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On rational solutions of multicomponent and matrix KP

hierarchies
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Abstract

We derive some rational solutions for the multicomponent and matrix KP hierarchies gen-
eralising an approach by Wilson. Connections with the multicomponent version of the KP/CM
correspondence are discussed.

1 Introduction

The KP hierarchy is an integrable hierarchy of partial differential equations generated by a pseudo-
differential operator of the form

L = D + u1D
−1 + u2D

−2 + . . . (1)

Here the (ui)i≥1 are elements of a differential algebra A of smooth functions of a variable x (with
D = ∂/∂x) and a further infinite family of variables t = (ti)i≥1 . The evolution of L is determined
by the following system of Lax-type equations:

∂kL = [Bk, L] (k ≥ 1) (2)

where ∂k = ∂/∂tk and Bk = (Lk)+. All these equations commute, and the variable x may be
identified with t1. This hierarchy of equations is naturally viewed as a dynamical system defined
on an infinite-dimensional Grassmann manifold, as discovered by Sato [9]. In [10] Segal and Wilson
developed a very general framework for building solutions to the KP hierarchy out of the points of
a certain Grassmannian Gr(H) of closed subspaces in a Hilbert space H .

The multicomponent KP hierarchy (mcKP) is a generalisation of the KP hierarchy obtained by
replacing A with the differential algebra of r × r matrices whose entries belong to an algebra of
smooth functions of a variable x and r further families of variables

t
(1) = (t

(1)
i )i≥1 . . . t

(r) = (t
(r)
i )i≥1

which we will collectively denote by t̄. The operator (1) now becomes

L = D + U1D
−1 + U2D

−2 + . . . (3)
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where (Ui)i≥1 are r × r matrices. To define the evolution of L we introduce a set of r matrix
pseudo-differential operators Rα of the form1

Rα = Eα +R1αD
−1 +R2αD

−2 + . . . (4)

where Eα is the matrix with 1 in the entry (α, α) and zero elsewhere. These operators are required
to satisfy the equations [L,Rα] = 0, [Rα, Rβ ] = 0 and

∑

αRα = Ir (it can be shown that such
operators do exist). The evolution equations for the mcKP hierarchy are then

∂kαL = [Bkα, L] (k ≥ 1, α = 1 . . . r) (5)

where ∂kα = ∂/∂t
(α)
k and Bkα = (LkRα)+. The variable x may be identified with

∑

γ t
(γ)
1 ; if we

define also for each k ≥ 2 the new variables tk =
∑

γ t
(γ)
k then the corresponding flows determine a

sub-hierarchy of equations that we call the matrix KP hierarchy.
In [12] George Wilson obtained a complete classification of the rational solutions to the KP

hierarchy. More precisely, he proved that the coefficients of an operator L satisfying (1) are proper
(i.e., vanishing at infinity) rational functions of x exactly when L comes from a point of a certain
sub-Grassmannian of Gr(H), which he called the adelic Grassmannian. This space turns out to be
in one-to-one correspondence with the phase space of the rational Calogero-Moser system [13]; this
provides a geometric explanation for the phenomenon, first noticed by Krichever in [6], that the
poles of a rational solution to the KP equation evolve as a system of point particles described by
the Calogero-Moser Hamiltonian. On the other hand, the adelic Grassmannian may also be seen
as the moduli space of isomorphism classes of right ideals in the Weyl algebra [2], thereby linking
the subject to the emerging field of noncommutative algebraic geometry. This web of connections
is sometimes referred to as the “KP/CM correspondence” (see also [1] for a wider perspective on
that matter).

The purpose of this paper is to establish some rationality results, obtained in the author’s PhD
Thesis [11], for the solutions of multicomponent and matrix KP hierarchies. Our main motivation
is to understand how the above-mentioned results generalise to the multicomponent setting. The
paper is organised as follows. In section 2 we briefly recall the mapping between points in the
r-component Segal-Wilson Grassmannian Gr(r) and solutions of multicomponent KP. In section
3 we analyse the multicomponent rational Grassmannian Grrat(r) and display an explicit formula
for the Baker and tau functions associated to these points. In section 4 we prove two rationality
results: in Theorem 2 we consider mcKP solutions coming from certain (very special) points in
Grrat(r), whereas in Theorem 3 we restrict to the matrix KP hierarchy but consider a much larger
subset of Grrat(r). Finally in section 5 we briefly comment on the relevance of these results for the
multicomponent version of the KP/CM correspondence.

Acknowledgements. The author would like to thank George Wilson, Igor Mencattini, Claudio
Bartocci and Volodya Rubtsov for helpful discussions related to this work.

2 Preliminaries

We start by briefly recalling the definition of the r-component Segal-Wilson Grassmannian [10, 8].
Consider the Hilbert space H(r) = L2(S1,Cr); its elements can be thought of as functions C → Cr

1Greek indices will henceforth run from 1 to r.
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by embedding S1 in the complex plane as the circle γR with centre 0 and radius R ∈ R+. We have

the splitting H(r) = H
(r)
+ ⊕ H

(r)
− in the two subspaces consisting of functions with only positive

(resp. negative) Fourier coefficients, with associated orthogonal projections π±. The Segal-Wilson
Grassmannian of H(r), denoted by Gr(r), is the set of all closed linear subspaces W ⊆ H(r) such
that π+|W is a Fredholm operator of index zero and π−|W is a compact operator.

If we take the elements of H(r) to be row vectors for definiteness, the loop group LGL(r,C)
naturally acts on H(r) (hence on Gr(r)) by matrix multiplication from the right. We define Γ+(r)
as the subgroup consisting of diagonal matrices of the form2

diag(g1, . . . , gr) with gα ∈ Γ+ (6)

where Γ+ is the group of analytic functions g : S1 → C∗ that extend to holomorphic functions on the
disc { z ∈ CP 1 | |z| ≤ R } and such that g(0) = 1 (cfr. [10]). It follows that for each gα there exists

a holomorphic function fα such that gα = efα (with fα(0) = 0), and by letting fα =
∑

i≥1 t
(α)
i zi

we have
gα(z) = exp

∑

i≥1

t
(α)
i zi (7)

Thus a generic matrix g ∈ Γ+(r) may be written in the form

g = expdiag(
∑

i≥1

t
(1)
i zi, . . . ,

∑

i≥1

t
(r)
i zi) (8)

and is totally described by the family of coefficients t̄ = (t(1), . . . , t(r)).
We now recall the mapping between points of Gr(r) and solutions to the multicomponent KP

hierarchy. In what follows we will say that a matrix-valued function ψ(z) belongs to a subspace
W ∈ Gr(r) if and only if each row of ψ, seen as an element of H(r), belongs to W .

For every W ∈ Gr(r) we define

Γ+(r)
W := { g ∈ Γ+(r) |Wg−1 is transverse} (9)

where “transverse” means that the orthogonal projection Wg−1 → H
(r)
+ is an isomorphism. For

any g ∈ Γ+(r)
W the reduced Baker function associated to W and g is the matrix-valued function

ψ whose row ψα is the inverse image of eα ∈ H
(r)
+ (the α-th element of the canonical basis of Cr)

by π+|Wg−1 . It follows straightforwardly that

ψ̃W (g, z) = Ir +
∑

i≥1

Wi(g)z
−i (10)

for some matrices (Wi)i≥1. Now, since each row of the matrix ψ̃W belongs to the subspace Wg−1,

each row of the product matrix ψ̃W g will belong to W ; the Baker function associated to W is the
map ψW which sends g ∈ Γ+(r)

W to this matrix:

ψW (g, z) =

(

Ir +
∑

i≥1

Wi(g)z
−i

)

g(z) (11)

2More generally, we could consider the subgroup determined by a maximal torus of type r (where r is any partition
of r) in GL(r,C); this gives rise to the so-called Heisenberg flow of type r. However, as shown e.g. in [4], these flows
are simply the pullback on Gr(r) of multiple lower-dimensional mcKP flows.
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Notice that for every η ∈ LGL(r,C) one has ψ̃Wη(g, z) = ψ̃W (gη−1, z), so that

ψWη(g, z) = ψW (gη−1, z) · η (12)

We now recall that expressions such as (11) are in one-to-one correspondence with zeroth-order
pseudo-differential operators of the form

KW = Ir +
∑

i≥1

Wi(t̄)D
−i (13)

where we consider g as a function of the coefficients t̄ defined by (8). From KW we can define a
first order pseudo-differential operator LW via the following prescription (“dressing”):

LW = KWDK−1
W (14)

The following result was proved in [3]:

Theorem 1. For any pointW ∈ Gr(r) the operator LW defined by (14) satisfies the multicomponent
KP equation.

We remark that the correspondence (14) is not one-to-one: if K ′ = KC where C = Ir +
∑

j≥1 CjD
−j for some family (Cj)j≥1 of constant diagonal matrices then L = L′. At the level

of Gr(r) this “gauge freedom” is expressed by the action of the group Γ−(r) consisting of diag-
onal r × r matrices of the form diag(h1, . . . , hr), where each hα belongs to the group (denoted
Γ− in [10]) of analytic functions h : S1 → C∗ that extend to holomorphic functions on the disc
{ z ∈ CP 1 | |z| ≥ R } and such that h(∞) = 1.

Another way to describe the Baker function associated to a point of Gr(r) relies on the so-called
tau function. Here we do not need to enter into the details of its definition (see again [3]); the key
fact is that to each subspace W ∈ Gr(r) we can associate certain holomorphic functions on Γ+(r),
denoted τW and τWαβ for each pair of indices α 6= β, determined up to constant factors, such that
the following equality (“Sato’s formula”) holds:

ψ̃W (g, z)αβ =















τW (gqzα)

τW (g)
if α = β

z−1 τWαβ(gqzβ)

τW (g)
if α 6= β

(15)

where for each z ∈ C and α = 1, . . . , r we define qzα to be the element of Γ+(r) that has qz(ζ) := 1− ζ
z

at the (α, α) entry and 1 elsewhere on the diagonal.

3 The multicomponent rational Grassmannian

3.1 Definition

For the sake of brevity we will denote by R the space of rational functions on the complex projective
line CP 1, by P the subspace of polynomials and by R− the subspace of proper (i.e., vanishing at
infinity) rational functions. We consider the space Rr of r-tuples of rational functions with the
direct sum decomposition

Rr = Pr ⊕Rr
− (16)
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and associated canonical projection maps π+ : Rr → Pr and π− : Rr → Rr
−.

We define the Grassmannian Grrat(r) as the set of closed linear subspaces W ⊆ Rr for which
there exist polynomials p, q ∈ P such that

pPr ⊆W ⊆ q−1Pr (17)

The virtual dimension ofW , denoted vdimW , is the index of the (Fredholm) operator p+ := π+|W ;
one has

vdimW = dimW ′ − r deg p (18)

where W ′ :=W/pPr is finite-dimensional. We denote by Grrat(r) the subset of Grrat(r) consisting
of subspaces of virtual dimension zero.

This space can be embedded in the r-component Segal-Wilson Grassmannian Gr(r) by the
following procedure: given W ∈ Grrat(r), we choose the radius R ∈ R+ involved in the definition
of Gr(r) such that every root of the polynomial q appearing in (17) is contained in the open disc
|z| < R; then the restrictions f |γR

for all f ∈ W determine a linear subspace whose L2-closure

belongs to Gr(r). This embedding automatically defines a topology on Grrat(r) and its subspaces
by restriction.

Lemma 1. A subspace W ∈ Grrat(r) has virtual dimension zero if and only if the codimension of
the inclusion W ⊆ q−1Pr coincides with r deg q.

Proof. Condition (17) may be rewritten as qpPr ⊆ qW ⊆ Pr, so that the codimension of W in
q−1Pr is the same as the codimension of qW in Pr, namely dimPr/qW . Taking the quotient of
both those spaces by the common subspace qpPr we get an isomorphic linear space which is the
quotient of two finite-dimensional spaces:

Pr

qW
∼=

Pr/qpPr

qW/qpPr

Moreover, qW/qpPr ∼=W/pPr =W ′, so that

codimq−1Pr W = r(deg q + deg p)− dimW ′

By using (18) we finally get

codimq−1Pr W = r deg q − vdimW (19)

from which the lemma follows.

Let’s introduce a more algebraic description for Grrat(r) in the same vein as [12]. For every
k = 1, . . . , r, s ∈ N and λ ∈ C we define the linear functional evk,s,λ on Pr by

〈evk,s,λ, (p1, . . . , pr)〉 = p
(s)
k (λ)

These functionals are easily seen to be linearly independent; we denote by C (r) the linear space
they generate, and think of it as a space of “differential conditions” we can impose on r-tuples of
polynomials. We also set

C
(r)
λ := span{evk,s,λ}1≤k≤r, s∈N
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and
C

(r)
t,λ := span{evk,s,λ}1≤k≤r, 0≤s<t

with the convention that C
(r)
0,λ = {0}.

Given c ∈ C (r), the finite set of points λ ∈ C such that the projection of c on C
(r)
λ is nonzero

will be called the support of c. For every linear subspace C ⊆ C (r), its annihilator

VC := { (p1, . . . , pr) ∈ Pr | 〈c, (p1, . . . , pr)〉 = 0 for all c ∈ C }

is a linear subspace in Pr.

Lemma 2. A subspace W ⊆ Rr belongs to Grrat(r) if and only if there exist a finite-dimensional
subspace C ⊆ C

(r) and a polynomial q such that W = q−1VC ; moreover W ∈ Grrat(r) if and only
if r deg q = dimC.

Proof. Let’s suppose that W = q−1VC for some finite-dimensional subspace C in C (r) and let
{λ1, . . . , λm} be the support of C. For every i = 1, . . . ,m let ti be the maximum value of s for the
functionals evk,s,λi

involved in the elements of C. By letting p :=
∏m

i=1(z − λi)
ti+1 it follows that

pPr ⊆ VC , hence a fortiori pqPr ⊆ VC ⊆ Pr and dividing by q we see that W ∈ Grrat(r). Now, if
r deg q = dimC then codimPr VC = dimC = r deg q and lemma 1 implies that W ∈ Grrat(r).

For the converse, let W ∈ Grrat(r). Then there exist p, q ∈ P such that qpPr ⊆ qW ⊆ Pr; this
means in particular that the linear space qW is obtained by imposing a certain (finite) number of
linearly independent conditions in the dual space of Pr/qpPr. The latter can be identified with
Cr⊗U , where U is the linear space of polynomials with degree less than deg p+deg q, so that qW is
determined by a finite-dimensional subspace in (Cr⊗U)∗. On the other hand, this space is generated
by the elements of C

(r) (e.g. using the functionals 1
s! evk,s,0 that extract the s-th coefficient of the

k-th polynomial). Thus, there exists a linear subspace C ⊆ C (r) of finite dimension such that
VC = qW . If moreover vdimW = 0, then by (18) the linear space W ′ ∼= qW/qpP has dimension
r deg p, so that it must be defined by r deg p linearly independent conditions. It follows that the
subspace C has dimension r deg q.

In the sequel, the subspace q−1VC singled out by this lemma will be denoted simply by (C, q)∗.

Lemma 3. Two subspaces W1 = (C, q1)
∗ and W2 = (C, q2)

∗ determined by the same conditions
space C in Grrat(r) lie in the same Γ−(r)-orbit.

Actually, the matrix η := q1
q2
Ir belongs to Γ−(r) (notice that q1 and q2 are both of degree

r dimC) and is such that W1η =W2.
We say that a finite-dimensional subspace C ⊆ C (r) is homogeneous if it admits a basis consisting

of “1-point conditions”, i.e. differential conditions each one involving a single point:

C =
⊕

λ∈C

Cλ where Cλ := C ∩ C
(r)
λ (20)

We denote by Grhom(r) the set of subspaces (C, q)∗ ∈ Grrat(r) such that C is homogeneous,
dimCλ = rnλ for some natural numbers nλ ∈ N and q = qC , where

qC :=
∏

λ∈C

(z − λ)nλ (21)
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3.2 The Baker and tau functions

We would now like to determine the Baker function of a point (C, q)∗ ∈ Grrat(r). By Lemma 3 it
is enough to consider the case q = zd. Thus, we suppose that dimC = rd and take the subspace
W = (C, zd)∗; we claim that ψW must have the form

ψW (g, z) =

(

Ir +
d
∑

j=1

Wj(g)z
−j

)

g(z) (22)

Indeed, by standard arguments (cfr. [12, Sect. 4]), on the one hand we have that each row of the

matrix-valued function zdψW (g, z) (for every fixed g) belongs to the L2-closure of VC in H
(r)
+ (for

some value of the radius R), and on the other hand that each functional evk,s,λ extends uniquely

to a continuous functional on H
(r)
+ ; hence (zdψW )α ∈ VC for every α. Now,

(zdψW )αβ =

(

zdδαβ +
∑

j≥1

Wjαβ(g)z
d−j

)

gβ(z)

and if we require every matrix element to be a polynomial, we see that every Wj with j > d must
be the zero matrix.

To determine the matrices W1, . . . ,Wd, let (c1, . . . , crd) be a basis for C; for each α we take the
α-th row of zdψW and impose the equalities 〈ci, (z

dψW )α〉 = 0 (with i = 1, . . . , rd). This yields the
following linear system of equations:

〈ci,

(

zdδαβ +

d
∑

j=1

Wjαβ(g)z
d−j

)

gβ(z)〉 = 0 (23)

In other words, we have a family of r linear systems, each of which involves rd equations, for a total
of r2d scalar equations. The unknowns are of course the r2 entries of the d matrices {W1, . . . ,Wd};
the coefficients of these unknowns involve, as in the scalar case, the gβ ’s and their derivatives
evaluated at the points in the support of C.

The tau functions associated to W = (C, zd)∗ ∈ Grrat(r) are readily obtained by imitating the
calculations in [3]; they are built out of the following family of (rd+1)× (rd+1) matrices (indexed
by α, β = 1, . . . , r):

Mαβ :=













































〈c1, g1〉 . . . 〈crd, g1〉 0
...

... z−d

〈c1, gr〉 . . . 〈crd, gr〉 0
〈c1, zg1〉 . . . 〈crd, zg1〉 0

...
... z1−d

〈c1, zgr〉 . . . 〈crd, zgr〉 0
...

...
...

...
〈c1, z

d−1g1〉 . . . 〈crd, z
d−1g1〉 0

...
... z−1

〈c1, z
d−1gr〉 . . . 〈crd, z

d−1gr〉 0
〈c1, z

dgα〉 . . . 〈crd, z
dgα〉 δαβ













































(24)
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where in the last column the only nonzero element is on the β-th row of each block. Notice that in
an expression like 〈ci, gγ〉, gγ must be interpreted as the row vector having gγ in its γ-th entry and
zero elsewhere.

In terms of these matrices, the “diagonal” tau function τW is simply the cofactor of the element
δαβ = 1 in the lower right corner, or equivalently the determinant of the rd× rd minor obtained by
deleting the last column and the last row:

τW (g) = det(〈ci, z
j−1gγ〉) i=1...rd

j=1...d, γ=1...r
(25)

This is just the matrix of coefficients of the linear system (23), so that the system has a solution
exactly when g ∈ Γ+(r)

W , as expected. The “off-diagonal” tau function τWαβ (with α 6= β) is the
cofactor of the element z−1 in the last column:

τWαβ(g) = (−1)r−β det(〈ci, z
j−1(gγ + δjdδγβ(zgα − gγ))〉) i=1...rd

j=1...d, γ=1...r
(26)

Observe that an expression such as zj−1gγ may equivalently be read as ∂j−1
1γ gγ ; this will be useful

in what follows.

4 Rational solutions

We can now prove a rationality result for the solutions of the mcKP hierarchy coming from subspaces
in Grhom(r) defined by a set of condition whose support is a single point.

Theorem 2. Let W ∈ Grhom(r) and suppose that W = (C, qC)
∗ with C supported on a single point

λ ∈ C. Then:

1. Each diagonal entry of the reduced Baker function ψ̃W is a rational function of the times

t
(1)
1 , . . . , t

(r)
1 that tends to 1 as t

(α)
1 → ∞ for any α;

2. The tau function τW is a polynomial in t
(1)
1 , . . . , t

(r)
1 with constant leading coefficient.

Proof. The two statements are equivalent by virtue of the diagonal part of Sato’s formula (15), so
it suffices to prove one of them; we choose the first. By hypothesis we haveW = (C, (z−λ)d)∗ with

C ⊆ C
(r)
λ of dimension rd; let (c1, . . . , crd) be a basis for it. Consider the subspace U := (C, zd)∗ ∈

Grrat(r); its tau function is given by (25). To compute the diagonal elements of the corresponding
Baker function we use Sato’s formula for U :

ψ̃Uαα =
τU (gqζα)

τU (g)
(27)

(here we consider ζ as a parameter and z as a variable). Since we are only interested in the times

with subscript 1 we will work in the stationary setting, i.e. we put t
(α)
k = 0 for every k ≥ 2,

α = 1 . . .m. Each condition ci is supported at λ, hence we can define a family of polynomials

{φiγ}i=1...rd, γ=1...r (with φiγ only depending on t
(γ)
1 ) by the equation

〈ci, gγ〉 = gγ(λ)φiγ (28)

8



To apply (27) we need to know the determinant of the matrices ∂j−1
1γ 〈ci, gγ〉 and ∂j−1

1γ 〈ci, gγ(1 −
δαγ

z
ζ
)〉. As for the first, by using (28) its generic element can be written in the form

∂j−1
1γ 〈ci, gγ〉 = ∂j−1

1γ (gγ(λ)φiγ) = gγ(λ)(∂1γ + λ)j−1φiγ (29)

For the second matrix we have

∂j−1
1γ 〈ci, gγ(1− δαγ

z

ζ
)〉 = ∂j−1

1γ 〈ci, gγ〉 − ∂j−1
1γ 〈ci, δαγgγ

z

ζ
〉 (30)

The first term is exactly (29), whereas the second is

δαγ∂
j
1γ〈ci, gγ〉ζ

−1 = δαγ∂
j
1γ(gγ(λ)φiγ)ζ

−1 = δαγgγ(λ)(∂1γ + λ)jφiγζ
−1

By putting all together, equation (30) becomes

gγ(λ)(∂1γ + λ)j−1
(

φiγ − δαγ(∂1γφiγ + λφiγ)ζ
−1
)

that we can rewrite as

gγ(λ)(1 − δαγ
λ

ζ
)(∂1γ + λ)j−1

(

φiγ − δαγ
1

ζ − λ
∂1γφiγ

)

(31)

But (1− δαγ
λ
ζ
) = qζα(λ)γ , so plugging (29) and (31) into (27) we obtain

ψ̃Uαα(g, ζ) = (qζ(λ))
d
det
(

(∂1γ + λ)j−1(φiγ − δαγ
1

ζ−λ
∂1γφiγ)

)

det ((∂1γ + λ)j−1φiγ)
(32)

The factor (qζ(λ))
d disappears when we go back from ψU to ψW ; we are left with the ratio of

two determinants of matrices with polynomial entries in the times t
(γ)
1 , which is clearly a rational

function. Moreover, if we expand the numerator of (32) by linearity over the sum, we see that
the term obtained by always choosing φiγ exactly reproduces the polynomial at the denominator,

and all the other terms involve a polynomial which has degree strictly lower than τ in some t
(γ)
1

(since we replace φiγ with one of its derivatives); this proves that ψ̃Wαα → 1 as all the t
(α)
1 tend to

infinity.

We now consider the evolution on Gr(r) described by the flows of the matrix KP hierarchy.

Recall from the Introduction that these are given by the vector fields ∂/∂tk, where tk =
∑

γ t
(γ)
k .

Equivalently, we can take the matrix g ∈ Γ+(r) to be of the form

g = diag(eξ(r
−1

t,z), . . . , eξ(r
−1

t,z)) (33)

where t = (tk)k≥1 (and t1 = x). Let’s define g̃ := eξ(r
−1

t,z) and h := eξ(t,z) (so that g = g̃Ir and
g̃r = h); then the Baker and tau functions for the matrix KP hierarchy are naturally expressed in
terms of h only, since that single function completely controls the flows of the hierarchy.

Theorem 3. Let W ∈ Grhom(r), then:

1. ψ̃W (h, z) is a matrix-valued rational function of x that tends to Ir as x→ ∞;

9



2. τW (h) and τWαβ(h) are polynomial functions of x with constant leading coefficients.

Proof. Let W = (C, qC)
∗ with C homogeneous and let (λ1, . . . , λd) be its support with each point

counted according to its multiplicity (so that the λi are not necessarily distinct); finally for each
i = 1 . . . d let (cij)j=1...r be a set of r linearly independent conditions at λi. In this way we get a basis
(c11, . . . , cdr) for C made of 1-point conditions. Now consider the subspace U := (C, zd)∗ ∈ Grrat(r);
it is related to W by the following element of Γ−(r):

η =

d
∏

i=1

qz(λi)
−1Ir = exp

(

∑

k≥0

d
∑

i=1

λki
k
z−k

)

Ir (34)

This corresponds to multiplying the tau function by

η̂ =

r
∏

α=1

exp

(

−
∑

k≥0

d
∑

i=1

λki t
(α)
k

)

=

r
∏

α=1

d
∏

i=1

gα(λi)
−1 =

d
∏

i=1

h(λi)
−1 (35)

since gα = g̃ for every α and g̃r = h.
Let’s define the family of polynomials {φijγ} (for i = 1 . . . d, j = 1 . . . r, γ = 1 . . . r) by the

equation
〈cij , gγ〉 = g̃(λi)φijγ (36)

Again, this works precisely because each cij is a 1-point condition; notice that, although gγ = g̃ for
every γ, the polynomials φ still depend on γ since it is the index of the only nonzero entry of the
row vector on which cij acts.

We can now easily compute the tau functions associated to U by retracing the same steps as
in the proof of theorem 2, but now using the polynomials defined by (36). Then τU (g) is the
determinant of the matrix whose generic element is

g̃(λi)(∂1γ + λi)
k−1φijγ

The term g̃(λi) does not depend on the row indices (k, γ) so that we can factor it out from the
determinant and get

τU =

d
∏

i=1

(g̃(λi))
r det

(

(∂1γ + λi)
k−1φijγ

)

(37)

But
∏

i(g̃(λi))
r =

∏

i h(λi) is exactly the inverse of (35), so that

τW = det
(

(∂1γ + λi)
k−1φijγ

)

(38)

is the determinant of a matrix with polynomial entries in t
(α)
1 = x

r
, hence a polynomial in x and the

coefficient of the top degree term involves only the constants λi. By Sato’s formula, this implies
that ψ̃Wαα → 1 as x→ ∞.

Now take α, β ∈ {1, . . . ,m}, α 6= β and consider the off-diagonal tau function τUαβ(g); it is given
by the determinant of a matrix Mαβ(g) which coincides with the one involved in the definition of
τU (g) except for the row corresponding to k = d−1, γ = β which is replaced by the row 〈cij , ∂

d
1αgα〉.

But since gα = gβ = g̃ we can again collect out of the determinant the same factor as before, so
that τWαβ(g) = detΦij,kγ with

Φij,kγ :=

{

(∂1γ + λi)
k−1φijγ if k 6= d or γ 6= β

(∂1α + λi)
dφijα if k = d and γ = β

(39)

10



This is also a polynomial in x; moreover we can write

(∂1α + λi)
dφijα = (∂1α + λi)

d−1(λiφijα + ∂1αφijα) (40)

But now Mαβ has also a row (for k = d− 1, γ = α) whose generic element reads (λi + ∂1α)
d−1φijα,

and we can subtract this rowmultiplied by λ1 (say) to the row (40) without altering the determinant,
so that

Φij,kγ :=

{

(∂1γ + λi)
k−1φijγ if k 6= d or γ 6= β

(∂1α + λi)
d−1((λi − λ1)φijα + ∂1αφijα) if k = d and γ = β

This means that τWαβ is the determinant of a matrix whose generic entry is equal or of degree
strictly lower than the corresponding one on τW ; it follows that the degree of τWαβ is strictly lower

than τW , and this (again by Sato’s formula) implies that the off-diagonal components of ψ̃W tend
to zero as x→ ∞.

To see how some of the new solutions look like, take for example the homogeneous subspace
with 1-point support W = (C, 1

z−λ
)∗ with C generated by the r conditions

ck = evk,1,λ +ak1 ev1,0,λ + · · ·+ akr evr,0,λ (k = 1 . . . r) (41)

determined by the r × r matrix A = (aij). These are, in a sense, the most general conditions
involving only the functionals evk,s,λ with s ≤ 1. For the sake of brevity, let’s set tλ := r−1(x +
2t2λ+ 3t3λ

2 + . . . ); then

τW (t) = det(tλIr +At) τWαβ(t) = − cofβ,α(tλIr +At)

ψ̃(t, z) = Ir − (tλIr +At)−1 1

z − λ

where cofβ,α stands for the (β, α)-cofactor of a matrix and At for the transpose of A.

More generally, we could take the element of Grhom(r) determined by the support {λ1, . . . , λn}
and, for each i = 1 . . . n, a matrix Ai that specifies a set of conditions of the form (41) to be
imposed at the point λi. The tau function of such a subspace is the determinant of the following
block matrix:











Y1 . . . Yn
λ1Y1 + Ir . . . λnYn + Ir

...
. . .

...
λn−1
1 Y1 + (n− 1)λn−2

1 Ir . . . λn−1
n Yn + (n− 1)λn−2

n Ir











where Yi := tλi
Ir + Ai

t. The off-diagonal tau functions τWαβ are obtained in the usual way (i.e.,
replacing the β-th line of the bottom blocks with the α-th line of the blocks λni Yi + nλn−1

i Ir), and
the matrix Baker function is then given by Sato’s formula. When r = 1, these subspaces are exactly
the ones described in [13, Sect. 3].

5 Relationship with the multicomponent KP/CM correspon-

dence

Recall from [13] that a crucial ingredient of the scalar KP/CM correspondence is the bijective map
β : C → Grad between the phase space of the Calogero-Moser system C and the adelic Grassmannian
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Grad. In the multicomponent case, an analogous mapping should be defined between the phase
space of the Gibbons-Hermsen system [5] (also known as “spin Calogero-Moser”) and some space
of solutions for the matrix KP hierarchy, as suggested by a well-known calculation [7].

In Wilson’s unpublished notes [14], a map that fulfils this rôle is conjectured. In order to describe
(part of) the definition of this map let’s recall (see e.g. [13, Sect. 8]) that the completed phase
space of the n-particle, r-component Gibbons-Hermsen system is the (smooth, irreducible) affine
algebraic variety defined by the following symplectic reduction:

Cn,r = { (X,Y, v, w) | [X,Y ] + vw = −I } /GL(n,C)

where (X,Y, v, w) ∈ End(Cn) ⊕ End(Cn) ⊕ Hom(Cn,Cr) ⊕ Hom(Cr,Cn) and GL(n,C) acts as a
change of basis in Cn. Now denote by C′′

n,r the subspace of Cn,r consisting of equivalence classes
of quadruples for which Y is diagonalisable with distinct eigenvalues; from each of these classes we
can select a representative such that Y = diag(λ1, . . . , λn), X is a Moser matrix associated to Y
(i.e. Xij = 1/(λi − λj) and Xii = αi is any complex number) and each pair (vi, wi) (where we
denote by vi the i-th row of v and by wi the i-th column of w) belongs to the algebraic variety
{ (ξ, η) ∈ Cr × Cr | ξ · η = −1 } /C∗, where λ ∈ C∗ acts as

λ.(ξ, η) = (λξ, λ−1η) (42)

Notice in particular that none of the vi’s and wi’s can be the zero vector, by virtue of the normali-
sation condition viwi = −1.

According to [14], a point [X,Y, v, w] ∈ C′′
n,r corresponds to the subspace W ∈ Grrat(r) defined

by the following prescriptions:

1. functions in W are regular except for (at most) a simple pole in each λi and a pole of any
order at infinity;

2. if f =
∑

k≥−1 f
(i)
k (z − λi)

k is the Laurent expansion of f ∈ W in λi then:

(a) f
(i)
−1 is a scalar multiple of vi, and

(b) (f
(i)
0 + αif

(i)
−1) · wi = 0.

Our purpose is now to show how these prescriptions translate in the language of the previous
sections.

So suppose that W ∈ Grrat(r) satisfies conditions (1–2); we must find a finite-dimensional,
homogeneous space of conditions C such that W = (C, qC)

∗ where qC is given by (21). Condition
1 clearly implies that C has support {λ1, . . . , λn} and qC =

∏n

i=1(z − λi). Thus, we only need to

find, for each i = 1 . . . n, a subspace Ci ⊆ C
(r)
λi

of dimension r whose elements satisfy the conditions
(2a–2b). Let’s define the n polynomials

qi :=
qC

z − λi
=
∏

j 6=i

(z − λj)

for i = 1 . . . n; then by a direct computation we have that

evk,0,λi
(qCf) = qi(λi)f

(i)
−1,k
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and similarly

evk,1,λi
(qCf) =

∑

ℓ 6=i

∏

j 6=i,ℓ

(λi − λj)f
(i)
−1,k + qi(λi)f

(i)
0,k

whence (putting δi :=
∑

ℓ 6=i(λi − λℓ)
−1)

qi(λi)f
(i)
0,k = (evk,1,λi

−δi evk,0,λi
)(qCf)

Using these expressions, (2a) reads

evk,0,λi
(qCf) = qi(λi)aivik for all k = 1 . . . r

for some ai ∈ C, but only r − 1 of these conditions are independent because of the C∗-action (42)
on vi. As we already noticed, at least one entry of vi is nonzero, say vi1 6= 0. Then we can use the
C

∗-action to normalise vi1 = 1, so that ev1,0,λi
(qCf) = qi(λi)ai and the remaining r− 1 conditions

can be written as

evk,0,λi
(qCf)− vik ev1,0,λi

(qCf) = 0 for all k = 2 . . . r

The further condition (2b) directly translates as

r
∑

k=1

wki (evk,1,λi
(qCf) + (αi − δi) evk,0,λi

(qCf)) = 0

where w1i is fixed by the equation viwi = −1. We conclude that, in the (r − 1)-dimensional affine
cell where vi1 6= 0, we can take as Ci the subspace

Ci =

〈

ev2,0,λi
−vi2 ev1,0,λi

, . . . , evr,0,λi
−vir ev1,0,λi

,

r
∑

k=1

wki(evk,1,λi
+(αi − δi) evk,0,λi

)

〉

Analogous descriptions are available in the other cells, where vik = 0 for every k < k∗ and vik∗ 6= 0.
Repeating this argument for every i = 1 . . . n, we obtain a homogeneous subspace C = C1⊕· · ·⊕Cn

in C (r) such that W = (C, qC)
∗, as we wanted.

To see a concrete example in the simplest possible case (n = r = 2), consider the space associated
to a point

[(

α1
v1w2

λ1−λ2

v2w1

λ2−λ1

α2

)

,

(

λ1 0
0 λ2

)

,

(

v11 v12
v21 v22

)

,

(

w11 w12

w21 w22

)]

∈ C′′
2,2

Suppose further that v11 6= 0 and v21 6= 0; the corresponding subspace W ∈ Grhom(2) is then given
by (z − λ1)

−1(z − λ2)
−1VC , where C ⊆ C (2) is generated by the four conditions

c11 = ev2,0,λ1
−v12 ev1,0,λ1

c12 = w11 ev1,1,λ1
+w21 ev2,1,λ1

+w11(α1 + δ) ev1,0,λ1
+w21(α1 + δ) ev2,0,λ1

c21 = ev2,0,λ2
−v22 ev1,0,λ2

c22 = w12 ev1,1,λ2
+w22 ev2,1,λ2

+w12(α2 − δ) ev1,0,λ2
+w22(α2 − δ) ev2,0,λ2

where δ := δ2 = −δ1 = (λ2 − λ1)
−1, w11 = −1 − v12w21 and w12 = −1 − v22w22. After some

computation we find

τW (t) = (tλ1
+ α1)(tλ2

+ α2) + δ2(v22w21 + w11)(v12w22 + w12)
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τW12(t) = −w12v22(tλ1
+α1)−w11v12(tλ2

+α2) + δ
(

2v12v22(w12w21 −w11w22) + v22w12 − v12w11

)

τW21(t) = −w22(tλ1
+ α1)− w21(tλ2

+ α2) + δ
(

2w21w22(v22 − v12) + w21 − w22

)

We remark that τW coincides with the determinant of the matrix X under the evolution described
by the Gibbons-Hermsen flows Hk = trY k (taking tk as the time associated to Hk):

τW (t) = det

(

α1 + tλ1

g̃(λ1)
g̃(λ2)

v1w2

λ1−λ2

g̃(λ2)
g̃(λ1)

v2w1

λ2−λ1

α2 + tλ2

)

This result fits nicely with the general formulae derived in [14].
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