
Bak–Sneppen type models and rank-driven processes

Michael Grinfeld,∗ Philip A. Knight,† and Andrew R. Wade‡
Department of Mathematics and Statistics

University of Strathclyde,
26 Richmond Street, Glasgow G1 1XH, UK

(Dated: November 9, 2010)

We analyse a surprising connection between Bak–Sneppen type models and much simpler Markov processes,
which we call rank-driven processes (RDPs).

PACS numbers: 02.50.Ga; 05.40,Fb; 05.65.+b; 07.23.Kg
Keywords: Bak–Sneppen model; thresholds; rank-driven Markov processes

INTRODUCTION

In [1], Bak and Sneppen introduced a very fruitful and
simple model of evolution that has proved surprisingly
hard to analyse. Despite the nearly 900 citations to that
paper in the literature [2], only a small number of rigor-
ous results have been obtained, such as those of Meester
and Znamenski [3] on the non-triviality of the steady-
state distribution. We hope that the approach of this letter
will stimulate new analytical results in this area.

The classical Bak–Sneppen model (BS) involves a ring
of N sites. Initially, we associate with the k-th site
(k ∈ {1, . . . , N}) a fitness value xk ∈ [0, 1] chosen from
the uniform distribution U [0, 1]. To perform an update of
the process, we choose the smallest of all the xk, xkmin

say, and replace xkmin and its two nearest neighbours
xkmin±1 (indices calculated modulo N ) by new inde-
pendent U [0, 1] random numbers. If the algorithm is it-
erated via simulation, and if N is large, the marginal dis-
tribution of the fitness at any particular site can be seen
numerically to evolve to a U [s∗, 1] distribution, where
simulations suggest that s∗ ≈ 0.667.

Several variations on this model have been considered
in the literature. One is the anisotropic Bak–Sneppen
(aBS) model, in which, in addition to the smallest fitness,
only its right-hand nearest neighbour is replaced. The
phenomena are qualitatively the same as in the original
BS model: the aBS model also gives rise (according to
large-N simulations) to a threshold value s∗, which in
this case is approximately 0.724 [4]. The aBS model is
the main focus of this letter. The reason for choosing aBS
over BS is that the calculations are easier while similar
arguments can be used in the two cases.

Another variant on the BS model is the ‘mean field’
version of [5, 6], in which one replaces the smallest fit-
ness and K − 1 randomly chosen ones; a generalization
of the K = 2 version of that model is studied in [7].

RANK DRIVEN PROCESSES

As in BS, consider a set of N sites, each site k popu-
lated by a real number xk in [0, 1]; now we do not specify
any topology for the sites. A rank driven process (RDP)
is a discrete-time Markov process on the ‘N -simplex’

∆N = {(x(1), . . . , x(N)) : 0 ≤ x(1) ≤ · · · ≤ x(N) ≤ 1};

x(1), . . . , x(N) are the (increasing) order statistics of
x1, . . . , xN . The RDP evolves according to the follow-
ing Markovian rule. At each step, K of the xk-values
are selected according to rank by sampling (without re-
placement, according to some specified probability dis-
tribution) from {1, 2, . . . , N}; that is, the sample from
{1, 2, . . . , N} specifies the x(k) that are chosen. The
chosen xk-values are replaced by new (independent) ran-
dom numbers, e.g. from U [0, 1] (as we will do below), or
from some other probability distribution.

An example of a RDP is one that evolves by picking
the smallest value with probability one and replacing it
by a U [0, 1] value. One that always picks the smallest
value together with some other value selected with equal
probability 1/(N−1) for each possibility, is also an RDP,
and is the mean-field version of aBS considered by de
Boer et al. [5] and Labzowsky and Pis’mak [6].

We are most interested in the case where one replaces
the smallest value and the k-th ranked value, k ≥ 2,
with probability fN (k). Thus fN (k) ≥ 0, k ≥ 2 and∑N

k=2 fN (k) = 1. Here we discuss only the case where
the replacement fitness values are drawn from the U [0, 1]
distribution. We will call such an RDP a class A RDP
with distribution fN . Thus the model of [5] is a class A
RDP with fN (k) = 1/(N − 1).

In [7], by considering the random walk associated with
a class A RDP, we show that a crucial quantity is

α = lim
n→∞

lim
N→∞

n∑
k=2

fN (k), (1)
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assuming that the N -limit exists. Here α ∈ [0, 1] mea-
sures the “atomicity” of fN as N → ∞. For example,
for the mean field aBS of [5] one has α = 0, while if
we always replace the smallest and the second smallest
elements, α = 1. The main result of [7] is that the thresh-
old in the limiting (N →∞) stationary distribution of x
values in a class A RDP is given by

s∗ =
1 + α

2
. (2)

We give a sketch of the argument for (2) in the next sec-
tion.

A second result of [7] shows that the limiting marginal
distribution at stationarity is U [s∗, 1], where s∗ is given
by (2), provided that the selection distribution fN is
‘eventually uniform’ in the sense that

fN (k) ≈ 1− α
N

(3)

for k sufficiently large. This condition is satisfied with
α = 0 for the mean field aBS of [5], showing that the
limiting distribution is indeed U [1/2, 1] as indicated by
[5].

THRESHOLDS IN CLASS A RDPS

We give a brief indication of the origin of the thresh-
old formula (2); see [7] for details. Consider the s-
counting process Nt(s) defined to be the number of xk-
values in the interval [0, s] after t iterations of the RDP.
Then Nt(s) is a Markov chain on the finite state-space
{0, 1, . . . , N}. The threshold s∗ relates to the limiting
(t → ∞ then N → ∞) marginal distribution of an ar-
bitrary xk. The probability that a randomly chosen xk-
value is less than s is E[Nt(s)]/N (where E denotes ex-
pected value). Thus a natural way to define a threshold
s∗ is

s∗ = sup{s ≥ 0 : lim
N→∞

lim
t→∞

N−1E[Nt(s)] = 0};

the t-limit exists by Markov chain limit theory and it can
be shown that the N -limit exists too, so that s∗ is well
defined [7].

To evaluate s∗, we compute the mean drift of Nt(s):

E[Nt+1(s)−Nt(s) | Nt(s) = n]

= 2s− (1 + FN (n))1{n > 0}, (4)

where FN (n) =
∑n

k=2 fN (k) and an empty sum is 0.
Heuristically, for large N and large n, FN (n) ≈ α by

(1) so that this drift is approximately 2s−1−α, and set-
ting this equal to zero gives (2). One expects that the
drift being zero indicates the threshold behaviour, be-
cause a positive (negative) drift would mean Nt(s) in-
creases (decreases). In this argument there are several
limits involved (n,N, t all going to ∞) that need to be
handled with care.

We outline the half of the argument showing
that s∗ ≥ (1 + α)/2. We need to show that
limN→∞ limt→∞N−1E[Nt(s)] = 0 for s < (1+α)/2.
Fix s < (1 + α)/2 for the remainder of this section. We
have from (4) and (1) that for some ε > 0, someA <∞,
and some N0 <∞,

E[Nt+1(s)−Nt(s) | Nt(s) = n] ≤ −ε,

for all n ≥ A and all N ≥ N0. That is, Nt(s) satisfies
a Foster–Lyapunov condition [8] uniformly in N . Thus
Nt(s) is an ergodic Markov process, and a uniform inte-
grability argument shows that limt→∞E[Nt(s)] exists,
and is bounded uniformly in N . This is a key step in
showing limN→∞ limt→∞E[Nt(s)] < ∞, which is a
stronger result than the one required. We refer to [7] for
the details.

RDPS AND ABS

Surprisingly, Bak–Sneppen type models, which are
defined in terms of nearest neighbours of the smallest
element, are closely connected to RDPs. Assume that
for aBS, we can define a probability distribution fN (·)
on {2, . . . N}, fN (k) being the equilibrium probability
that the right nearest neighbour of the smallest element
is k-th ranked. In other words, if we let P (k,M) be the
number of times the k-th ranked element, k ≥ 2, is the
right neighbour of the smallest element in M iterations
of the aBS algorithm, we put

fN (k) = lim
M→∞

1

M
P (k,M). (5)

Heuristically, we expect that given suitable ergodicity
properties for the aBS Markov process on the uncount-
able state space [0, 1]N , this limit will exist with proba-
bility one.

If fN given by (5) is well-defined, one can consider
the class A RDP with the same distribution fN . We claim
that this RDP shares many properties with the aBS pro-
cess. We first describe simulation evidence to this effect.
At the end of this section we discuss further progress that
is required to obtain a theoretical understanding of the
link between the two processes.
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Numerically, we have convincing evidence that fN
given by (5) is well-defined and monotone decreasing,
and that the limit limN→∞ fN (k) is well-defined for all
k, so that α defined by (1) exists. Figure 1 shows ap-
proximations to fN (k) for small values of k for differ-
ent values of N . We see that for a given N , fN (k) de-

FIG. 1. Plot of fN (k), k ∈ {2, . . . , 150} for N =
250, 1000, 20000.

cays rapidly for small k before settling down to a uniform
value. In fact, it appears that there is a constant C such
that fN (k) = C/N for large enough k. Thus the numer-
ical evidence supports the eventual uniformity condition
(3). Hence α = 1−C. Numerical results give α ≈ 0.445
and hence s∗ ≈ 0.723, in close agreement with the simu-
lations of [4]. Note that fN (2) ≈ 0.209 for all the values
of N in Figure 1.

FIG. 2. Size distribution n(l) of s avalanches in aBS (solid
line) and RDP (dashed) for s = 0.5, 0.68 and N = 1000.

Following [1] we define the length of an s avalanche
to be l if the number of consecutive steps for which the
smallest fitness value stays below s is l. We compute the
distribution n(l) of avalanche lengths for aBS and our
RDP. Representative distributions are given in Figure 2.
As s approaches s∗ we find that n(l) shows the power
law behaviour characteristic of self-organized criticality,

although there is a small but clear difference in the expo-
nents of the two processes.

The numerical evidence, beyond the coincidence of
the thresholds, strongly suggests that the RDP with fN
given by (5) is closely related to aBS. For example, as
noted above, the two processes share the U [s∗, 1] limit-
ing distribution. The exact relationship of the two pro-
cesses remains to be characterized rigorously. If one
wished to define a Markov process on ∆N whose sta-
tionary distribution coincided with the projection onto
∆N of the stationary distribution of aBS, a natural can-
didate would be a RDP with state-dependent selection
distribution: instead of a single fN (·) one would have
a family fN ( · ;x) selection distributions conditioned on
the state x ∈ ∆N . Thus, assuming it exists, one would
take fN ( · ;x) to be the stationary distribution for aBS
of the right-neighbour of the smallest element condi-
tional on the projection of the current state onto ∆N be-
ing x. The fact that the numerical evidence described
above suggests that one can proceed not with a state-
dependent RDP based on fN ( · ;x) but with the simpler
class A RDP based on fN ( · ) (which is an average of the
fN ( · ;x)) seems to point to some important underlying
property of aBS itself. Two possible explanations would
be:

(a) fN ( · ) = fN ( · ;x) for all x, i.e., at stationar-
ity there is some independence between the or-
der statistics and the permutation that maps sites
to ranks; or

(b) fN ( · ;x) satisfies (uniformly in x) the same
asymptotic conditions as fN ( · ) that are central to
the limit behaviour, namely (1) and (3).

The stronger fact (a) would suggest that the stationary
distribution of the class A RDP coincides with the pro-
jection of the stationary distribution of aBS onto ∆N , so
that the two processes share the same detailed equilib-
rium properties. The weaker fact (b) would suffice to
explain why the two processes share the same threshold
and characteristic U [s∗, 1] limit distribution. Finally, we
remark that the distributions fN ( · ;x) seem to be very
difficult to evaluate numerically for aBS.

CONCLUSIONS

The distribution fN (k) and the quantity α of (1) cap-
ture the build-up of correlations in Bak–Sneppen type al-
gorithms, the threshold behaviour of which can be anal-
ysed exactly by considering the Nt(s) Markov process
on a countable state space.
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The class of RDPs that we have introduced is of inter-
est in its own right. Numerical evidence suggests that
by choosing as parameter for the RDP an appropriate
statistic (fN ( · )) of aBS, one can replicate the asymptotic
behaviour of aBS by the RDP, for which one can prove
rigorous results more easily. The remaining analytical
challenge is to clarify the relationship between aBS and
the class A RDP. This involves at least two main parts:
(i) proving the existence of the distributions fN and of
the limit as N → ∞; and (ii) determining the property
of aBS that allows us to use fN ( · ) instead of the condi-
tional version fN ( · ;x). If one can make precise the con-
nection between aBS and the RDP, one should be able to
transfer rigorous results for RDPs [7] to aBS.

We note that in the case of the classical BS process
the same argument apply, though now fN is a function
of two variables, fN (k, `), k ∈ {2, . . . N − 1}, ` ∈
{k + 1, . . . , N}.
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