {tr(λh+ v − λ2A)k | k = 1, 2, . . . , n, λ ∈ R}. (6.4)

be the union of all the Casimir functions of the brackets with λ1 + λ2 6= 0, λ2 6= 0. Then F
is a commutative set with respect to all the brackets in Π and, if the eigenvalues of A are
distinct, F is a complete commutative set on a generic symplectic leaf in (gl(n),Λ1) (see
Theorem 1.5 in [9]). The mapping

Θ = Φ+XXT =
r
∑

i=1

pi ∧ ei +
r
∑

i=1

ei ⊗ ei
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defines the Poisson mapping between (T ∗Vn,r, {·, ·}) and (gl(n),Λ1) which is invariant with
respect to the right SO(r)-action (2.12) and the transformation (X,P ) 7→ (−X,−P ). In-
deed, Θ is the composition of the following two Poisson mapping:

Θ1(X,P ) = Φ(X,P ) +X, (X,P ) ∈ T ∗Vn,r,

Θ2(ξ, Y ) = ξ + Y Y T , ξ ∈ so(n), Y ∈Mn,r(R).

The mapping Θ1 realizes T ∗Vn,r as a coadjoint orbit in the dual space of the semi-direct
product so(n)⊕ρMn,r(R) (e.g., see equation (29.11), page 225, [26]; here ρ denotes the usual
multiplication of matrices) and Θ2 is a Poisson mapping between (so(n) ⊕ρ Mn,r(R))

∗ and
(so(n)⊕ad Sym(n))∗ (see Lemma 7.1 of [44]).

We have also that the algebra of integrals (5.10) is the pull-back of (6.4):

F = Θ∗F .

However, the image Θ(T ∗Vn,r) is the union of singular symplectic leaves in (gl(n),Λ1).
Namely, the generic symplectic leaf in (gl(n),Λ1) has the dimension n2 − n, while the
dimension of generic leaf in Θ(T ∗Vn,r) is

2l = 2r(n− r) +
r(r − 1)

2
−
[r

2

]

< n2 − n (6.5)

(see Lemma 6.2 below). Nevertheless, it can be proved that the set of the functions (6.4)
is complete on a generic orbit laying in Θ(T ∗Vn,r) as well (see Lemma 6.3 below). That is,
among the integrals F there is at least l polynomials p1, . . . , pl independent on the symplectic
leaves in Θ(T ∗Vn,r).

The rest of the proof follows the idea of [11, 51]. Namely, since SO(r) acts on T ∗Vn,r
freely and preserves the Poisson bracket {·, ·}, the quotient space (T ∗Vn,r)/SO(r) carries
natural induced Poisson bracket {·, ·}′. Let σ : T ∗Vn,r → (T ∗Vn,r)/SO(r) be the canonical
projection. Then, by definition,

{f, g}′(σ(X,P )) = {F,G}(X,P ), F = f ◦ σ, G = g ◦ σ. (6.6)

The Casimir functions j1, . . . , j[r/2] of the brackets {·, ·}′ can be obtained from the SO(r)-

invariant functions Jk = tr(Ψ2k) via jk ◦ σ = Jk.
The mapping Θ induces Z2-Poisson covering

θ : ((T ∗Vn,r)/SO(r), {·, ·}
′) → (Θ(T ∗Vn,r),Λ1), θ ◦ σ = Θ.

Hence the functions p1◦θ, . . . pl◦θ are independent on a generic symplectic leaf and, together
with the Casimir functions j1, . . . , j[r/2], form a complete commutative set of functions within
(T ∗Vn,r)/SO(r). In other words, the functions

p1 ◦Θ, . . . , pl ◦Θ, J1, . . . , J[ r2 ]
(6.7)

form a complete commutative set of functions in the algebra of SO(r)-invariant functions on
T ∗Vn,r. Note that the independency of the functions J1, . . . , J[r/2] at (X,P ) is equivalent to
the regularity of AdSO(r)-orbit of Ψ(X,P ). Therefore, (6.1) holds for the invariant manifolds
where the rank of Ψ(X,P ) is maximal.

Then, according to Theorem 1 in [13], the functions (6.7) together with Ψ∗(C∞(so(r))
form a complete non-commutative set of functions in T ∗Vn,r. Therefore the integrals Θ

∗F+
Ψ∗(C∞(so(r)) of the Neumann system form a complete non-commutative set. Moreover,
the functions (6.7) commute with all the integrals and therefore their Hamiltonian flows
generate generic leaves of the isotropic foliation given by Θ∗F +Ψ∗(C∞(so(r)). Hence, the
dimension of the generic isotropic tori is given by (6.1). 2
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Remark 6.1 The Hamiltonian of the Neumann system with the normal metric has the
form Hneum0 = H ◦Θ, where

H =
1

2
〈h, h〉 − 〈A, v〉,

defines the completely integrable (by means of the integrals (6.4)) Hamiltonian flow

ḣ = [v,A], v̇ = [h, v] (6.8)

on (so(n)⊕adSym(n))∗. This system belongs to the class of Clebsch–Perelomov–Bogoyavlenski
rigid body systems ([41, 8], see also Section 7). Note that the representation of the Neumann
system on the sphere as a system on a adjoint orbit is given by Ratiu [42].

Lemma 6.2 The dimension of a generic symplectic leaf in (Θ(T ∗Vn,r),Λ1) is given by
formula (6.5).

Proof. Without loss of generality, choose a point X0 = (E1, . . . , Er) ∈ Vn,r and a generic
point (X0, P0) ∈ T ∗

X0
Vn,r. Denote

h = Φ(X0, P0), v = X0X
T
0

Then h is a generic so(n)-matrix of the form

h =

(

h1 h2
−hT2 0

)

, h1 ∈ so(r), h2 ∈Mr,n−r(R) and v =

(

Ir 0
0 0

)

.

¿From the definition (6.3) of the tensors Λ1,Λ2 we get ξ + η ∈ kerΛ1(h+ v), ξ ∈ so(n),
η ∈ Sym(n) if and only if

[ξ, v] = 0, (6.9)

[ξ, h] + [η, v] = 0. (6.10)

The first equation gives the condition for ξ to belongs to the subalgebra so(r) ⊕ so(n− r).
Denote

ξ =

(

ξ1 0
0 ξ2

)

, η =

(

η1 η3
ηT3 η2

)

,

where ξ1 ∈ so(r), ξ2 ∈ so(n− r), η1 ∈ Sym(r), η2 ∈ Sym(n− r), η3 ∈Mr,n−r(R). Since

[η, v] =

(

0 −η3
ηT3 0

)

,

from (6.2) and (6.10) we find that [ξ1, h1] = 0,, ξ2, η1, η2 are arbitrary, and η3 is uniquely
determined from the equation

[(

ξ1 0
0 ξ2

)

,

(

0 h2
−hT2 0

)]

+

(

0 −η3
ηT3 0

)

= 0.

For generic h1, the solutions of [h1, ξ1] = 0 form a maximal commutative subalgebra of
so(r). That is, the dimension of the space of the solution of (6.9), (6.10) is

dimkerΛ1(h+ v) = rank so(r) + dim so(n− r) + dimSym(r) + dimSym(n− r).

Finally, the dimension of a generic symplectic leaf in (Θ(T ∗Vn,r),Λ1) is equal to n2 −
dimkerΛ1(h+ v) = 2l. 2
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Lemma 6.3 If all eigenvalues of A are distinct, then the set of the functions (6.4) is a
complete commutative set on a generic symplectic leaf in (Θ(T ∗Vn,r),Λ1)

Proof. We keep the notation from the proof of Lemma 6.2. The proof presented here is a
modification of that of Theorem 1.6 in [9]. According to Theorem 1.1 in [9], the set of the
functions (6.4) is complete on the symplectic leaf containing the point x = h+ v if and only
if

(A1) All the brackets Λλ1,λ2 non-proportional to Λ1 have the maximal rank n2 − n at x.

(A2) The kernel of the bracket Λ1,−1 at x, restricted to the linear space kerΛ1, has dimen-
sion n,

dim{(ξ + η ∈ kerΛ1(x) |Λ1,−1(ξ + η, kerΛ1(x))|x = 0}. (6.11)

Here all the objects are assumed to be complexified. Since the conditions (A1) and (A2)
are both generic, it is sufficient to find x1 ∈ Θ(T ∗Vn,r) for which (A1) holds and x2 ∈
Θ(T ∗Vn,r) which satisfies (A2). Then the set of x ∈ Θ(T ∗Vn,r) satisfying both conditions
will be open and dense everywhere in the induced topology on Θ(T ∗Vn,r).

If λ1+λ2 6= 0, λ2 6= 0, then the bracket Λλ1,λ2 is isomorphic to the canonical Lie–Poisson
bracket on gl(n,C). Thus the brackets Λλ1,λ2 (λ1 + λ2 6= 0, λ2 6= 0) have the maximal rank
n2 − n at x = h+ v if and only if the complex line

L = {h+ v − λA |λ ∈ C}

intersects the set of singular points of gl(n,C) only at x = h+v. This condition is obviously
satisfied if all the eigenvalues of A are distinct.

To prove (A1) we have to find the (complex) dimension of kerΛ1,−1. From the definition
(6.3) we get

Λ1,−1(ξ + η, ζ + θ)|h+v = −〈h, [η, θ]〉+ 〈A, [ξ, θ] + [η, ζ]〉 (6.12)

and ξ + η ∈ kerΛ1,−1(h+ v), ξ ∈ so(n,C), η ∈ Sym(n,C) if and only if

[η,A] = 0, (6.13)

[ξ, A]− [η, h] = 0. (6.14)

The solutions of (6.13) are all diagonal matrices. For the given diagonal matrix η, the matrix
ξ is uniquely determined from (6.14). Therefore, dimkerΛ1,−1(h+ v).

It remains to check the condition (A2). Take h of the form

h =

(

h1 0
0 0

)

,

h1 being a generic element of so(r). From the proof of Lemma 6.2 we have

kerΛ1(h+ v) = so(r,C)h1 ⊕ Sym(r,C)⊕ gl(n− r,C) , (6.15)

where so(r,C)h1 = {ξ1 ∈ so(r,C) | [ξ1, h1] = 0} is a Cartan subalgebra of so(r,C).
¿From (6.12), (6.15) we conclude that ξ + η belongs to kerΛ1,−1(x)|ker Λ1(x) if and only

if

[A1, ξ1]− [h1, η1] = 0, (6.16)

[A1, η1] ∈ so(r,C)⊥, (6.17)

ξ2 = 0, (6.18)

[A2, η2] = 0, (6.19)
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where η1 and η2 are defined in the proof of Lemma 6.2 and

A1 = diag(a1, . . . , ar), A2 = diag(ar+1, . . . , an).

Equations (6.16), (6.17) form a closed system within gl(r,C), and from the proof of
Theorem 1.6 [9], the dimension of solution of (6.16), (6.17) is equal to r. On the other side,
the solution of (6.19) are all diagonal matrices in gl(n− r,C). Hence (6.11) holds. 2

Singular matrices A and the Einstein metrics. Now suppose that not all the eigen-
values of A are distinct:

a1 = · · · = ak1 , ak1+1 = · · · = ak1+k2 , . . . , an+1−kr
= · · · = an, k1 + k2 + · · ·+ kr.

Then we have a non-trivial isotropy algebra

so(n)A = {ξ ∈ so(n) | [ξ, A] = 0} = so(k1)⊕ so(k2)⊕ · · · ⊕ so(kr).

Let G be the set of linear functions on so(n)A. The set F+G is a complete non-commutative
set of function on (gl(n),Λ1) (Theorem 1.5 [9]). By modifying the proof of Lemma 6.2 and
Bolsinov’s Theorem 1.5 [9], one can prove that the set of functions F + G is complete on
Θ(T ∗Vn,r) as well, implying non-commutative integrability of the Neumann systems (5.3).
The complete verification is out the scope of this paper.

Let SO(n)A = SO(k1)× SO(k2)× · · · × SO(kr) ⊂ SO(n) be the adjoint isotropy group
of A. The momentum mapping of the left SO(n)A-action is given by

ΦA = prso(n)A Φ = prso(n)A
(

PXT −XPT
)

and Θ∗G are exactly Noether integrals arising from the SO(n)A-symmetry of the Neumann
flows.

In particular, when A = 0, we get the integrals of the geodesic flow of the metric ds2κ in
the form Φ∗(C∞(so(n)) + Ψ∗(C∞(so(r)) + F, where now

F = {tr(λ(PXT −XPT ) +XXT )k | k = 1, . . . , n, λ ∈ R}. (6.20)

We shall mention the following important corollary of the above construction.
Let B : so(r) → so(r) be positive definite and hB = 1

2 〈ξ,Bξ〉. Suppose that the Euler
equations

ḟ = {f, hB}
−
so(r) ⇐⇒ ξ̇ = [ξ,∇hB(ξ)] = [ξ,Bξ], ξ ∈ so(r) (6.21)

are completely integrable with a complete commutative set of functions B.

Theorem 6.4 (i) B+ F is a complete commutative set of SO(n)-invariant functions on
T ∗Vn,r, where F is given by (6.20) and B = Ψ∗(B).

(ii) The geodesic flow of the SO(n)-invariant metric ds2
B
on Vn,r defined by the Hamiltonian

function

HB =
1

2
tr(PTP )−

1

4
tr
(

(XTP − PTX)B(XTP − PTX)
)

is completely integrable in the non-commutative sense. The complete set of first inte-
grals is Φ∗(C∞(so(n)) + F+B, and the generic trajectories of the system are quasi-
periodic over the isotropic tori of dimension

ddim(F+B) = dimVn,r − l.

Here 2l is the dimension of a generic adjoint orbit in Φ(T ∗Vn,r) (see Lemma 2.5).
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For example, if the matrix B = diag(B1, . . . , Br) has distinct eigenvalues, we can take
B(ξ) = Bξ + ξB (the Manakov operator on so(r)) and the commutative set

B = { tr(Ψ + µB)k, µ ∈ R, k = 1, 2, . . . , r }. (6.22)

Now, by using the chain method for the construction of complete commuting sets of func-
tions on Lie algebras developed by Mikityuk [34], one can easily prove that the Hamiltonian
function (3.14) defines completely integrable system on so(r). Therefore we get

Corollary 6.5 The SO(n)-invariant geodesic flows determined by Hamiltonian functions
(3.13) are completely integrable. In particular, the geodesic flow of the Einstein metrics
constructed in [4] are completely integrable.

Note that the set of functions given in Theorem 6.4 differs from those described in
Theorem 2.6. Another proof of integrability of geodesic flows of the Einstein metrics, based
on using singular Manakov flows, is recently obtained in [17].

Commutative integrability of the Neumann flows. We turn back to the Neumann
flows. According to Theorem 6.1, systems (5.3) are integrable in the noncommutative sense
by means of the integrals Ψ∗(C∞(so(r)) + F, where F is given by (5.10). However, the
Neumann flows (5.3) are integrable in the commutative (Liouville) sense as well: instead
of Ψ∗(C∞(so(r))) one should take, for example, the commutative set (6.22). Moreover, it
follows:

Corollary 6.6 Let all the eigenvalues of A be distinct. Suppose that the Euler equations
(6.21) are completely integrable with a complete commutative set of functions B. Then the
Neumann system with the kinetic energy given by the SO(n)-invariant metric ds2

B

Hneum,B =
1

2
tr(PTP )−

1

4
tr
(

(XTP − PTX)B(XTP − PTX)
)

+
1

2
tr(XTAX)

is completely integrable. The complete commutative set of first integrals is F+B, where F

is given by (5.10) and B = Ψ∗(B).
In particular, the Neumann systems with the kinetic energy determined by SO(n)-invariant

Einstein metrics constructed in [4] are completely integrable.

7 Reduction to Grassmannians

By definition, the points of the oriented Grassmannian variety Gn,r are r-dimensional ori-
ented planes passing through the origin in the Euclidean space Rn. The usual action of the
group SO(n) on Rn yields a transitive action on the set of all r-dimensional planes, i.e., on
Gn,r. The isotropy group of the r-plane spanned by the vectors E1, . . . , Er (relative to the
base (2.1)) has the form

(

SO(r) 0
0 SO(n− r)

)

∼= SO(r) × SO(n− r).

It follows that Gn,r
∼= SO(n)/(SO(r) × SO(n− r)).

The oriented Grassmannian can also be seen as a quotient space of the Stiefel manifold
by the right SO(r)-action described in Section 1. The quotient mapping Vn,r → Gn,r is

X = (e1, . . . , er) 7−→ e1 ∧ · · · ∧ er.
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The symplectic leaves in (T ∗Vn,r)/SO(r), {·, ·}
′) with {·, ·}′ given by (6.6) are the Marsden–

Weinstein symplectic reduced spaces of T ∗Vn,r. In particular, the reduced space that cor-
responds to zero value of the momentum mapping

Ψ−1(0)/SO(r),

is symplectomorphic to the cotangent bundle T ∗Gn,r equipped with a canonical symplectic
structure. Note that (X,P ) belongs to Ψ−1(0) if and only if XTP = 0.

The last condition also implies that, although the Neumann systems (5.4) and (5.5) are
different on the whole T ∗Vn,r, they coincide on Ψ−1(0), hence their reductions onto the
cotangent bundle T ∗Gn,r are the same.

The reduced flow can be written in the alternative Euler–Lagrange form. Namely, we
have

d

dt
(e1 ∧ · · · ∧ er) =

r
∑

i=1

e1 ∧ · · · ∧ ėi ∧ · · · ∧ er

and, in view of the matrix equation (5.5), the reduced system is

d2

dt2
(e1 ∧ · · · ∧ er) = −

r
∑

i=1

e1 ∧ · · · ∧Aei ∧ · · · ∧ er

+2
∑

1≤i<j≤r

e1 ∧ · · · ∧ ėi ∧ · · · ∧ ėj ∧ · · · ∧ er + λ (e1 ∧ · · · ∧ er) , (7.1)

λ = trΛ = tr(XTAX − ẊT Ẋ) =

r
∑

i=1

((ei, Aei)− (ėi, ėi), ) .

where
(ei, ej) = δij , (ėi, ej) = 0, i, j = 1, . . . , r. (7.2)

Note that (7.1) is SO(r)-invariant. We refer to (7.1) as a Neumann system on the
oriented Grassmannian variety Gn,r.

Theorem 7.1 Suppose that all the eigenvalues of A are distinct. Then the Neumann system
on T ∗Gn,r is completely integrable in the Liouville sense by means of the integrals induced
from the SO(r)-invariant functions (5.10).

Proof. Since T ∗Gn,r = Ψ−1(0)/SO(r) is a singular symplectic leaf in T ∗Vn,r/SO(r), the
statement of the theorem does not follow directly from Theorem 6.1.

We keep the notation from the proofs of Theorem 6.1, Lemma 6.2 and Lemma 6.3. Let
h = Ψ(X0, P0), v = X0X

T
0 , where (X0, P0) ∈ Ψ−1(0) ∩ T ∗

X0
Vn,r is in a generic position.

Then h1 = 0. From the proof of Lemma 6.2 we get

dim kerΛ1(h+ v) = dim(gl(r) ⊕ gl(n− r)).

and the mappings Θ and θ map Ψ−1(0) and Ψ−1(0)/SO(r) to the single symplectic leaf
in (gl(n),Λ1). Now, by modifying the proof of Lemma 6.2 one can prove conditions (A1)
and (A2) for x = h+ v with h1 = 0 as well. Therefore, among functions (6.4) one can find
exactly

r(n− r) =
1

2
(dim gl(n)− dim gl(r)− dim gl(n− r)) = dimGn,r

independent functions p1, . . . , pr(n−r). Thus the functions p1 ◦ θ, . . . , pr(n−r) ◦ θ provide a
complete commutative set of functions on Ψ−1(0)/SO(r). 2
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The special case r − 1. The Stiefel variety Vn,n−1 is diffeomorphic to SO(n) = Vn,n: to
e1, . . . , en−1 one can associate the unique unit vector en such that e1, . . . , en is the orthonor-
mal base with the same orientation as E1, . . . , En:

X = (e1, . . . , en−1) 7−→ X = (e1, . . . , en−1, en) ∈ SO(n). (7.3)

Similarly, the oriented Grassmannian variety Gn,n−1 is diffeomorphic to Gn,1 = Sn−1 via
the mapping

e1 ∧ · · · ∧ en−1 7−→ en. (7.4)

It is natural to expect that in this case the Neumann system (7.1) gives rise to the
classical Neumann system on the sphere Sn−1. Indeed, due to conditions (7.2), for r− 1 the
second term in the right-hand side of equations (7.1) vanishes. Then, under identification
(7.4), these equations gives rise to

ën = (A− trAI)en + λen = Aen − ((en, Aen) + (ėn, ėn)) en , (7.5)

which describes the motion on the sphere Sn−1 = {〈en, en〉 = 1} with the potential
− 1

2 〈Aen, en〉.

The 4-th degree potential. By using Cartan models of symmetric spaces, a class of
new integrable potential systems on such spaces was obtained by Saksida [45]. As noticed
in [46], in the case of the sphere Sn−1, such a system is a generalization of the Neumann
system in presence of a potential of degree 4. The latter system is separable in the spherical
elliptic coordinates and was found previously in [50].

In addition, it can be proved that the construction of [45] on the Grassmannian varieties
gives rise to the Hamiltonian

H(X,P ) =
1

2
tr(PTP ) + tr(XTA2X)− tr(XTAXXTAX), (7.6)

which for r = 1, takes the well known form H = 1
2 (p, p)+

∑n
i=1 a

2
i e

2
i −
(
∑n

i=1 aie
2
i

)2
[50, 46].

For r > 1, the Hamiltonian flow on T ∗Vn,r determined by the Hamiltonian function (7.6) is
integrable after its restriction to the invariant manifold Ψ−1(0) ⊂ T ∗Vn,r and the reduction
to T ∗Gn,r. This system will be discussed elsewhere.

8 The Dual Lax Pair and Geometric Interpretation of

Integrals

As mentioned in Section 5, like the classical Neumann system on the sphere Sn−1, the
Neumann systems on V (r, n) also admit dual Lax representations.

Theorem 8.1 Up to the action of a discrete group Zn
2 generated by reflections (4.6), the

Neumann flows (5.4) and (5.5) are equivalent to the following 2r× 2r matrix Lax pair with
a rational spectral parameter λ

d

dt
L∗
neum(λ) = [L∗

neum(λ),A∗
neum(λ)], (8.1)

L∗
neum(λ) =

(

−XT (λIn −A)−1P −XT (λIn −A)−1X
Ir + PT (λIn −A)−1P PT (λIn −A)−1X

)

, (8.2)
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where for system (5.4), respectively (5.5), one should put

A∗
neum(λ) =

(

XTP Ir
Λ− λIr −PTX

)

, respectively, A∗
neum(λ) =

(

0 Ir
Λ− λIr 0

)

, (8.3)

where Λ = XTAX − PTP .

The statement is checked straightforwardly by using constraints (2.4) and the matrix
identities

A(λIn −A)−1 = (λIn −A)−1A = λ(λIn − A)−1 − In .

The dual Lax pair (8.3) for the generalized Neumann system (5.5) was first given in
unpublished manuscript [28]. For r = 1 it gives the known 2× 2 Lax pair for the Neumann
system indicated in several publications (see, e.g., [47] and references therein).

Remark 8.1 For r the considered Neumann flows become geodesic flows of bi-invariant
metrics on SO(n). Then both Lax representations (n × n and 2n × 2n) give the integrals
for the geodesic flow of a bi-invariant metric, but also they give the integrals for the right-
invariant Manakov geodesic flows on SO(n) described by equations (3.5), (4.2).

The spectral curve and integrals. Let

a(λ) = (λ − a1) · · · (λ− an).

The spectral curve of L∗
neum(λ) can be written in form

|a(λ)L∗
neum(λ)−wIn| ≡ w2r+w2r−2a(λ)I2(λ)+· · ·+w2a2r−3(λ)I2r−2(λ)+a

2r−1I2r(λ) = 0,

where I2l(λ) are invariant polynomials in the components of the wedge products
ej1 ∧ · · · ∧ ejj and

e1 ∧ · · · ∧ er,

e1 ∧ · · · ∧ er ∧ pi, i = 1, . . . , r,

· · · · · · · · · · · · (8.4)

e1 ∧ · · · ∧ er ∧ p1 ∧ · · · ∧ pr.

Note that, due to the symplectic block structure of L∗
neum(λ), the coefficients at odd powers

of w in the spectral curve are zero.
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In the case 2r ≤ n the polynomials can be written in form

I2(λ) =

n
∑

i=1

a(λ)

λ− ai

(

(ei1)
2 + · · ·+ (eir)

2
)

+
∑

1≤i<j≤n

a(λ)

(λ − ai)(λ − aj)
Φ2

ij ,

· · · · · ·

I2l(λ) =
∑

Il

a(λ)

(λ− ai1) · · · (λ− ail)

∑

Jl={j1,...,jl}

(ej1 ∧ · · · ∧ ejl)
2
Il

+
∑

Il+1

a(λ)

(λ− ai1) · · · (λ− ail+1
)

∑

Jl,1≤i≤r

(ej1 ∧ · · · ∧ ejl ∧ pi)
2
Ir+1

+ · · · ,

· · · · · ·

I2r(λ) =
∑

Ir

a(λ)

(λ− ai1) · · · (λ− air )
(e1 ∧ · · · ∧ er)

2
Ir

+
∑

Ir+1

a(λ)

(λ− ai1) · · · (λ− air+1)

r
∑

i=1

(e1 ∧ · · · ∧ er ∧ pi)
2
Ir+1

+
∑

Ir+2

a(λ)

(λ− ai1) · · · (λ− air+2)

∑

1≤i<j≤r

(e1 ∧ · · · ∧ er ∧ pi ∧ pj)
2
Ir+2

+ · · ·

+
∑

I2r

a(λ)

(λ− ai1) · · · (λ− ai2r )
|Φ|I2rI2r

, (8.5)

where Ik = {i1, . . . ik} ⊂ {1, . . . , n} is the multi-index with distinct indices 1 ≤ i1 < · · · <
ik ≤ n and |Φ|IkIk is the k × k diagonal minor of the momentum matrix Φ corresponding to
the multi-index Ik. Note that, in view of definition of Φ,

|Φ|I2rI2r
= (e1 ∧ · · · ∧ er ∧ p1 ∧ · · · ∧ pr)

2
I2r .

In the case 2r > n the polynomials I2l(λ) have the same form with the only difference:
the terms with the wedge products of ei, pj of order > n are absent.

It follows that in both cases I2l(λ) are polynomials in λ of degree n − l and that the
leading coefficients of I2(λ), . . . , I2r(λ) produce trivial constants on V (r, n). Hence, as a
simple counting shows, the number of nontrivial integrals on T ∗V (r, n) provided by the Lax
matrix L∗

neum(λ) in (8.3) equals

N = (n− 1) + (n− 2) + · · ·+ (n− r) = r(n − r) + r(r − 1)/2,

which coincides with the dimension of the Stiefel variety.
Note that, although the Lax matrix L∗

neum(λ) is not invariant under the right SO(r)-
action, the spectral curve and therefore all the integrals I2l(λ) are SO(r)-invariant.

Since the number N is bigger than half of dimension (6.5) of a generic symplectic leaf
within (T ∗Vn,r)/SO(r), some of the integrals are dependent. Like the ”big” Lax matrix
Lneum(λ) in (5.7), the dual Lax matrix L∗

neum(λ) does not produce explicitly the momenta
integrals Ψij .

Geometric interpretation of the integrals I2r(λ). The components of forms (8.4) that
appear in the last invariant polynomial I2r(λ) have a transparent geometric interpretation:
they are Plücker coordinates of the 2r-dimensional linear subspace (2r-plane)

Σ̄ = Σ̄(X,P ) ⊂ R
n+r(x1, . . . , xn, y1, . . . , yr)
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spanned by the columns of the 2r × (n+ r) matrix

V = V(X,P ) =











e1 · · · er p1 · · · pr
0 · · · 0
...

... Ir
0 · · · 0











, (8.6)

Ir being the identity r× r matrix. Indeed (see, e.g., [25]), for any k,m (k < m), the Plücker
coordinates of a k-plane π in Rm(x1, . . . , xm) spanned by independent vectors v1, . . . , vk ∈
Rm are the coefficients GI of the polynomial

v1 ∧ · · · ∧ vk =
∑

I

GI dxi1 ∧ · · · ∧ dxik ,

where I = {i1, . . . ik} ⊂ {1, . . . , n} is the multi-index with 1 ≤ i1 < · · · < ik ≤ n.
Then the Plücker coordinates of Σ̄ are given by all 2r × 2r minors of V . In particular,

the 2r × 2r minors that completely contan Ir give the Plücker coordinates of the r-plane
span(e1, . . . , er) ⊂ Rn.

Now consider the following family of confocal cones in Rn+r(x1, . . . , xn, y1 . . . , yr)

Q̄(λ) =

{

x21
λ− a1

+ · · ·+
x2n

λ− an
+ y21 + · · ·+ y2r = 0

}

, λ ∈ R. (8.7)

The following theorem is a first variant of a generalization of the remarkable Chasles the-
orem describing a geometric relation between the geodesic flow on an ellipsoid and common
tangent lines of confocal quadrics ([15, 35, 30]).

Theorem 8.2 Let the 2r-plane Σ̄(t) ⊂ Rn+r be associated to a generic solution (X(t), P (t))
of the Neumann systems (5.4) and (5.5) on Vn,r as described above. Then Σ̄(t) is tangent
simultaneously to n− r fixed confocal cones Q̄(c1), . . . , Q̄(cn−r), where c1, . . . , cn−r are the
roots of the invariant polynomial I2r(λ).

One can show that for real solutions (X(t), P (t)) all these cones are real.
In the particular case r = 1, one can also consider the section of Σ̄ and of the family Q̄(λ)

by the subspace {y1 = 1} ∼= Rn, which give respectively an affine line l(t) = p(t)+span{e(t)}
and the family of confocal quadrics

Q(λ) =

{

x21
a1 − λ

+ · · ·+
x2n

an − λ
= 1

}

.

Then, due the above theorem, l(t) is tangent to n − 1 fixed quadrics Q(c1), . . . , Q(cn−r),
and we recover the following variant of the Chasles theorem given for the Neumann system1

Proposition 8.3 (Moser, [35])

(i) Let (e(t), p(t)) be a solution of the system on T ∗Sn−1 with the Hamiltonian

H =

n
∑

i=1

αiFi, Fi = e2i +
∑

j 6=i

(eipj − ejpi)
2

ai − aj
,

αi being arbitrary constants. Then the associated line l(t) is tangent to n − 1 fixed
confocal quadrics of the family Q(λ).

1It can be formulated in two different ways (see Theorem 12 in [20] given for the Clebsch–Perelomov
systems and Theorem 4.10 in [37]).
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(ii) If (e(t), p(t)) is a solution of the system on T ∗Sn−1 with H =
∑n

i=1 Fi/ai restricted
to H = 0, the corresponding line l(t) is tangent to the ellipsoid Q(0), on which the
contact point l ∩Q(0) traces a geodesic.

The proof of Theorem 8.2 is based upon the following property described in [20].

Proposition 8.4 Let GI , I = {i1, . . . ik} be the Plücker coordinates of a k-plane passing
through the origin in Rm. The set of all such k-planes that are tangent to a nondegen-
erate cone {〈x,Bx〉 = 0}, B = diag(b1, . . . bm) is the intersection of the (non-oriented)
Grassmannian G(m, k) ⊂ ∧k

R
m with the quadric

{

∑

I

|B|II G
2
I = 0

}

⊂ ∧k
R

m, |B|II = bi1 · · · bik . (8.8)

Proof of Theorem 8.2. Let us now set m + r and consider the family of cones (8.7). Let,
as above, Σ̄ be a 2r-plane in Rn+r spanned by the columns of V and associated to a point
X,P on T ∗Vn,r, and let

B = diag

(

1

λ− a1
, . . . ,

1

λ− an
, 1, . . . , 1

)

.

Then, in view of Proposition 8.4 and the structure of V , for a fixed λ = λ∗ the set of the
2r-planes that are tangent to Q̄(λ∗) is described by the following quadratic equation in
terms of the Plücker coordinates of Σ̄

∑

Ir

(e1 ∧ · · · ∧ er)
2
Ir

(λ∗ − ai1) · · · (λ
∗ − air )

+
∑

Ir+1

1

(λ∗ − ai1) · · · (λ
∗ − air+1)

n
∑

i=1

(e1 ∧ · · · ∧ er ∧ pi)
2
Ir+1

+
∑

Ir+2

1

(λ∗ − ai1) · · · (λ
∗ − air+2)

∑

1≤i<j≤n

(e1 ∧ · · · ∧ er ∧ pi ∧ pj)
2
Ir+2

+ · · ·

+
∑

I2r

1

(λ∗ − ai1) · · · (λ
∗ − ai2r )

(e1 ∧ · · · ∧ er ∧ p1 ∧ · · · ∧ pr)
2
I2r = 0 .

Due to (8.5), this coincides with the equation I2r(λ
∗) = 0 up to multiplication by a(λ∗).

Since I2r(λ) is also an invariant polynomial of degree n − r in λ, for a fixed plane Σ̄
there exist precisely n− r fixed cones of the family Q̄(λ) tangent to Σ̄. This establishes the
theorem. 2

Restriction to Rn. By analogy with the case r = 1, one can consider the restriction of
family (8.7) to the linear subspace {y1 = · · · = yr = 1}:

Qr(λ) =

{

x21
a1 − λ

+ · · ·+
x2n

an − λ
= r

}

= i−1
(

Q̄(λ) ∩ {y1 = 1, . . . , yr = 1}
)

, (8.9)

where i : Rn → Rn+r is the natural inclusion

i(x1, . . . , xn) = (x1, . . . , xn, 1, . . . , 1).

This gives a family of confocal quadrics in Rn.
Further, the section of Σ̄ by the subspace {y1 = · · · = yr = 1} defines an affine r-plane

Σ(t) = i−1
(

Σ̄ ∩ {y1 = · · · = yr = 1}
)

in R
n(x1, . . . , xn), which is spanned by the orthogonal

vectors e1, · · · , er and passes through the point p1 + · · · + pr. As a result, to a generic
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solution (X(t), P (t)) of the Neumann system on Vn,r one can uniquely associate the moving
r-plane

Σ(t) = p1(t) + · · ·+ pr(t) + span{e1(t), · · · , er(t)}.

In contrast to the case r = 1, due to dimensional reasons, for r > 1 the r-plane Σ(t) is not
necessarily tangent to the quadrics Qr(c1), . . . , Qr(cn−r). More precisely, since

d i
(

T(x1,...,xn)Q(λ)
)

= Ti(x1,...,xn)Q̄(λ) ∩ {y1 = 1, . . . , yr = 1},

the tangency of Σ̄(t) and Q̄(ci), for a fixed t, either implies the tangency of the corresponding
affine r-plane Σ(t) and the quadric Qr(ci), or Σ(t) does not intersect Qr(ci). As a result,
one cannot formulate a natural generalization of the Chasles theorem in Rn that involves
this r-plane.

Another feature of the case r > 1 is that, although the first integrals given by the poly-
nomial I2r(λ) are invariant with respect to the right SO(r)-action on (X,P ), the 2r-plane Σ̄
and r-plane Σ do not have this property. Thus, a generic polynomial I2r(λ) corresponds to a
whole family of 2r-planes (r-planes, respectively) that are tangent to the same set of confocal
cones and is obtained as the orbit of Σ̄ (Σ, respectively) under the right SO(r)-action.

Then, it natural to replace Σ̄ by the moving cylinder ∆̄(t), the union of 2r-planes
Σ̄(X(t)B,P (t)B) spanned by the columns of the 2r × (n+ r) matrices

V(X(t)B,P (t)B), B ∈ SO(r),

where V(X,P ) is given by (8.6). The cylinder ∆̄(t) is SO(r)-invariant and, due to the
construction, is tangent simultaneously to n− r fixed confocal cones Q̄(c1), . . . , Q̄(cn−r).

Next, the section of ∆̄(t) by the subspace {y1 = · · · = yr = 1} defines the moving
(2r − 1)-dimensional cylinder

∆(t) =







∑

i,j

Bi,jpi(t) |B ∈ SO(r)







+ span{e1(t), · · · , er(t)},

which is now an appropriate object for the second generalization of the Chasles theorem:

Theorem 8.5 Let the (2r − 1)-dimensional cylinder ∆(t) ⊂ Rn be associated to a generic
solution (X(t), P (t)) of the Neumann systems (5.4) or (5.5) on Vn,r as described above.
Then ∆(t) is tangent simultaneously to n − r fixed confocal quadrics Qr(c1), . . . , Qr(cn−r)
of the confocal family (8.7), where c1, . . . , cn−r are the roots of the invariant polynomial
I2r(λ).

Proof. First, note that the plane Σ̄(X(t)B,P (t)B) can be obtained from Σ̄(X(t), P (t)) by
rotating it in the coordinates y1, . . . , yr by the matrix B−1. That is, the cylinder ∆̄(t) can
be regarded as the orbit of Σ̄(X(t), P (t)) with respect to the SO(r)-action in the coordinates
y1, . . . , yr. This property is related to the SO(r)-symmetry of the cones Q̄(λ) in y1, . . . , yr.

Indeed, the 2r × (n+ r) matrices

V(XB,PB) and V(XB,PB)

(

B−1 0
0 B−1

)

=











e1 · · · er p1 · · · pr
0 · · · 0
...

... B−1

0 · · · 0











define the same 2r-plane Σ̄(X(t)B,P (t)B), whereas the second matrix is obtained from
V(X,P ) by left multiplication by the block matrix diag(In−r , B

−1).
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Now let l(t) be the line along which the plane Σ̄(X(t), P (t)) is tangent to the cone Q̄(ci),

l = l(t) = span{v(t) = (v1, v2, . . . , vn+r)
T } ⊂ Σ̄(X(t), P (t)) ⊂ R

n+r

and lB(t) = span{vB(t)} be the tangency line of the rotated plane Σ̄(X(t)B,P (t)B) and
Q̄(ci). Due to the above observation, vB(t) = diag(In, B

−1)v(t).
One can always find B∗ ∈ SO(r) depending on i and t, such that the last r coordinates

of vB∗(t) are equal. Then the r-plane

ΣB∗(t) = i−1
(

Σ̄(X(t)B∗, P (t)B∗) ∩ {y1 = · · · = yr = 1}
)

=
∑

i,j

B∗
i,jpi(t)+ span{e1, · · · , er}

is tangent to the quadric Qr(ci) at the point i−1 (lB∗(t) ∩ {y1 = · · · = yr = 1}). Since for
any i and t, ΣB∗(t) is a subspace of the cylinder ∆(t), we arrive at the statement of the
theorem. 2

Chasles Theorem for Manakov Flows. Similar statement holds for the geodesic flows
of submersion metrics defined by Manakov operators (see also Theorem 12 in [20]).

Suppose 2r < n. The dual Lax pair for the flow with Manakov operator (4.4) given in
Theorem 4.4 gives the set of commuting integrals J2l(λ), the coefficients with term w2r−2l

in the expression |a(λ)L∗
man(λ) − wIn|. In particular,

J2r(λ) =
∑

I2r

a(λ)

(λ− ai1) · · · (λ− ai2r )
|Φ|I2rI2r

is a polynomial of degree n− 2r in λ.
Consider the following family of confocal cones in Rn:

Q0(λ) =

{

x21
a1 − λ

+ · · ·+
x2n

an − λ
= 0

}

, λ ∈ R.

Repeating the arguments of Theorem 8.2, and using the fact that the Manakov geodesic
flows with different choices of the matrix B in (4.2) are quasi-periodic motions over the
same isotropic toric foliation of T ∗Vn,r, we get:

Theorem 8.6 Let the 2r-plane

Σ(t) = span{e1(t), . . . , er(t), p1(t), . . . , pr(t)} ⊂ R
n

be associated to a generic solution (X(t), P (t)) of the geodesic flow (3.5) given by the Man-
akov operator (4.2). Then Σ(t) is tangent simultaneously to n − 2r fixed confocal cones
Q0(c1), . . . , Q0(cn−2r), where c1, . . . , cn−2r are the roots of the invariant polynomial J2r(λ).

Remark 8.2 Since all objects in theorems 8.5 and 8.6 are right SO(r)-invariant they are
also valid for the Neumann system on the oriented Grassmannian variety Gn,r as well as for
the geodesic flows on Gn,r obtained by submersion from the Manakov flows.

The case of the Poisson sphere. As an illustrative example, consider the case r = 1
and Manakov operator (4.2) with B = −A−1. Then the submersion metric on Sn−1 takes
the following form (see [14])

ds2 =
1

〈A−1e, e〉

n
∑

i=1

aide
2
i . (8.10)
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In the elliptic coordinates the metric (8.10) is of the Stäckel type, and its geodesic flow

ė = (A−1e, e)A−1p− (A−1e, p)A−1e,

ṗ = (A−1e, p)A−1p− (A−1p, p)A−1e

is completely integrable [14]. For n = 3, the metric (8.10) is proportional to the metric on
the Poisson sphere S2, i.e., to the metric obtained after SO(2) reduction of the free rigid
body motion around a fixed point with the inertia tensor I = A−1.

From Theorem 8.6, we get

Corollary 8.7 Let e(t) be a geodesic line of the Poisson sphere metric (8.10). Then the
moving 2-plane

Σ(t) = span{e(t), p(t)} = span{e(t), Aė(t)}

is tangent to n− 2 fixed confocal quadrics of the family Q0(λ).

9 Appendix 1. Magnetic Neumann Systems

The Neumann system on Sn−1 in presence of the Yang–Mills fields. We now go
back to the reduction of the Neumann system to Grassmannians described in Section 7 and
consider in detail the case r − 1.

Apart from the complete reduction of the Neumann system onto Ψ−1(0)/SO(n − 1) ∼=
T ∗Sn−1, it is also convenient to describe partially reduced flows for non-zero values of the
momentum Ψ, that is, the flows on

(T ∗Vn,n−1)/SO(n− 1) ∼= so(n)× Sn−1, (9.1)

as well as the reduced flows on the symplectic leaves

Ψ−1(η)/SO(n− 1)η ∼= Ψ−1(Oη)/SO(n− 1) ⊂ (T ∗Vn,n−1)/SO(n− 1),

whereOη is the adjoint orbit of η. It is known that for η 6= 0, the quotients Ψ−1(Oη)/SO(n−
1) are diffeomorphic to Oη-bundles over (co)tangent bundle of the sphere S

n−1 and that the
reduced systems are natural mechanical systems with the influence of the Yang–Mills fields
(see, e.g., [26], Chapter III, which provides a detailed geometrical analysis of such systems).

We shall derive the reduced equations and Yang–Mills fields directly from the equations
of motion. Namely, for a matrix ξ ∈ so(n) and an unit vector en ∈ Sn−1, define projections

pren(ξ) = ξen ⊗ en + en ⊗ enξ, pren⊥(ξ) = ξ − pren(ξ)

with respect to the orthogonal decomposition

so(n) = {en ∧ R
n} ⊕ {en ∧ R

n}⊥. (9.2)

Note that {en ∧ Rn}⊥ ∼= so(n − 1) and {en ∧ Rn} can be naturally identified with the
tangent space TenS

n−1. Therefore the reduced phase space T ∗Vn,n−1/SO(n − 1) is also
represented as a so(n− 1)-bundle over TSn−1 that we shall denote by so(n− 1)×s TS

n−1.
There is the natural inclusion

so(n− 1)×s TS
n−1 ⊂ so(n)× TSn−1 : (ξ, en, ėn) ∈ so(n− 1)×s TS

n−1 ⇔ pren(ξ) = 0.

Proposition 9.1 (i) The reduced Neumann system on the quotient variety (9.1) has the
form

Ω̇ = [A, en ⊗ en], ėn = Ωen, Ω ∈ so(n). (9.3)
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(ii) The second derivative of the vector en is

ën = Aen − ((en, Aen) + (ėn, ėn)) en + FΩ ėn, (9.4)

where FΩ = pren⊥(Ω) = Ω−Φ(en, ėn) and Φ(en, ėn) = ėn ∧ en is the standard SO(n)-
momentum mapping on TSn−1.

If we restrict the flow to the invariant submanifold Ψ−1(Oη)/SO(r), then (FΩ, en, ėn)
ranges over the subbundle Oη ×s TS

n−1 ⊂ so(n− 1)×s TS
n−1 obtained by replacing fibers

so(n − 1) by the adjoint orbits Oη ⊂ so(n − 1). In particular, for η = 0 we recover (7.5).
For η 6= 0, the additional term FΩ ėn can be interpreted as the influence of the Yang–Mills
field with the internal symmetry group SO(n− 1) and charge type Oη ([26]). In the special
case n = 3, r = 2, after identification of the Lie algebras (so(3), [·, ·]) and (R3,×), equation
(9.4) takes the form

ë3 = Ae3 − ((e3, Ae3) + (ė3, ė3)) e3 + ǫ e3 × ė3,

which describes the motion of the particle with the charge ǫ on S2 in the magnetic monopole
field. Here η = ǫE1 ∧E2 and FΩ ė3 = ǫ e3 × ė3 represents the Lorentz force of the magnetic
monopole.

Since we already proved the completeness of the commuting integrals (5.10) on a generic
symplectic leaf within (9.1), we arrive at the following statement.

Theorem 9.2 The Neumann system perturbed by the Yang–Mills field, i.e, the restriction
of (9.3) to Oη ×s TS

n−1, is completely integrable for a generic value η ∈ so(n− 1).

Proof of Proposition 9.1. Let us identify Vn,n−1 and SO(n) via (7.3) and consider SO(n)
as the configuration space of the rigid body moving around a fixed point. Then the vectors
e1, . . . , en are fixed in the body, the matrix X = (e1, . . . , en) maps the fixed frame to the
frame attached to the body and

M = PX T −XPT

plays the role of the angular momentum of the body in the space frame. Here we denoted
the n× n momentum matrix by P .

From the identity en ⊗ en = In −
∑n−1

i=1 ei ⊗ ei we see that, after identification (7.3), the
Neumann system with the normal metric on Vn,n−1 corresponds to the motion of the rigid
body with the Hamiltonian

HCP =
1

2
〈M,M〉+

1

2
(trA− (en, Aen)) . (9.5)

This is a special, symmetric case of the Clebsch–Perelomov rigid body problem: the
inertia operator of the body is the identity on the Lie algebra so(n) (see [41]). Therefore the
angular velocity in the space frame Ω = Ẋ · X−1 and the angular velocity in the body frame
ω = X−1Ẋ are equal to the angular momentum in the space frame M and to the angular
momentum in the body frame m = X−1MX respectively.

The Hamiltonian (9.5) is invariant with respect to rotations in Rn−1 = span(e1, . . . , en−1),
i.e., it is right SO(n − 1)-invariant. In the right trivialization, the motion of the body is
described by the Euler–Poincaré equations

Ω̇ = [A, en ⊗ en] (9.6)

together with the Poisson equations

ėi = Ωei, i = 1, . . . , n. (9.7)
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Whence it is clear that the reduced flow is given by (9.6) and the last Poisson equation

ėn = Ωen. (9.8)

To prove the second assertion of Proposition 9.1, we rewrite equations (9.3) with respect
to the orthogonal decomposition (9.2). Then, from (9.8), we have ėn = pren(Ω)en and

pren(Ω) = ėn ∧ en = Φ(en, ėn). (9.9)

In view of (9.6) and (9.9), the time derivation of (9.8) reads

ën = Ω̇en +Ωėn = Ω̇en + pren(Ω)ėn + pren⊥(Ω)ėn

= (Aen ⊗ en − en ⊗ enA)en + (ėn ∧ en)ėn + pren⊥(Ω)ėn

= Aen − ((en, Aen) + (ėn, ėn)) en + FΩ ėn,

which concludes the proof. 2

Symmetric Clebsch–Perelomov–Bogoyavlenski rigid body systems. A similar re-
duction can be made for the Neumann systems on Vn,r and Gn,r by considering the motion
of a symmetric rigid body with the Hamiltonian

HCPB =
1

2
〈M,M〉+

1

2

r
∑

i=1

(ei, Aei) ,

which corresponds to a special (symmetric) case of the Bogoyavlenski generalization of the
Clebsch–Perelomov system (see [8]). Namely, in the space frame the motion is described by
the Euler–Poincaré equations

Ω̇ = [e1 ⊗ e1 + · · ·+ er ⊗ er, A] (9.10)

together with the Poisson equations (9.7). After substitutions

h = Ω and v = e1 ⊗ e1 + · · ·+ er ⊗ er

they take the closed form (6.8).
The system is right SO(r) × SO(n− r)-invariant with the momentum mapping

Ψ = Ψso(r) +Ψso(n−r), Ψso(r) = prso(r)(X
−1ΩX ), Ψso(n−r) = prso(n−r)(X

−1ΩX ),

where

so(r) = span{Ei ∧ Ej , 1 ≤ i < j ≤ r}, so(n− r) = span{Ei ∧ Ej , r + 1 ≤ i < j ≤ n}.

The reductions of (9.10), (9.7) to Ψ−1
so(n−r)(Oηso(n−r)

)/SO(n− r) and to

Ψ−1(Oηso(r)
×Oηso(n−r)

)/SO(r) × SO(n− r)

lead to the Neumann systems on the Stiefel variety Vn,r and, respectively, to the oriented
Grassmannian variety Gn,r under the influence of the Yang–Mills fields. In particular, if
ηso(r) = 0 (ηso(r) = ηso(n−r) = 0), we get the Neumann system with the normal metric on
Vn,r (respectively, the Neumann system on Gn,r).
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Magnetic Neumann flows on Vn,2 and Gn,2. The adjoint orbits in so(2) are points, so
a symplectic reduced space Ψ−1((ηso(2), 0))/SO(2)×SO(n− 2) is diffeomorphic to T ∗Gn,2.
For ηso(2) = ǫ E1 ∧ E2 6= 0, it represents the magnetic cotangent bundle T ∗Gn,2: the
canonical symplectic structure of T ∗Gn,2 is ”twisted” by adding the magnetic form, which
is exactly Kirillov–Konstant symplectic form on Gn,2 multiplied by ǫ (for more details see,
e.g., [31, 13]).

As above, for us it is convenient to write the equations in the Euler–Lagrange form. Due
to the presence of the magnetic form, the tangent bundle momentum mapping of the left
SO(n)-action is modified by adding the term ǫ e1 ∧ e2 (see [19, 13])

Φǫ = ė1 ∧ e1 + ė2 ∧ e2 + ǫ e1 ∧ e2 = [e1 ∧ e2, ė1 ∧ e2 + e1 ∧ ė2] + ǫ e1 ∧ e2 , (9.11)

whereas the right-hand side of the Neumann system (7.1) is modified by adding the term
ǫΦ0 (see [13])

d2

dt2
(e1 ∧ e2) = −Ae1 ∧ e2 − e1 ∧ Ae2

+((e1, Ae1)− (ė1, ė1) + (e2, Ae2)− (ė2, ė2)) e1 ∧ e2 (9.12)

+2ė1 ∧ ė2 + ǫ [e1 ∧ e2, ė1 ∧ e2 + e1 ∧ ė2].

Here e1, e2, ė1, ė2 satisfy the conditions (7.2). (Clearly, a similar symplectic reduction with
a magnetic term can also be applied on the Stiefel variety Vn,n−2 (see [44]).)

To construct the magnetic Neumann flows on T ∗Vn,2, consider closed 2-form

ωmag = de1 ∧ de2 =

n
∑

i=1

dei1 ∧ de
j
2

restricted to Vn,2. Let π : T ∗Vn,2 → Vn,2 be the canonical projection and define the sym-
plectic form

ωǫ = ω + ǫ π∗ωmag, (9.13)

where ω is the canonical form on T ∗Vn,2 (see Section 2).
The following two propositions can be verified by straightforward computations.

Proposition 9.3 The left SO(n)-action on (T ∗Vn,2, ωǫ) is Hamiltonian with the momen-
tum mapping given by

Φǫ = Φ + ǫ e1 ∧ e2 = p1 ∧ e1 + p2 ∧ e2 + ǫ e1 ∧ e2. (9.14)

Proposition 9.4 The Hamiltonian equations defined by the Hamiltonians of the Neumann
systems with the Euclidean metric and the Normal metric with respect to the symplectic
structure (9.13) read

ė1 = p1,

ė2 = p2, (9.15)

ṗ1 = −Ae1 + ((e1, Ae1)− (p1, p1)− ǫ(e1, p2)) e1 + ((e1, Ae2)− (p1, p2)) e2 + ǫ p2,

ṗ2 = −Ae2 + ((e1, Ae2)− (p1, p2)) e1 + ((e2, Ae2)− (p2, p2) + ǫ(e2, p1)) e2 − ǫ p1

and, respectively,

ė1 = Φ0e1 = p1 − (e1, p2)e2,

ė2 = Φ0e2 = p2 − (e2, p1)e1, (9.16)

ṗ1 = Φ0p1 −Ae1 + ((e1, Ae1)− ǫ(e1,Φ0e2)) e1 + (e1, Ae2)e2 + ǫΦ0e2,

ṗ2 = Φ0p2 −Ae2 + (e2, Ae1)e1 + ((e2, Ae2) + ǫ(e2,Φ0e1)) e2 − ǫΦ0e1 .
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Equations (9.15), (9.16) are right SO(2)-invariant and have integral Ψ12 = (e1, p2) −
(e2, p1). The magnetic Neumann system (9.12) can be also seen as a reduction of the
system (9.15), or (9.16) with respect to the right SO(2)-action.

Furthermore, for the systems (9.12), (9.15), (9.16) the relation (5.6) still holds in the
form

d

dt
Φǫ = [e1 ⊗ e1 + e2 ⊗ e2, A],

d

dt
(e1 ⊗ e1 + e2 ⊗ e2) = [Φǫ, e1 ⊗ e1 + e2 ⊗ e2],

which implies the Lax representation (5.7), where instead of the momentum mapping Φ one
should use Φǫ in (9.14).

Theorem 9.5 The magnetic Neumann systems (9.12), (9.15) and (9.16) are completely
integrable in the commutative sense with respect to the twisted symplectic structures described
above.

The proof is a simple modification of those of Theorems 6.1 and 7.1.

10 Appendix 2. Rank r Double, Coupled and Neumann

Systems on Complex Stiefel Manifolds

In this section we briefly consider several natural generalizations of the Neumann flows on
Stiefel varieties. We present their equations of motion and Lax representations, however a
complete verification of the integrability is out of the scope of this paper.

Rank r double Neumann system. In [47] Suris introduced the double Neumann system
describing the motion of 2 points x, y ∈ Rn which interact via the bilinear potential (x,Ay)/2
under the constraint (x, y) = 1.

We consider rank r double Neumann system defined by the Lagrangian function

L(X,Y, Ẋ, Ẏ ) = tr(ẊT Ẏ )− tr(XTAY ), (10.1)

where the n× r matrices X,Y ∈Mn,r(R) are subject to the constraints

XTY = Ir. (10.2)

The corresponding Euler–Lagrange equations with r × r matrix multipliers read:2

Ẍ = −AX +XΛT , Ÿ = −AY + Y Λ, (10.3)

where
Λ = XTAY − ẊT Ẏ . (10.4)

The rank r double Neumann system is an extension of the Neumann system on Vn,r
with the Euclidean metric: if (X(t), Y (t)) is a solution of the system (10.3) with the initial
conditions X = Y , Ẋ = Ẏ , then (X(t), P (t)) = (X(t), Ẋ(t)) is a solution of (5.5). The Lax
representation (8.1) extends as follows.

Theorem 10.1 The equations (10.3) imply the following 2r × 2r matrix Lax pair with the
parameter λ

d

dt
L(λ) = [L(λ),A(λ)] , (10.5)

L(λ) =

(

−XT (λIn −A)−1Ẏ −XT (In − λA)−1Y

Ir + ẊT (In − λA)−1Ẏ ẊT (λIn −A)−1Y

)

, A(λ) =

(

0 Ir
Λ− λIr 0

)

,

Λ being given by (10.4).

2For simplicity here we only give the Lagrangian description.
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Apart from the integrals provided by the Lax matrix L(λ), the equations also possess
the matrix integral XT Ẏ − Y T Ẋ associated to the GL(n,R)-symmetry

(X,Y, Ẋ, Ẏ ) 7−→ (XRT , Y R−1, ẊRT , Ẏ R−1), R ∈ GL(n,R).

Coupled Neumann system on Vn,r. This systems generalizes the motion of 2 points
x, y on the unit sphere Sn−1 ⊂ Rn that interact via the bilinear potential (x,Ay)/2. The
latter system was introduced in [44] (see also [47]).

Namely, let matrices X,Y ∈ Mn,r(R) define two points on Vn,r and let P,Q ∈ Mn,r(R)
represent their momenta such that

XTP + PTX = 0, Y TQ+QTY = 0.

Assume that the evolution of X,Y is described by the Hamiltonian

H = Tκ + tr(XTAY ), (10.6)

Tκ =
1

2
tr(PTP )−

(

1

2
+ κ

)

tr((XTP )2) +
1

2
tr(QTQ)−

(

1

2
+ κ

)

tr((Y TQ)2),

where Tκ is the kinetic energy of the points defined by an SO(n)-invariant metric on Vn,r,
which depends on the parameter κ. As above (see Section 3), for κ = −1/2 we have the
Euclidean metric and for κ = 0 the normal one. (Note that in the case r = 1 we have
XTP = Y TQ = 0, and all the above metrics coincide.)

The Hamilton equations with multipliers have the form

Ẋ = P − (1 + 2κ)XPTX,

Ṗ = −AY + (1 + 2κ)PXTP +XΛ,

Ẏ = Q− (1 + 2κ)Y QTY,

Q̇ = −AX + (1 + 2κ)QY TQ+QΠ,

(10.7)

with

Λ =
1

2
(XTAY + Y TAX)− PTP, Π =

1

2
(XTAY + Y TAX)−QTQ. (10.8)

Borrowing the terminology of [47], we call (10.7) the r-coupled Neumann systems on
Vn,r. They are invariant with respect to the right diagonal SO(r)-action on the product
T ∗Vn,r × T ∗Vn,r, and the corresponding matrix momentum XTP −PTX + Y TQ−QTY is
preserved along their flows.

The book [44] presented a ”big” Lax pair of the r-coupled systems with the so(n, n)-
matrices depending on parameter ν

L̇(ν) = [L(ν), A(ν)],

L(ν) =

(

0 A
A 0

)

ν +

(

PXT −XPT 0

0 QY T − Y QT

)

+

(

0 XY T

Y XT 0

)

ν−1, (10.9)

A(ν) = L+(λ) =

(

0 A
A 0

)

ν +

(

PXT −XPT 0

0 QY T − Y QT

)

,

0 being zero n × n block. Curiously, this Lax pair holds only for the case of the normal
metric (κ = 0), and not for the Euclidean one, as one might expect and as happens in the
case of the Neumann flows on T ∗Vn,r.

Below we also present the dual ”small” Lax representation. Introduce r × r matrix

Fλ(X,Y ) = XT (A2 − λ2)−1Y.
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Theorem 10.2 The coupled Neumann system (10.7) with κ = 0 admits the following Lax
pair with the spectral parameter λ

d

dt
L(λ) = [L(λ),A(λ)], (10.10)

L(λ),A(λ) being 4r × 4r matrices

L(λ) =









λFλ(P,X) λFλ(P, P ) Fλ(AP, Y ) −Ir + Fλ(AP,Q)
−λFλ(X,X) −λFλ(X,P ) −Fλ(AX, Y ) −Fλ(AX,Q)
Fλ(AQ,X) −Ir + Fλ(AQ,P ) λFλ(Q, Y ) λFλ(Q,Q)
−Fλ(AY,X) −Fλ(AY, P ) −λFλ(Y, Y ) −λFλ(Y,Q)









,

A(λ) =









XTP Λ 0 −λIr
Ir XTP 0 0
0 −λIr Y TQ Π
0 0 Ir Y TQ









,

and Λ, Π are given by (10.8).

Again, the proof is straightforward. For r = 1 the Lax pair (10.10) was given by Suris
in [47].

It is still not clear whether the r-coupled Neumann system with the Euclidean metric
admits a Lax representation. However, we can consider the following perturbation of the
Hamiltonian (10.6):

Hκ = Tκ + tr(XTAY )− 2κ tr(XTP Y TQ).

Then the corresponding flows imply the Lax representation with matrices (10) for any κ,
while the Lax representation (10.11) holds with XTP and Y TQ on the diagonal of A(λ)
replaced by (1+2κ)XTP +2κY TQ and 2κXTP +(1+2κ)Y TQ, respectively. In particular,
by taking κ = −1/2, we get the Lax representation of an r-coupled Neumann system with
the Euclidean metric and with an additional interacting term tr(XTP Y TQ).

Complex Stiefel manifolds. The Neumann systems and geodesic flows on Vn,r can be
extended to the complex Stiefel varieties Wn,r as well. Recall that Wn,r is the space of r
ordered orthogonal vectors (z1, . . . , zn) in Cn endowed with the standard Hermitian metric,
or equivalently, the set of n× r matrices Z ∈Mn,r(C) satisfying

Z̄TZ = Ir (10.11)

(see, e.g., [29]). The variety Wn,r can also be identified with the homogeneous space of the
unitary group: Wn,r

∼= U(n)/U(n − r). The real Stiefel variety Vn,r is thus a submanifold
of Wn,r given by the condition Z = Z̄.

While the idea of integrable geodesic flows onWn,r follows from the general construction
given for compact homogeneous spaces [10, 11, 12], to our knowledge, potential systems on
Wn,r for r > 1 were not studied yet.

We shall consider the Neumann system with the metric induced by the Hermitian metric
and defined by the Lagrangian function

L(Z, Z̄, Ż, ˙̄Z) =
1

2
tr(ŻT ˙̄Z)−

1

2
tr(ZTAZ̄). (10.12)

As above, the matrix A is a real diagonal n× n matrix.
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The Euler–Lagrange equations with multipliers read:

Z̈ = −AZ + ZΛ, ¨̄Z = −AZ̄ + Z̄Λ̄, (10.13)

where
Λ = Z̄TAZ − ˙̄ZT Ż = Λ̄T . (10.14)

Then the Neumann system on Vn,r with the Euclidean metric (5.5) can be regarded as
a subsystem of (10.13): if Z(t) is its solution on the complex Stiefel variety Wn,r with the

initial conditions satisfying Z = Z̄, Ż = ˙̄Z, then (X(t), P (t)) = (Z(t), Ż(t)) is a solution of
the Neumann system (5.5) on Vn,r, and vice versa.

We also have

Theorem 10.3 The Neumann system on the complex Stiefel manifold (10.13) imply the
2r × 2r matrix representation with the spectral parameter λ

d

dt
L(λ) = [L(λ),A(λ)] , (10.15)

L(λ) =

(

−ZT (λIn −A)−1 ˙̄Z −ZT (In − λA)−1Z̄

Ir + ŻT (In − λA)−1 ˙̄Z ŻT (λIn −A)−1Z̄

)

, A(λ) =

(

0 Ir
Λ̄− λIr 0

)

,

with Λ given by (10.14).

The system is invariant with respect to a right U(r)-action and the symmetry with
respect to the left action of U(1)n defined by

Z 7−→ diag(ρ1, . . . , ρn) · Z, ρi ∈ U(1), i = 1, . . . , n. (10.16)

The symmetries imply the conservation of u(n) and u(1)n momentum maps

ψ0 = ZT ˙̄Z − ŻT Z̄ and ψj =

r
∑

i=1

żji z̄
j
i − zji ˙̄z

j
i , j = 1, . . . , n,

where Z = (z1, . . . , zr).
Under the condition ρ1 = · · · = ρn, (10.16) defines the left U(1)-action, which is free.

Then we have a well defined reduced Neumann flow on the quotient space (complex projective
Stiefel variety) PWn,r =Wn,r/U(1).

On the other hand, the right U(r)-symmetry enables one to reduce the Neumann system
to the complex Grassmann variety GC(n, r) ∼= U(n)/U(r) × U(n − r) of r-dimensional
complex planes in Cn, or, in general, to U(n)-adjoint orbits O = U(n)/U(k1)×· · ·×U(kl)×
U(n− r), where k1 + k2 + · · ·+ kl = r.
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