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CONNECTIONS IN POISSON GEOMETRY I:

HOLONOMY AND INVARIANTS

RUI LOJA FERNANDES

Abstract. We discuss contravariant connections on Poisson manifolds. For

vector bundles, the corresponding operational notion of a contravariant deriv-
ative had been introduced by I. Vaisman. We show that these connections
play an important role in the study of global properties of Poisson manifolds
and we use them to define Poisson holonomy and new invariants of Poisson
manifolds.

Introduction

LetM be a Poisson manifold and suppose that we require the existence of a linear
connection on M , compatible with the Poisson tensor Π. Since parallel transport
preserves the rank of the Poisson tensor, the Poisson manifold must be regular
in order for such connection to exist. Therefore, the usual notion of a covariant
connection is not appropriate for the study of Poisson manifolds, as some of the
most interesting examples of Poisson manifolds are non-regular. For non-regular
Poisson manifolds the symplectic foliation is singular and the dimension of the
leaves varies, so one can only hope to compare tangent spaces at different points of
the same symplectic leaf.

One possible way around this difficulty is to use families of connections para-
meterized by the leaves. However, there are examples showing that the symplectic
foliation can be wild, so the space of leaves will not be easy to parameterize.

A much more efficient and direct approach, to be introduced in this paper, is
through the notion of a contravariant connection, a concept that mimics for the
case of Poisson manifolds the usual notion of a covariant connection.

Assume we are given a principal bundle over a manifold M :

P Gff

p

��
M

then a covariant connection Γ on this principal bundle is defined by a G-invariant
horizontal distribution u 7→ Hu in P . Given a connection Γ, we have a notion of
horizontal lift : h(u, v) ∈ TuP is the unique tangent vector to Hu which projects to
the vector v ∈ Tp(u)M . Conversely, the horizontal lift h defines the horizontal dis-

tribution Hu =
{
h(u, v) : v ∈ Tp(u)M

}
, so h completely determines the connection.

We shall define a contravariant connection on a principal bundle over a Poisson
manifold by defining analogously the horizontal lift of cotangent vectors. To for-
mulate this notion, observe that h is defined precisely for pairs (u, v) in p∗TM , the
pullback bundle by p of the tangent bundle over M . Denote by p̂ : p∗TM → TM
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the induced bundle map so we have the commutative diagram

p∗TM
p̂ //

π̂

��

TM

π

��
P p

// M

Then we can define a covariant connection to be a bundle map h : p∗TM → TP ,
such that:

(CI) h is horizontal, i. e., the following diagram commutes:

p∗TM
h //

p̂

��

TP

p∗

��
TM

id
// TM

(CII) h is G-invariant: h(ua, v) = (Ra)∗h(u, v), for all a ∈ G;

Assume now that M is a Poisson manifold. According to a general philosophical
principle, in Poisson geometry sometimes the cotangent bundle plays the role of the
tangent bundle. Hence, we replace TM by T ∗M in the diagrams above, whenever
it makes sense. Thus we are lead to the notion of a contravariant connection on a
Poisson manifold: this is a bundle map h : p∗T ∗M → TP , such that:

(CI)∗ The following diagram commutes:

p∗T ∗M
h //

p̂

��

TP

p∗

��
T ∗M

#
// TM

where # : T ∗M → TM is the bundle map induced by the Poisson tensor;
(CII)∗ h is G-invariant: h(ua, α) = (Ra)∗h(u, α), for all a ∈ G;

Given a point x in M and a covector α ∈ T ∗
xM , the vector h(u, α) ∈ TuP will be

called the horizontal lift of α to the point u in the fiber over x. On any fibration one
can also consider generalized contravariant connections which satisfy only (CI)∗.

With such a definition at hand one can then develop the usual concepts of pa-
rallelism, curvature, holonomy, geodesic, etc. In particular, for a contravariant
connection on a vector bundle p : E →M , one obtains in a way entirely analogous
to the covariant case, the notion of a contravariant derivative operator D: for each
1-form α on M , Dα maps sections of E to sections of E and satisfies

i) Dα+βφ = Dαφ+Dβφ;
ii) Dα(φ+ ψ) = Dαφ+Dαψ;
iii) Dfα = fDαφ;
iv) Dα(fφ) = fDαφ+ #α(f)φ;

where α, β ∈ Ω1(M), φ, ψ are sections of E, and f ∈ C∞(M). Conversely, every
such operator is induced by a contravariant connection. Moreover, one can show
that there always exists a linear connection preserving the Poisson tensor. In [11]
Vaisman introduces the notion of contravariant derivative using i)-iv) as axioms.

In spite of its formal similarities with covariant connections, there are striking
differences in contravariant Poisson geometry. For example, the holonomy of a con-
nection may be non-discrete when the connection is flat, contravariant connections
cannot be pushed back or forward, etc. However, just like in ordinary geometry,
contravariant connections are useful to study global properties of Poisson manifolds.
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Recall that the local structure of a Poisson manifold is given by the Wein-
stein splitting theorem, also known as the generalized Darboux theorem (see [13],
Thm. 2.1). In a neighborhood of a point, the Poisson structure splits as a direct
product of a symplectic structure and a Poisson structure which vanishes at the
point. So on the normal space to each symplectic leaf we have a notion of transverse
Poisson structure.

In global Poisson geometry one would like to understand the geometry and topol-
ogy of the symplectic foliation. Using generalized contravariant connections we
show that we have a notion of Poisson holonomy of the symplectic foliation, analo-
gous to the holonomy in the theory of regular foliations. The corresponding linear
holonomy coincides with the linear Poisson holonomy introduced by Ginzburg and
Golubev in [4]. The Poisson holonomy homomorphism is by Poisson automorphisms
of the transverse Poisson structure.

Poisson holonomy is not homotopy invariant, but factoring out the inner Poisson
automorphisms one obtains a notion of reduced Poisson holonomy invariant by
homotopy, and we can prove the following analogue of the Reeb stability theorem:

Theorem . Let S be a compact, transversely stable leaf, with finite reduced Poisson
holonomy. Then S is stable, i. e., S has arbitrarily small neighborhoods which are
invariant under all hamiltonian automorphisms. Moreover, each symplectic leaf of
M near S is a bundle over S whose fiber is a finite union of symplectic leaves of
the transverse Poisson structure.

We also discuss another related notion of holonomy, which we call strict Poisson
holonomy, and which allows one to discuss global splitting of an entire neighborhood
of a symplectic leaf. The corresponding stability theorem states that if S has finite
strict Poisson holonomy then there is a neighborhood of S which is Poisson covered
by a product S̃ ×N where S̃ is a finite cover of S.

Linear Poisson holonomy in turn can be discussed from the point of view of
linear contravariant connections and, for each symplectic leaf, there is a notion of
Bott contravariant connection. For a non-regular Poisson manifold, we do not have
a normal bundle (over the whole of M) to the symplectic foliation. However, there
is an appropriate notion of a basic connection on M : these are linear contravariant
connections which preserve the Poisson tensor and restrict in each leaf to the Bott
contravariant connection. Comparing a basic connection to a riemannian connec-
tion one is lead to “exotic” or secondary Poisson characteristic classes. These are
Poisson cohomology classes which give information on both the Poisson geometry
and the topology of the symplectic foliation of M . In degree 1, this class actually
coincides with the modular class of M . This invariant was discussed recently by
Weinstein in [12], where he shows that the modular class is an obstruction to the
existence of measures in M invariant under the hamiltonian flows.

As a final note we remark that the most general setup for contravariant connec-
tions is in the context of Lie algebroids. Although we have omitted any references
to Lie Algebroids, the results discussed here should go through without any major
changes, and this will be discussed elsewhere.

In a follow up to this paper ([3]) we will discuss invariant connections.
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1. Contravariant Connections on Principal Bundles

1.1. Contravariant Cartan Calculus. On a Poisson manifold there is a calculus
on contravariant objects, analogous to the usual Cartan calculus on differential
forms. We recall here some of the formulas and fix notation and conventions for
later use. Proofs of the results stated in this introductory paragraph can be found
in Vaisman’s monograph [10].

Let M be a Poisson manifold and denote by Π ∈ X 2(M)(1) the Poisson bivector
field, so the Poisson bracket on M is given by

{f1, f2} = Π(df1, df2), f1, f2 ∈ C∞(M).(1.1)

We also have a bundle map # : T ∗M −→ TM defined by

β(#α) = Π(α, β), α, β ∈ T ∗M.(1.2)

On the space of differential 1-forms Ω1(M) the Poisson tensor induces a Lie bracket

[α, β] = L#αβ − L#βα− d(Π(α, β)), α, β ∈ Ω1(M),(1.3)

1We denote by Ωr(M) and X
r(M), respectively, the spaces of differential r-forms and r-

multivector fields on a manifold M .
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and for this Lie bracket and the usual Lie bracket on vector fields, the map # :
Ω1(M) −→ X 1(M) is a Lie algebra homomorphism:

#[α, β] = [#α,#β].(1.4)

We denote as usual by Xf = #(df) the hamiltonian vector field associated with
the function f ∈ C∞(M), and we have

[α, fβ] = f [α, β] + #α(f)β = f [α, β] −
(
iXf

α
)
β.(1.5)

The existence of a Lie bracket on the space of 1-forms allows one to mimic the
algebraic definitions of d, iX and LX , to obtain contravariant versions of these
operators.

First, one defines the contravariant exterior differential δ : X r(M) −→ X r+1(M)
by:

(1.6) δQ(α0, . . . , αr) =
1

r + 1

r∑

k=0

(−1)k#αk(Q(α0, . . . , α̂k, . . . , αr)

+
1

r + 1

∑

k<l

(−1)k+lQ([αk, αl], α0, . . . , α̂k, . . . , α̂l, . . . , αr).

where α0, . . . , αr ∈ Ω1(M). This differential satisfies:

δ2(Q) = 0,(1.7)

δ(Q1 ∧Q2) = δQ1 ∧Q2 + (−1)deg Q1Q1 ∧ δQ2.(1.8)

Moreover, if we extend the definition of # to forms of any degree by setting

#λ(α1, . . . , αr) = (−1)rλ(#α1, . . . ,#αr),(1.9)

we have

δ(#λ) = #(dλ).(1.10)

The cohomology associated with δ is called the Poisson cohomology of M and is
denoted by H∗

Π(M). This relation shows that there is a homomorphism from de
Rham cohomology to Poisson cohomology # : H∗(M) → H∗

Π(M), which in the
case of a symplectic manifold is an isomorphism.

Next, for each form α ∈ Ω1(M) there is an operator of contraction by α, denoted
iα : X r(M) −→ X r−1(M), and an operator of Lie derivative in the direction of α,
denoted Lα : X r(M) −→ X r(M), given by

(iαQ)(α1, . . . , αr−1) = Q(α, α1, . . . , αr−1),(1.11)

(LαQ)(α1, . . . , αr) = #α(Q(α1, . . . , αr)) −

r∑

k=1

Q(α1, . . . , [α, αk], . . . , αr).(1.12)

We have formulas analogous to the usual formulas from Cartan calculus:

i[α,β] = Lαiβ − iβLα,(1.13)

L[α,β] = LαLβ − LβLα,(1.14)

Lα = iαδ + δiα,(1.15)

δLα = Lαδ.(1.16)

In fact, the musical homomorphism relates these operators to the usual ones, so for
every 1-form α ∈ Ω1(M), every r-form λ ∈ Ωr(M) and every r-multivector field
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Q ∈ X r(M), one has:

iα(#λ) = (−1)r#(i#αλ),(1.17)

Lα(#λ) = (−1)r#(L#αλ),(1.18)

LdfQ = LXf
Q.(1.19)

We can also extend Lα to the exterior algebra Ω∗(M) by setting

Lαβ = [α, β], β ∈ Ω1(M),(1.20)

and requiring Lα to preserve type and act as a derivation. Finally, we recall that
the contravariant differential can also be defined by

δQ = −[Π, Q]s,(1.21)

where [ , ]s denotes the Schouten bracket.

1.2. Contravariant Connections. Let P (M,G) be a smooth principal bundle
over a Poisson manifold M with structure group G. We let p : P → M be the
projection, and for each u ∈ P we denote by Gu ⊂ Tu(P ) the subspace consisting
of vectors tangent to the fiber through u. If we denote by p∗T ∗M the pullback
bundle, so there is a bundle map p̂ : p∗T ∗M → T ∗M which makes the following
diagram commutative

p∗T ∗M
p̂ //

π̂

��

T ∗M

π

��
P p

// M

where on the vertical arrows we have the canonical projections. Recalling that
p∗T ∗M = {(u, α) ∈ P × T ∗M : p(u) = π(α)}, we see that we have a natural right
G-action on p∗T ∗M defined by (u, α) · a ≡ (ua, α), if a ∈ G.

Definition 1.2.1. A contravariant connection Γ in P (M,G) is a smooth
bundle map h : p∗T ∗M → TP , such that:

(CI)∗ The following diagram commutes:

p∗T ∗M
h //

p̂

��

TP

p∗

��
T ∗M

#
// TM

(CII)∗ h is G-invariant: h(ua, α) = (Ra)∗h(u, α), for all a ∈ G;

Given (u, α) ∈ p∗T ∗M , we call the vector h(u, α) ∈ TuP the horizontal lift of
the 1-form α to u. The subspace of TuP formed by all such horizontal vectors is
denoted by Hu. The assignment u 7→ Hu is a smooth, generalized, distribution on
P called the horizontal distribution of the connection (by “smooth” we mean that
for each point u0 ∈ P there exists a neighborhood u0 ∈ U ⊂ P and smooth vector
fields X1, . . . , Xr in U , such that Hu = span {X1|u, . . . , Xr|u} for all u ∈ U). Note
that, as opposed to the covariant case, the rank of the horizontal distribution will
vary, and that this distribution does not define the connection uniquely.

It follows from (CI)∗ in the definition of a contravariant connection, that the
horizontal spaces Hu project onto the tangent space TxS to the symplectic leaf S
through x = p(u). In general, we have neither TuP = Gu +Hu nor Gu ∩Hu = {0}.
As usual, a vector X ∈ TuP will be called vertical (resp. horizontal), if it lies
in Gu (resp. Hu). If M is not symplectic, a vector does not split into a sum of
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an horizontal and a vertical component, so the usual definitions of lift of curves,
connection form, etc., do not make sense in this context.

Later on, we shall need to consider generalized contravariant connections, by
which mean that axiom (CII)∗ need not be satisfied. Of course, such connections
can be considered on any fibration over a Poisson manifold.

1.3. Connection Vector Fields. If g is the Lie algebra of G, we can express a
contravariant connection in P by a family of g-valued vector fields, each defined in
an open subset of M . One should have in mind that, in this theory, multivector
fields play the role of differential forms.

Henceforth, we use the following notation: We denote by {Uj} an open cover
of M , by ψj : p−1(Uj) → Uj × G a family of trivializing isomorphisms, and by
ψjk : Uj∩Uk → G the associated transition functions. For each j, we let sj : Uj → P

be the section over Uj defined by sj(x) = ψ−1
j (x, e), where e ∈ G is the identity.

On each open set Uj we define a g-valued vector field Λj as follows: if α ∈ Ω1(Uj),
x ∈ Uj , and u = sj(x), then

Xu = (sj)∗#αx − h(sj(x), αx) ∈ TuP

is a vertical vector since, by (CI)∗, we have:

p∗Xu = p∗ · (sj)∗#αx − p∗h(sj(x), αx) = #αx − #αx = 0.

We let Λj(α)x be the unique element A ∈ g such that Xu = σ(A)u, which exists
by (CII)∗. The {Λj} are called the connection vector fields of the contravariant
connection Γ.

In order to state the transformation rule for the connection vector fields, it is
convenient to introduce the following notation: if φ : M → N is a smooth map
defined on a Poisson manifold M its contravariant differential is the bundle map
δφ : T ∗M → TN defined by:

δφ(αx) = dxφ · #αx, αx ∈ T ∗
xM.(1.22)

If N = R this notation is consistent with the contravariant differential introduced
above, if we think of 0-vector fields as functions.

Proposition 1.3.1. The connection vector fields {Λj} are related by

Λk = Ad(ψ−1
jk )Λj + ψ−1

jk δψjk, on Uj ∩ Uk.(1.23)

Conversely, given a family of g-valued vector fields, each defined in Uj, satisfying
relations (1.23), there is a unique contravariant connection in P (M,G) which gives
rise to the {Λj}.

Proof. Given a contravariant connection, define the vector fields {Λj} as above. If
Uj ∩ Uk is non-empty, we have sk(x) = sj(x)ψjk(x), for all x ∈ Uj ∩ Uk. If we set
a = ψjk(x) ∈ G, it follows from Leibniz rule that

sk∗(X) = (Ra)∗(sj)∗(X) + σ((La−1)∗ · (ψjk)∗X).(1.24)

If we compute both sides on X = #α, we obtain

σ(Λk(α))ua = sk∗(#α)ua − h(ua, α)

= (Ra)∗(sj)∗(#α)u + σ((La−1 )∗ · (ψjk)∗#α)u − (Ra)∗h(u, α)

= (Ra)∗σ(Λj(α))u + σ((La−1)∗ · (ψjk)∗#α)u

= σ(Ad(ψ−1
jk )Λj(α))u + σ(ψ−1

jk δψjk(α))u.

as required.
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Conversely, given a family of g-valued vector fields satisfying relations (1.23), we
define a contravariant connection Γ by letting the horizontal lift be defined by

h(u, α) = sj∗(#α)u − σ(Λj(α))u,(1.25)

whenever sj is a section with sj(x) = u. If sk is another section with sk(x) = u, it
follows from (1.23) and (1.24), with ψjk(x) = a(x) = e, that

sk∗(#α)u − σ(Λk(α))u = sj∗(#α)u + σ((ψjk)∗#α)u − σ(Λk(α))u

= sj∗(#α)u − σ(Λj(α))u,

so this definition is independent of the section used. Conditions (CI)∗ of the defini-
tion is easily verified. As for (CII)∗, we note that if ψjk(x) = a ∈ G is constant, then
Λk = Ad(a−1)Λj and equation (1.24) gives sk∗(X) = (Ra)∗(sj)∗(X). Therefore,
for any 1-form α, we find

h(ua, α) = sk∗(#α)ua − σ(Λk(α))ua

= (Ra)∗sj∗(#α)u − σ(Ad(a−1)Λj(α))ua = (Ra)∗h(u, α),

as wished.

1.4. Curvature. For a contravariant connection Γ with family of connection vector
fields {Λj} we define a corresponding family of curvature bivector fields {Ξj} by:

Ξj = δΛj +
1

2
[Λj ,Λj].(1.26)

Here, we are using the notation [ξ, ζ] for the g-valued multivector field defined by

[ξ, ζ] =
∑

a,b,c

Ca
bcξ

b ∧ ζcea,

where ξ =
∑

a ξ
aea and ζ =

∑
a ξ

aea are g-valued multivector fields, relative to a
basis {ea} for g, and Ca

bc are the structure constants of g relative to the same basis.

Proposition 1.4.1. The curvature bivector fields of a contravariant connection are
related by

Ξk = Ad(ψ−1
jk )Ξj , on Uj ∩ Uk.(1.27)

Moreover, they satisfy the Bianchi identity:

δΞj + [Λj,Ξj ] = 0.(1.28)

Proof. Set ηjk = ψ−1
jk δψjk. Then we have the “Maurer-Cartan equations”

δηjk = −
1

2
[ηjk, ηjk].(1.29)

On the other hand, if Λk and Λj are related by (1.23) we find, using (1.8),

δΛk = δ(Ad(ψ−1
jk )Λj) + δηjk

= +Ad(ψ−1
jk )δΛj −

1

2
[ηjk, Ad(ψ

−1
jk )Λj ] +

1

2
[Ad(ψ−1

jk )Λj , ηjk] + δηjk.

Therefore, we have

δΛk +
1

2
[Λk,Λk] = Ad(ψ−1

jk )δΛj +
1

2
[Ad(ψ−1

jk )Λj , Ad(ψ
−1
jk )Λj ]

= Ad(ψ−1
jk )

(
δΛj +

1

2
[Λj ,Λj]

)
.

so (1.27) holds.
Bianchi’s identity (1.28) follows from δ2Λj = 0 and the derivation property (1.8)

of δ.
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Remark 1.4.2. The structure equation (1.26) and the Bianchi identity (1.28) show
that one should think of the operator δ+[Λj , ·] as a kind of contravariant derivative
acting on g-valued multivector fields. This comment will be made precise later.

It follows from (1.27), that given 1-forms α, β ∈ Ω1(M), we can define a g-valued
function Ξ(α, β) in P by:

Ξ(α, β)sj (x) ≡ Ξj(α, β).

Ξ(α, β) gives the following geometric interpretation of the curvature: Given a 1-
form α ∈ Ω1(M), denote by h(α) the horizontal lift of α, so h(α)u = h(u, α) and

u 7→ Hu =
{
h(α)u : α ∈ Ω1(M)

}

is the horizontal distribution.

Proposition 1.4.3. Let α, β ∈ Ω1(M). Then:

[h(α), h(β)] − h([α, β]) = −2σ(Ξ(α, β)),(1.30)

To prove the proposition we need the following lemma:

Lemma 1.4.4. For any α, β ∈ Ω1(Uj)

[h(α), σ(Λj(β))] = −σ(#α(Λj(β))).(1.31)

Proof. The flux of the vector field σ(Λj(β)) is Φt(u) = u exp(tΛj(β)(p(u))), so we
have:

[h(α), σ(Λj(β))]u0 = − lim
t→0

1

t
(h(u0, α) − dΦ−t · h(Φt(u0), α)) .

But:

dΦ−t · h(Φt(u0), α) = dRexp(tΛj(β)(p(u))) · h(Φt(u0), α) + dΨ · h(Φt(u0), α)

= h(u0, α) + dΨ · h(Φt(u0), α),

where Ψ(u) = u0 exp(tΛj(β)(p(u))). Let s 7→ γ̃(s, t) be the integral curve of h(α)
through Φt(u0). Then s 7→ γ(s, t) = p(γ̃(s, t)) is an integral curve of #α, and we
have:

dΨ · h(Φt(u0), α) =
d

ds
u0 exp(tΛj(β)(γ(s, t)))|

s=0 .

We conclude that

[h(α), σ(Λj(β))]u0 = −
d

dt

[
d

ds
u0 exp(tΛj(β)(γ(s, t)))|

s=0

]

t=0

=
d

ds
σ(Λj(β)(γ(s, 0)))u0 |s=0

= σ(#α(Λj(β))p(u0
))u0 ,

and the lemma follows.



10 RUI LOJA FERNANDES

Proof of proposition 1.4.3. Over Uj we have (sj)∗#α = σ(Λj(α)) + h(α), so we
find:

[h(α), h(β)] = (sj)∗#[α, β] − [(sj)∗#α, σ(Λj(β))]

− [σ(Λj(α)), (sj)∗#β] + [σ(Λj(α)), σ(Λj(β))]

= h([α, β]) + σ(Λj([α, β])) − [h(α), σ(Λj(β))]

− [σ(Λj(α)), h(β)] − [σ(Λj(α)), σ(Λj(β))])

= h([α, β]) + σ(Λj([α, β]) − #α(Λj(β)) + #β(Λj(α))

− σ([Λj(α),Λj(β)])

= h([α, β]) − σ(2δΛj(α, β) + [Λj ,Λj ](α, β))

= h([α, β]) − σ(2Ξj(α, β)).

By a flat contravariant connection we shall mean a connection whose horizontal
distribution is integrable.

Proposition 1.4.5. A contravariant connection is flat iff its curvature bivector
fields vanish.

Proof. By a result of Hermann [6], a generalized distribution associated with a
vector subspace D ⊂ X (M) is integrable iff it is involutive and rank invariant.
Taking D = {h(df) : f ∈ C∞(M)} so that Hu = {X(u) : X ∈ D}, proposition 1.4.3
shows that D is involutive iff the curvature bivector fields vanish. Hence, all it
remains to show is that if the curvature vanishes and γ(t) is an integral curve of
h(df) then dimHγ(t) is constant, for all small enough t.

Let Φ̃t be the flow of h(df) and let Φt = p ◦ Φ̃t be the flow of #df = Xf . If
α ∈ Ω1(M) we claim that

(Φ̃t)∗h(α) = h(Φ∗
−tα),

for small enough t. In fact, the infinitesimal version of this relation is

[h(df), h(α)] = h(LXf
α) = h([df, α]),

which by (1.30) holds, since we are assuming that the curvature vanishes.
Therefore, the flow Φt gives an isomorphism between Hγ(0) and Hγ(t), for small

enough t, so D is rank invariant.

1.5. Parallelism and Holonomy. Parallel displacement of fibers can be defined
along curves lying on a symplectic leaf of M .

If γ : [0, 1] → M is a smooth curve lying on a symplectic leaf S, then γ is
also smooth as map γ : [0, 1] → S. This follows from the existence of “canonical
coordinates” for M as given by the generalized Darboux theorem. Also, by the
same theorem, we can choose a smooth family t 7→ α(t) ∈ T ∗M of covectors such
that #α(t) = γ̇(t). Following [4], we shall call the pair (γ(t), α(t)) a cotangent
curve.

Proposition 1.5.1. Let (γ(t), α(t)) be a cotangent curve. For any u0 in P with
p(u0) = γ(0) there exists a unique horizontal lift γ̃ : [0, 1] → P , which satisfies the
system






˙̃γ(t) = h(γ̃(t), α(t)),

γ̃(0) = u0.
(1.32)
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Proof. By standard results from the theory of o.d.e.’s with time dependent coeffi-
cients, system (1.32) has a unique maximal solution. We claim that this solution
exists for all t ∈ [0, 1].

By local triviality of the bundle we can find a curve γ̄ : [0, 1] → P with γ̄(0) = u0

and p(γ̄(t)) = γ(t). We look for a curve a(t) ∈ G, such that γ̃(t) = γ̄(t)a(t) satisfies
(1.32). Differentiating, we have

˙̃γ(t) = ˙̄γ(t)a(t) + γ̄(t)ȧ(t).

We therefore require a(t) to satisfy the equation

˙̄γ(t)a(t) + γ̄(t)ȧ(t) = h(γ̄(t)a(t), α(t)),

or, equivalently,

γ̄(t)ȧ(t)a−1(t) = h(γ̄(t), α(t)) − ˙̄γ(t).

The right hand side of this equation belongs to Gγ̄(t) since

p∗(h(γ̄(t), α(t)) − ˙̄γ(t)) = #α(t) −
d

dt
p(γ̄(t)) = #α(t) − γ̇(t) = 0.

Therefore, there exists some curve A(t) : [0, 1] → g such that

γ̄(t)ȧ(t)a−1(t) = γ̄(t)A(t).

Since the initial value problem

ȧ(t)a−1(t) = A(t), a(0) = e,

always has a solution, defined wherever A(t) is defined, our claim follows.

Now using the proposition we can define parallel displacement of the fibers along
a cotangent curve (γ(t), α(t)) in the usual form: if u0 ∈ p−1(γ(0)) we define τ(u0) =
γ̃(1), where γ̃(t) is the unique horizontal lift of (γ(t), α(t)) starting at u0, We obtain
a map τ : p−1(γ(0)) → p−1(γ(1)), which will be called parallel displacement of the
fibers along the cotangent curve (γ(t), α(t)). It is clear, since horizontal curves are
mapped by Ra to horizontal curves, that parallel displacement commutes with the
action of G:

τ ◦Ra = Ra ◦ τ.(1.33)

Therefore, parallel displacement is an isomorphism between the fibers.
If x ∈ M lies in the symplectic leaf S, let Ω(S, x) be the loop space of S at

x. Then for each cotangent loop (γ, α), with γ ∈ Ω(S, x), parallel displacement
along (γ, α) gives a an isomorphism of the fiber p−1(x) into itself. The set of all
such isomorphisms forms the holonomy group of Γ, with reference point x, and
is denoted Φ(x). Similarly, one has the restricted holonomy group, with reference
point x, denoted Φ0(x), defined by using cotangent loops in S which are homotopic
to the zero.

If u ∈ p−1(x) then we can also define the holonomy groups Φ(u) and Φ0(u). Just
as in the covariant case, Φ(u) is the subgroup of G consisting of those elements
a ∈ G such that u and ua can be joined by an horizontal curve. We have that Φ(u)
is a Lie subgroup of G, whose connected component of the identity is Φ0(u), and
we have isomorphisms Φ(u) ≃ Φ(x) and Φ(u)0 ≃ Φ(x)0.

If x, y ∈M belong to the same symplectic leave then the holonomy groups Φ(x)
and Φ(y) are isomorphic. This is because if u, v ∈ P are points such that, for
some a ∈ G, there exists an horizontal curve connecting ua and v, then Φ(v) =
Ad(a−1)Φ(u), so Φ(u) and Φ(v) are conjugate in G. However, if x, y ∈ M belong
to different leaves the holonomy groups Φ(x) and Φ(y) will be, in general, non-
isomorphic.
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Theorem 1.5.2. (Holonomy Theorem) Let Γ be a contravariant connection in
P (M,G), u0 ∈ P and sj : Uj → P a section with sj(x0) = p0. The Lie alge-
bra of the holonomy group Φ(u0) ⊂ G is the ideal of g spanned by all elements of
the form Ξj(α, β)x0 + Λj(γ)x0 , where α, β, γ ∈ T ∗

x0
M are covectors with #γ = 0.

Proof. It follows from the transformation rule (1.23) for the connection vector fields,
that the subspace g′ ⊂ g spanned by all vectors of the form Λj(γ)x0 , with #γ = 0,
is an ideal in g. Similarly, it follows from the transformation rule (1.27) for the
curvature bivector fields, that the subspace g′′ ⊂ g spanned by all vectors of the
form Ξ(α, β)x0 is an ideal in g.

Let P (u0) be the set of points in P that can be joined to u0 by a horizon-
tal curve. We claim that the generalized distribution u 7→ Hu + g′′u, where g′′u =
{σ(A)u : A ∈ g′′}, is integrable and that P (u0) is the integral leaf through u0. As-
suming that this is the case the proposition follows, for we have for any A ∈ g

A ∈ Lie(Φ(u0)) ⇐⇒ at = exp(tA) ∈ Φ(u0)

⇐⇒ u0at ∈ p−1(p(u0)) ∩ P (u0)

⇐⇒ σ(A) ∈ Gu0 ∩ Tu0P (u0)

⇐⇒ A ∈ g′ + g′′.

The smooth distribution u 7→ Hu + g′′u is integrable becouse it is involutive
and rank invariant. Let GH be the group of diffeomorphism generated by the
horizontal vector fields h(α). A theorem of Sussmann [9], shows that the GH-
invariant distribution D generated by H is integrable and that P (u0) is a leaf
through u0 of D. Therefore, the claim will follow if we can show that Du = Hu +g′′u.
But, on one hand, D is involutive and H ⊂ D, so we must have Hu + g′′u ⊂ Du. On
the other hand, D is the smallest integrable distribution such that H ⊂ D, so we
must have D ⊂ Hu + g′′u.

Note that the presence of the extra term g′ implies that a connection can be flat
and have non-discrete holonomy.

1.6. Mappings of Connections. Recall that a homomorphism φ : P (M,G) →
P ′(M ′, G′) of principal bundles is a mapping of the total spaces φ : P → P ′

such that φ(ua) = φ(u)ϕ(a), u ∈ P , a ∈ G, where ϕ : G → G′ is a Lie group
homomorphism. We also have an induced map between the base spaces, denoted
here by the same letter: φ : M → M ′. If this map is a diffeomorphism and
sj : Uj → P is a local section of P (M,G) then s′j : φ(Uj) → P ′ defined by

s′j = φ ◦ sj ◦ φ
−1 is a local section of P ′(M ′, G′).

Proposition 1.6.1. Let M and M ′ be Poisson manifolds and φ : P (M,G) →
P ′(M ′, G′) a homomorphism such that the induced map φ : M → M ′ is a Poisson
isomorphism. Given a contravariant connection Γ in P (M,G) there is a unique
contravariant connection Γ′ in P ′(M ′, G′) such that φ maps horizontal subspaces
of Γ to horizontal subspaces of Γ′. The connection vector fields and the curvature
bivector fields of Γ and Γ′ are related by:

Λ′
j(α) = ϕ∗Λj(φ

∗α), Ξ′
j(α, β) = ϕ∗Ξj(φ

∗α, φ∗β), α, β ∈ Ω1(U ′
j).(1.34)

If u ∈ P and u′ = φ(u) ∈ P ′, then ϕ : G → G′ maps the holonomy groups Φ(u)
(resp. Φ0(u)) onto Φ(u′) (resp. Φ0(u′)).

Proof. To define the connection Γ′, given u′ ∈ P ′ we choose u ∈ P and a′ ∈ G′

such that u′ = φ(u)a′, and set h′(u′, α′) = (Ra′ ◦ φ)∗h(u, φ
∗α′). One checks that

this definition is independent of the choice of u and a′.
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If b′ ∈ G, then h′(u′b′, α′) = (Ra′b′ ◦ φ)∗h(u, φ
∗α′) = Rb′∗(Ra′ ◦ φ)∗h(u, φ

∗α′) =
Rb′∗h

′(u′, α′), hence Γ′ is invariant. By invariance, we can now assume φ(u) = u′,
and we have:

p′∗h
′(u′, α′) = p′∗φ∗h(u, φ

∗α′)

= φ∗p∗h(u, φ
∗α′)

= φ∗#φ
∗α′ = #′α′,

since φ : M →M ′ is a Poisson map. Therefore, Γ′ is a contravariant connection.
From the relation

s′j∗(#
′α) = φ∗sj∗(#φ

∗α),

and the fact that the infinitesimal actions are related by

σ′(ϕ∗A) = φ∗σ(A), A ∈ g,

we obtain formulas (1.34) for the connection vector fields. As for the curvature
bivector fields we have:

Ξ′
j(α, β) = δ′Λ′

j(α, β) +
1

2
[Λ′

j ,Λ
′
j](α, β)

= ϕ∗δΛj(φ
∗α, φ∗β) +

1

2
[ϕ∗Λj , ϕ∗Λj ](φ

∗α, φ∗β)

= ϕ∗δΛj(φ
∗α, φ∗β) +

1

2
ϕ∗[Λj ,Λj](φ

∗α, φ∗β) = ϕ∗Ξj(φ
∗α, φ∗β),

for any forms α, β ∈ Ω1(U ′
j).

Finally, if (γ′, α′) is a cotangent loop at x′ = p′(u′) lying in the symplectic leaf
through x′, then (γ, α) = (φ−1 ◦γ′, φ∗α) is a cotangent loop at x = p(u) lying in the
symplectic leaf through x. Therefore, if γ̃ is a horizontal lift of (γ, α) then φ◦ γ̃ is a
horizontal lift of (γ′, α′) and so the holonomy groups must be related as stated.

In the situation of the previous proposition we say that φ maps the connection
Γ to the connection Γ′. There are two important special cases to note:

a) if P ′(M ′, G′) is a reduced sub-bundle of P (M,G), so M = M ′, φ : M →M is
the identity map, and h : G→ G′ is a monomorphism, we say the connection
Γ′ is reducible to the connection Γ;

b) if P ′(M ′, G′) = P (M,G), M = M ′ and Γ = Γ′ we say that the connection Γ
is invariant by φ, or simply φ-invariant. This means precisely that:

h(φ(u), α) = φ∗h(u, φ
∗α), ∀(φ(u), α) ∈ p∗T ∗M ;(1.35)

For a general Poisson map it is not possible to pullback or pushforward a con-
travariant connection, but there is still an obvious definiton of mapping of connec-
tions.

1.7. Connections on Fiber Spaces. If G acts on the left on a manifold F we
shall denote by pE : E(M,F,G, P ) →M the fiber bundle associated with P (M,G)
with standard fiber F .

Given a connection Γ in P (M,G) with associated horizontal lift h : p∗T ∗M →
TP , we define the induced horizontal lift hE : p∗ET

∗M → TE as follows: given
w ∈ E choose (u, ξ) ∈ P × F which is mapped to w, and set

hE(w,α) = ξ∗h(u, α),(1.36)

where we are identifying ξ with the map P → E which sends u to the equivalence
class of (u, ξ). One can check easily that this definition does not depend on the
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choice of (u, ξ), so we obtain a well defined bundle map hE : p∗ET
∗M → TE which

makes the following diagram commute:

p∗ET
∗M

hE //

p̂E

��

TE

pE∗

��
T ∗M

#
// TM

As before, we can define horizontal and vertical vectors in TE, horizontal lifts to
E of curves lying on symplectic leaves of M , and parallel displacement of fibers of
E. We shall call a cross section σ of E over an open set U ⊂M parallel if σ∗(v) is
horizontal for all tangent vectors v ∈ TUM .

Theorem 1.7.1. (Reduction Theorem) Let P = P (M,G) be a principal fiber bun-
dle over a Poisson manifold M with a contravariant connection Γ, and H ⊂ G a
closed subgroup. There exists a one to one correspondence between parallel cross
sections σ : M → E(M,G/H,G, P ) and sub-bundles Q(M,H) ⊂ P (M,G) such
that Γ is reducible to a connection Γ′ in Q.

Proof. Suppose we are given a parallel cross section σ : M → E(M,G/H,G, P ).
Let π : P → E be the natural projection. Then we define a sub-bundle Q(M,H)
by setting:

Q = {u ∈ P : π(u) = σ(p(u))} .

Given u ∈ Q and α ∈ T ∗
p(u)M let (γ(t), α(t)) be a cotangent curve with γ(0) = p(u)

and α(0) = α. The horizontal lift γ̃ of this cotangent curve to P satisfies µ(γ̃(t)) =
σ(γ(t)), since σ is parallel. If follows that h(u, α) ∈ TuQ for every u ∈ Q, so Γ is
reducible to Q.

Conversely, suppose we are given a sub-bundle Q(M,H) such that Γ is reducible
to Q. Then we can define a section σ : M → E(M,G/H,G, P ) by setting σ(x) =
π(u), where u ∈ Q is any point satisfying p(u) = x. If γ̃(t) is an horizontal curve
in P starting at u ∈ Q, then γ̃(t) ∈ Q since Γ is reducible to Q. If γ(t) = p(γ̃(t)),
it follows that µ(γ̃(t)) is an horizontal lift of γ to E and that π(γ̃(t)) = σ(γ(t)), so
σ is flat.

1.8. Relationship to Ordinary Connections. Let M be a symplectic manifold
and Γ a contravariant connection on P (M,G) with horizontal lift h : p∗T ∗M → TP .

Then we have a bundle map h̃ : p∗TM → TP defined by

h̃(u, v) = h(u,#−1v), (u, v) ∈ p∗TM.

This map is obviously G-invariant and makes the following diagram commute

p∗TM
h̃ //

p̂

��

TP

p∗

��
TM

id
// TM

It follows that h̃ is the horizontal lift of a covariant connection on M . Let ω be
the connection 1-form and let Ω be the curvature 2-form of this connection. Also,
given trivialization isomorphisms {ψj}, inducing local sections {sj}, set ωj = s∗jω
and Ωj = s∗jΩ. Then it is clear from the definitions given above that the connection

vector fields {Λj} and the curvature bivector fields {Ξj} are given by:

Λj = #ωj , Ξj = #Ωj .(1.37)
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For a general Poisson manifold with a contravariant connection Γ on P (M,G)
and horizontal lift h : T ∗M → TP , we say that Γ is induced by a covariant connec-
tion if

h(u, α) = h̃(u,#α), (u, α) ∈ p∗T ∗M,

where h̃ : p∗TM → TP is the horizontal lift of some covariant connection on M .
Note that in this case the lift h satisfies:

#α = 0 =⇒ h(u, α) = 0, (u, α) ∈ p∗T ∗M.(1.38)

This construction shows that there are always contravariant connections on any
principal bundle P (M,G) over a Poisson manifold M .

Not all connections satisfy property (1.38), so we set:

Definition 1.8.1. A contravariant connection Γ on a principal bundle P (M,G) is
called a F-connection if its horizontal lift satisfies condition (1.38)

Assume we have a contravariant F -connection Γ on P (M,G). If i : S →֒ M is
a symplectic leave, then on the pull-back bundle p̃ : i∗P →M we have an induced
connection ΓS : on the total space i∗P = {(y, u) ∈ S × P : i(y) = p(u)} we define
the horizontal lift hS : p∗ST

∗S → T (i∗P ) by setting

hS((s, u), α) = (p∗h(u, β), h(u, β)), (s, u) ∈ i∗P, (u, α) ∈ p∗T ∗M,(1.39)

where β ∈ T ∗
i(s)M is such that (dsi)

∗β = α, and we are identifying T (i∗P ) =

{(v, w) ∈ TS × TP : v = p∗w}. If (dsi)
∗β′ = (dsi)

∗β, then #β′ = #β, so we get the
same result in (1.39) and so Γ is well defined. S being symplectic, the connection
ΓS is induced by a covariant connection on i∗P . Since the trivialization maps
ψj : p−1(Uj) → Uj ×G induce trivialization maps ψ̃j : p̃−1(Uj ∩S) → (Uj ∩S)×G

of the pull-back bundle i∗P (M,G), writing s̃j(y) = ψ̃−1(y, e) for the associated
sections, we have:

Proposition 1.8.2. Let Γ be an F-connection in P (M,G). If x ∈M and i : S →֒
M is the symplectic leaf through x, denote by ωS and ΩS the connection 1-form and
the curvature 2-form for the induced connection on i∗P (M,G). Also, let ωj = s̃∗jωS

and Ωj = s̃∗jΩS. Then Λj and Ξj are i-related to #ωj and #Ωj:

i∗#ωj = Λj, i∗#Ωj = Ξj .(1.40)

Therefore, a contravariant F -connection in P can be thought of as a family
of ordinary connections over the symplectic leaves of M . The (local) connection
vector fields {Λj} and the (local) curvature bivector fields {Ξj} are obtained by
gluing together the (local) connection vector fields {#ωj} and the (local) curvature
bivector fields {#Ωj} of the connections on the symplectic leaves of M .

For an F -connection, horizontal lifts of cotangent curves (γ, α) depend only on γ.
Therefore, one has a well determined notion of horizontal lift of a curve lying on a
symplectic leaf. It follows that for these connections, parallel displacement can also
be defined by first reducing to the pull-back bundle over a symplectic leaf and then
parallel displace the fibers. Hence, the holonomy groups Φ(x) and Φ0(x) coincide
with the usual holonomy groups of the pull-back connection on the symplectic leaf
S through x.

1.9. Flat Connections. Let M be a Poisson manifold and P (M,G) = M ×G the
trivial principal bundle. The canonical contravariant flat connection in P (M,G) is
defined by taking as horizontal lift h : p∗T ∗M → TP the map

h(u, α) = (#α, 0), (u, α) ∈ p∗T ∗M

where we identify TP = TM × TG. This connection is a F -connection.
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It is clear that a connection is the canonical flat connection iff it is reducible to
the unique contravariant connection in M × e, where e ∈ G is the identity. For the
canonical flat connection and the natural trivialization the connection vector field
is Λ = 0, and so the canonical flat connection has zero curvature. Conversely, we
have the following obvious proposition:

Proposition 1.9.1. For an F-connection Γ the following statements are equiva-
lent:

i) Γ is flat;
ii) every point has neighborhood U such that the induced connection in P |U is

isomorphic with the canonical contravariant flat connection in U ×G;
iii) every point has neighborhood U such that there exists a parallel section σ :

U → P .

Moreover, a flat F-connection has discrete holonomy.

If Γ is not an F -connection the conclusions of the proposition, in general, do not
hold.

2. Linear Contravariant Connections

2.1. Contravariant Connections on a Vector Bundle. Let P (M,G) be a prin-
cipal bundle over a Poisson manifold M with a contravariant connection Γ. Sup-
pose that G acts linearly on a vector space V , so on the associated vector bundle
E(M,V,G, P ) we have the notion of parallel displacement of fibers along cotangent
curves (γ, α) (see section 1.7).

Given a section φ of E defined along a cotangent curve (γ, α), we define the
contravariant derivative D(γ,α)φ to be the section

D(γ,α)φ(t) = lim
h→0

1

h

[
τ t+h
t (φ(γ(t+ h))) − φ(γ(t))

]
(2.1)

where τ t+h
t : p−1

E (γ(t+h)) → p−1
E (γ(t)) denotes parallel transport of the fibers from

γ(t+ h) to γ(t) along the cotangent curve (γ, α).

Proposition 2.1.1. Let φ and ψ be sections of E and f a function on M defined
along γ. Then

i) D(γ,α)(φ+ ψ) = D(γ,α)φ+D(γ,α)ψ;
ii) D(γ,α)(fφ) = (f ◦ γ)D(γ,α)φ+ γ̇(f)(φ ◦ γ);

Proof. i) is obvious from the definition. On the other hand, we have

τ t+h
t (f(γ(t+ h))φ(γ(t + h))) = f(γ(t+ h))τ t+h

t (φ(γ(t + h))),

and ii) follows by the Leibniz rule.

Now let α ∈ T ∗
xM be a covector and φ a cross section of E defined in a neighbor-

hood of x. The contravariant derivative Dαφ of φ in the direction of α is defined
as follows: choose a cotangent curve (γ(t), α(t)) defined for t ∈ (−ε, ε), and such
that γ(0) = x and α(0) = α. Then we set:

Dαφ = D(γ,α)φ(0).(2.2)

It is easy to see that Dαφ is independent of the choice of cotangent curve. Clearly,
a cross section φ of E defined on an open set U ⊂ M is flat iff Dαφ = 0 for all
α ∈ TxM , x ∈M .

Proposition 2.1.2. Let α, β ∈ T ∗
xM , φ and ψ cross sections of E defined in a

neighborhood U of x. Then

i) Dα+βφ = Dαφ+Dβφ;
ii) Dα(φ+ ψ) = Dαφ+Dαψ;



CONNECTIONS IN POISSON GEOMETRY 17

iii) Dcα = cDαφ, for any scalar c;
iv) Dα(fφ) = f(x)Dαφ+ #α(f)φ(x), for any function f ∈ C∞(U);

Proof. iii) is obvious, while ii) and iv) follow from proposition 2.1.1. To prove i)
observe that any section φ of E, defined in a open set U , can be identified with a
function F : p−1(U) → V by letting

F (u) = u−1(φ(p(u))), u ∈ p−1(U),

where we view u ∈ P as a linear isomorphism u : V → p−1
E (u). Then, as in the

covariant case, we find

Dαφ = u(h(u, α) · F ).

From this expression for the contravariant derivative, i) follows immediately.

Now let α ∈ Ω1(M) be a 1-form and φ a section of E. We define the contravariant
derivative Dαφ to be the section of E given by:

Dαφ(x) = Dαx
φ.(2.3)

Proposition 2.1.3. Let α, β ∈ Ω1(M), φ and ψ cross sections of E, and f ∈
C∞(M). Then

i) Dα+βφ = Dαφ+Dβφ;
ii) Dα(φ+ ψ) = Dαφ+Dαψ;
iii) Dfα = fDαφ;
iv) Dα(fφ) = fDαφ+ #α(f)φ;

Proof. From proposition 2.1.2 we obtain immediately that i)-iv) hold.

It is also true that the contravariant derivative uniquely determines the connec-
tion. The proof of the following proposition is similar to the covariant case and so
it will be omitted.

Proposition 2.1.4. Suppose for each 1-form α ∈ Ω1(M) there is a linear oper-
ator Dα acting on sections of E and satisfying i)-iv) of proposition 2.1.3. Then
there exists a unique contravariant connection Γ on the associated principal bundle
P (M,G) whose induced contravariant derivative on E is D.

In the case where the contravariant connection is induced by a covariant con-
nection, the contravariant derivative D and the covariant derivative ∇ are related
by

Dα = ∇#α.(2.4)

On the other hand, F -connections can be characterized by the condition:

#α = 0 =⇒ Dα = 0, ∀α ∈ T ∗(M).(2.5)

Moreover, by proposition 1.8.2, for an F -connection, on each symplectic leaf i :
S →֒ M there is a covariant connection on the pullback bundle i∗P , inducing a
covariant derivative ∇ on i∗E, with the following property: if ψ is any cross section
of E, then

i∗Dαψ = ∇#i∗αi
∗ψ,(2.6)

where i∗ψ denotes the section of the pullback bundle i∗E induced by ψ.
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2.2. Linear Contravariant Connections. A linear contravariant connection is
a contravariant connection on the coframe bundle P = F ∗(M) over M , so G =
GL(m) where m = dimM . If u = (α1, . . . , αm) ∈ F ∗(M) is a coframe, we can view
u as a linear isomorphism u : (Rm)

∗
→ T ∗

p(u)M by setting

u(ξ)(v) = ξ(α1(v), . . . , αm(v)), v ∈ Tp(u)M, ξ ∈ (Rm)∗.

We define the canonical vector fields θj on an open set Uj , with trivializing isomor-

phism ψj : p−1(Uj) → Uj ×G, and associated section sj(x) = ψ−1
j (x, e), to be the

(Rm)
∗
-valued vector fields defined by

θj(α)x = sj(x)
−1(α), x ∈ Uj.(2.7)

These allows us to define the torsion bivector fields Θj to be the (Rm)∗-valued
bivector fields given by

Θj(α, β) = δθj(α, β) + Λj(α) · θ(β) − Λj(β) · θj(α).(2.8)

Proposition 2.2.1. The canonical vector fields and the torsion bivector fields of a
linear contravariant connection are related by

θk = ψ−1
jk · θj ,(2.9)

Θk = ψ−1
jk · Θj.(2.10)

Moreover, they satisfy the Bianchi identity

δΘj(α, β, γ) =
⊙

α,β,γ

δΛj(α, β) · θj(γ) −
⊙

α,β,γ

Λj(α) · δθj(β, γ).(2.11)

where the symbol
⊙

denotes cyclic sum over the subscripts.

Proof. Relation (2.9) follows immediately from the definition of the canonical vector
fields. To prove (2.10), we take the contravariant differential of (2.9):

δθk(α, β) = ψ−1
jk · δθj(α, β) − ψ−1

jk δψjk(α)ψ−1
jk · θj(β) + ψ−1

jk δψjk(β)ψ−1
jk · θj(α).

From the transformation rule (1.23) for the connection vector fields, we find

Λk(α) · θk(β) = ψ−1
jk Λj(α) · θj(β) + ψ−1

jk δψjk(α)ψ−1
jk · θj(β).

Therefore, we compute:

Θk(α, β) = δθk(α, β) + Λk(α) · θ(β) − Λk(β)θj(α)

= ψ−1
jk δθj(α, β) + ψ−1

jk Λj(α) · θj(β) − ψ−1
jk Λj(β) · θj(α) = ψ−1

jk · Θj(α, β).

The Bianchi identity follows from taking the contravariant differential of (2.8).

For the standard contragradient action of G = GL(m) on F = (Rm)∗, the
bundle associated with the coframe bundle P = F ∗(M) is the cotangent bundle
T ∗M = E(M,F,G, P ). Sections of T ∗(M) are just differential 1-forms and so
the contravariant derivative associates to each 1-form α a linear operator Dα :
Ω1(M) → Ω1(M) such that:

Df1α1+f2α2 = f1Dα1 + f1Dα1 , for all fi ∈ C∞(M), αi ∈ Ω1(M),(2.12)

Dα(fβ) = fDαβ + #α(f)β, for all f ∈ C∞(M), α, β ∈ Ω1(M).(2.13)

One can also consider other associated vector bundles to F ∗(M) which lead, just
us in the covariant case, to contravariant derivatives of any tensor fields over M .
For example, if X is a vector field, then DαX is the contravariant derivative of X
along the 1-form α. It is completely characterized by the relation

〈DαX, β〉 = #α(〈X, β〉) − 〈X,Dαβ〉 ,(2.14)
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which holds for every 1-form β ∈ Ω1(M). One has similar formulas for the con-
travariant derivative of any tensor field on M .

Local coordinate expressions for linear contravariant connections can be obtained
in a way similar to the covariant case. Let (x1, . . . , xm) be local coordinates on a

neighborhood U in M . Then we define Christoffel symbols Γij
k by

Ddxidxj = Γij
k dx

k.(2.15)

It is easy to see that under a change of coordinates these symbols transform ac-
cording to

Γ̃lm
n =

∂yl

∂xi

∂ym

∂xj

∂xk

∂yn
Γij

k +
∂yl

∂xi

∂2ym

∂xj∂xk

∂xj

∂yn
πik,(2.16)

where πik are the components of the Poisson tensor. Conversely, given a family of
symbols that transform according to this rule under a change of coordinates, we
obtain a well defined contravariant derivative/connection on M .

Using these symbols, it is easy to get the local coordinates expressions for the
contravariant derivatives: given a 1-form α = αidx

i and a tensor field K, of type
(r, s), with components Ki1...ir

j1...js
, we have

(2.17) (DαK)i1...ir

j1...js
= πklαk

∂Ki1...ir

j1...js

∂xl
−

r∑

a=1

(
Γkia

l αkK
i1...l...ir

j1...js

)

+
s∑

b=1

(
Γkl

jb
αkK

i1...ir

j1...l...js

)
.

Given a tensor field K of type (r, s) we shall write, as in the covariant case, DK
for the tensor field of type (r + 1, s) such that

(DK)i1...irk
j1...js

= (DdxkK)i1...ir

j1...js
.(2.18)

A tensor field K on M is parallel iff DK = 0.

2.3. Curvature and Torsion Tensor Fields. For a linear contravariant connec-
tion on a Poisson manifold M we define the torsion tensor field T and the curvature
tensor field R, respectively, to be the tensor fields of types (2, 1) and (3, 1) given
by

T (α, β) = sj(x)(Θj(α, β),(2.19)

R(α, β)γ = sj(x)
[
Ξ∗

j (α, β) · s−1
j (x)(γ)

]
.(2.20)

where x ∈ Uj , α, β, γ ∈ T ∗
x (M), and we are denoting by Ξ∗

j (α, β) the endomorphism

of gl(m) dual to Ξj(α, β). Note that if x ∈ Uj ∩ Uk and sk(x) = ψjk(x)sk(x)
we obtain the same values in formulas (2.19) and (2.20), so these really define
tensor fields on all of M . These tensor fields can be easily expressed in terms of
contravariant derivatives:

Proposition 2.3.1. In terms of contravariant differentiation, the torsion T and
the curvature R can be expressed as follows:

T (α, β) = Dαβ −Dβα− [α, β],(2.21)

R(α, β)γ = DαDβγ −DβDαγ −D[α,β]γ.(2.22)

Moreover, the Bianchi identities (2.11) and (1.28) can also be expressed as
⊙

α,β,γ

(DαR(β, γ) +R(T (α, β), γ)) = 0,(2.23)

⊙

α,β,γ

(R(α, β)γ − T (T (α, β), γ) −DαT (β, γ)) = 0.(2.24)
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From formulas (2.21) and (2.22), we obtain immediately the following local co-
ordinates expressions for the torsion and curvature tensor fields:

T ij
k = Γij

k − Γji
k −

∂πij

∂xk
,(2.25)

Rijk
l = Γir

l Γjk
r − Γjr

l Γik
r + πir ∂Γjk

l

∂xr
− πjr ∂Γik

l

∂xr
−
∂πij

∂xr
Γrk

l .(2.26)

Remark 2.3.2. Expressions (2.20) and (2.22) remain valid for any contravariant
connection on a vector bundle E provided we replace γ by a section of E. In this
case Bianchi’s identity (1.28) can be expressed as

⊙

α1,α2,α3

Dα1(R(α2, α3)) −
⊙

α1,α2,α3

R([α1, α2], α3) = 0.

If it happens that the contravariant connection is related to some covariant
connection by:

#Dαβ = ∇#α#β,

(e. g., if D is induced by a covariant connection and Π is parallel, so Dα = ∇#α

and DΠ = 0) the torsion and curvature tensor fields are transformed by the musical
homomorphism to the usual torsion and tensor fields of ∇:

T∇(#α,#β) = #TD(α, β), R∇(#α,#β)#γ = #RD(α, β)γ.

2.4. Geodesics. For contravariant connections parallel transport can only be de-
fined along curves lying in symplectic leaves of M . The same restriction applies to
geodesics:

Definition 2.4.1. Let (γ(t), α(t)) be a cotangent curve on M . We say that (γ, α)
is a geodesic if:

(Dαα)γ(t) = 0.(2.27)

In local coordinates, a curve (γ(t), α(t)) = (x1(t), . . . , xm(t), α1(t), . . . , αm(t)) is
a geodesic iff it satisfies the following system of ode’s






dxi(t)
dt

= πji(x1(t), . . . , xm(t))αj(t),
(i = 1, . . . ,m)

dαi(t)
dt

= −Γjk
i ((x1(t), . . . , xm(t))αjαk.

(2.28)

From this we have:

Proposition 2.4.2. Let M be a Poisson manifold, with a contravariant connection
Γ, and x0 ∈ M . Given αx0 ∈ T ∗

x0
M , there is a unique maximal geodesic t 7→

(γ(t), α(t)), starting at x0 ∈M , with α(0) = αx0 .

Proof. Choose a systems of coordinates (x1, . . . , xm) centered at x0. By standard
uniqueness and existence results for ode’s, system (2.28) has a unique solution such
that (x1(0), . . . , xm(0), α1(0), . . . , αm(0)) = (0, . . . , 0, αx0,1 , . . . , αx0,m

).

The geodesic given by this proposition is called the geodesic through x0 with
cotangent vector αx0 . Note that if S is the symplectic leaf through x0 and v ∈ Tx0S
is a vector tangent to S, there can be several geodesics with this tangent vector at
x0. However, for an F -connection geodesics are uniquely determined by tangent
vectors and coincide with the geodesics of the covariant connection induced on S.

The following result is the analogue of a well known result in affine geometry:

Proposition 2.4.3. Let Γ be a contravariant connection on M . There exists a
unique contravariant connection on M with the same geodesics and zero torsion.
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Proof. Choose local coordinates on M so D has symbols Γij
k , and consider the set

of functions

∗Γij
k =

1

2

(
Γij

k + Γji
k +

∂πij

∂xk

)
(2.29)

One checks that if Γij
k and Γ̃lm

n are related by the transformation law (2.16), then
∗Γij

k and ∗Γ̃
lm

n are also related by the same transformation law. It follows that we
have a well defined contravariant connection D∗ on M . From the local coordinate
expressions for the torsion (2.25) and the geodesics (2.28), we see that D∗ has zero
torsion and the same geodesics as D.

For uniqueness, let D and D∗ be two connections with the same geodesics and
torsion 0. We let

S(α, β) = Dαβ −D∗
αβ, α, β ∈ Ω1(M).(2.30)

Then S is C∞-linear, so it is a tensor. Since the connections have 0 torsion, we
have:

S(α, β) − S(β, α) = (Dαβ −Dβα) − (D∗
αβ −D∗

βα)(2.31)

= [α, β] − [α, β] = 0.

so S is a symmetric tensor. Now if αp ∈ T ∗
pM , we can choose the geodesic (for D

and D∗) with cotangent vector αp and associated 1-form α along γ. We have

S(αp, αp) = Dαα−D∗
αα = 0,(2.32)

so S = 0 and D = D∗.

2.5. Poisson Connections. Linear contravariant connections for which the Pois-
son tensor is parallel play an important role. Recall that a covariant connection
for which the Poisson tensor is parallel exists iff the Poisson manifold has constant
rank (see e. g. [10], thm. 2.20). On the other hand, for contravariant connections a
simple argument involving a partition of unity shows that we have:

Proposition 2.5.1. Every Poisson manifold has a linear contravariant connection
with contravariant derivative D such that DΠ = 0.

Proof. Let Ua be a domain of a chart (x1, . . . , xm). On Ua, the contravariant
connection D(a) with symbols

Γij
k =

∂πij

∂xk

satisfies D(a)Π = 0. If we take an open cover of M by such chart domains and if∑
a φ

(a) = 1 is partition of unity subordinated to this cover, then D =
∑

a φ
(a)D(a)

is a connection on M for which Π is parallel.

We shall call a contravariant connection on M such that the Poisson tensor Π is
parallel a Poisson connection. In the symplectic case, these coincide with the
symplectic connections.

If a Poisson connection has vanishing torsion then it is an F -connection: since
DΠ = 0, we have D# = #D, and from T = 0 we conclude that for α, β ∈ Ω1(M)

#α = 0 =⇒ #Dαβ = #Dβα+ #[α, β]

= Dβ#α+ [#α,#β] = 0.

Therefore, a torsionless Poisson connection is in fact a family of connections along
the leaves of M : for each symplectic leaf i : S →֒M there exists a unique covariant
symplectic connection ∇S on S, such that

i∗Dαβ = ∇S
#i∗αi

∗β, α, β ∈ Ω1(M).
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As we pointed out above, a non-regular Poisson manifold does not admit covariant
connections for which the Poisson tensor is parallel. Therefore, in general, it is not
possible to glue together the covariant connections ∇S to get a connection on M .
As the following example shows, the family form by these connections will develop
singularities at points where the rank drops.

Example 2.5.2. Consider a 2-dimensional non-abelian Lie algebra g and choose a
basis {ω1, ω2} such that:

[ω1, ω2] = ω1.

On g∗ we take the Lie-Poisson bracket which relative to the coordinates (x1, x2)
defined by the dual basis satisfies

{
x1, x2

}
= x1. Now consider the contravariant

connection on g∗ defined by:

Ddx1dx1 = Ddx2dx2 = Ddx2dx1 = 0, Ddx1dx2 = dx2.

One checks easily that D has zero torsion and Dπ = 0. On the other hand there is
no globally defined covariant connection ∇ on g∗ such that Dα = ∇#α. In fact, if
such a connection existed, then denoting by Γk

ij its Christoffel symbols, we should
have

Γij
k = πilΓj

lk,

where Γij
k are the symbols of D. Taking i = k = 1, j = 2, this would give

1 = x1Γ2
21,

which is impossible. Note that formally we obtain the solution Γ2
21 = 1

x1 , so there

exists a singular connection with singular set x1 = 0. This is precisely the set of
points where the rank drops from 2 to 0.

3. Poisson Holonomy

3.1. Holonomy of a Symplectic Leaf. For a regular foliation the topological
behaviour close to a given leaf is controlled by the holonomy of the leaf. For a
singular foliation, as is the case of the symplectic foliation of a Poisson manifold,
there is in general no such notion of holonomy (see, however, [2] where holonomy
is defined for transversely stable leaves). It turns out that in the case of a Poisson
manifold it is still possible to introduce a notion of holonomy which also reflects
the Poisson geometry of nearby leaves. In this theory of holonomy, contravariant
connections play a significant role.

Let M be a Poisson manifold and let i : S →֒ M be a symplectic leaf of M .
Denote by ν(S) = TSM/TS the normal bundle to S and by p : ν(S) → S the
natural projection. By the tubular neighborhood theorem, there exists a smooth
immersion ĩ : ν(S) →M satisfying the following properties:

i) ĩ|Z = i, where Z is the zero section of ν(S);
ii) ĩ maps the fibers of ν(S) transversely to the symplectic foliation of M ;

Assume that we have fixed such an immersion. Each fiber Fx = p−1(x) deter-
mines a splitting Txν(M) = TxS ⊕ TxFx, so we have a decomposition:

T ∗
xν(M) = T ∗

xS ⊕ T ∗
uFx, where (TxFx)0 ≃ T ∗

xS, (TxS)0 ≃ T ∗
xFx.(3.1)

Note that TxS = Im#x = #(TxFx)0. For each u ∈ Fx we have an analogous
splitting Tuν(M) = #(TuFx)0 ⊕ TuFx, so there is also a decomposition:

T ∗
uν(M) = (TuFx)0 ⊕ T ∗

uFx, where T ∗
uFx ≃ (#(TuFx)0)0.(3.2)

Each such immersion induces a unique Poisson structure on the total space ν(S)

such that ĩ : ν(S) → M is a Poisson map. Also, on each fiber Fx = p−1(x) there
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is an induced transverse Poisson structure Π⊥
x : The corresponding bundle map

#⊥ : T ∗Fx → TFx is defined as the composed map

T ∗Fx

q∗
x→ T ∗

Fx
ν(S)

#
→ TFx

ν(S)
qx
→ TFx,

where qx : TFx
ν(S) → TFx is the bundle projection from the restricted tangent

bundle TFx
ν(S) onto TFx associated with the decomposition (3.2).

Now let α ∈ TxM . We decompose α according to (3.1):

α = α‖ + α⊥,where α‖ ∈ (TxFx)0 ≃ T ∗
xS, α⊥ ∈ (TxS)0 ≃ T ∗

xFx.

Since Fx is a linear space, there is a natural identification T ∗
xFx ≃ T ∗

uFx, and we
denote by α̃⊥

u ∈ T ∗
uFx ≃ (#(TuFx)0)0 the element corresponding to α⊥. On the

other hand, the composition of the musical isomorphism # with the differential
of the projection p : ν(S) → S induces an isomorphism between the annihilator
(TuFx)0 and TxS, so we also have an isomorphism (TuFx)0 ≃ T ∗

xS. If we denote

by α̃
‖
u ∈ (TuFx)0 the element corresponding to α‖ under this isomorphism, we have

p∗#α̃
‖ = #α.

Given a covector α ∈ T ∗
xM we shall define its horizontal lift to ν(S) by

h(u, α) = #α̃‖
u + #⊥α̃⊥

u ∈ Tuν(S).

By construction, we have property (CI)∗ of a contravariant connection

p∗h(u, α) = #α, u ∈ p−1(x),

so this horizontal lift defines a kind of generalized contravariant connection in ν(S).
Note that it depends both on the immersion and on the Poisson tensor.

Let (γ(t), α(t)), t ∈ [0, 1], be a cotangent curve in the symplectic leaf S starting
at x = γ(0). If u ∈ ν(S)|x is a point in the fiber over x, there exists an ε > 0 and
a horizontal curve γ̃(t) in ν(S), defined for t ∈ [0, ε), which satisfies:






d
dt
γ̃(t) = h(γ̃(t), α(t)), t ∈ [0, ε),

γ̃(0) = u.

Moreover, we can choose a neighborhood Uγ of 0 ∈ ν(S)|x, such that for each
u ∈ Uγ the lift γ̃(t) with initial point u is defined for all t ∈ [0, 1].

If (γ(t), α(t)) is a cotangent loop based at x ∈ S then this lift gives, by passing
from initial to end point, a diffeomorphism HS(γ, α) of Uγ into another neighbor-
hood Vγ of 0 ∈ ν(S)|x, with the property that 0 is mapped to 0. One extends the
definition of HS for piecewise smooth cotangent loops in the obvious way.

Denote by Aut(Fx) the group of germs at 0 of Poisson automorphisms of Fx

which map 0 to 0.

Proposition 3.1.1. Let (γ, α), (γ′, α′) be cotangent loops based at x ∈ S, then:

i) HS(γ, α) is an element of Aut(Fx);
ii) HS((γ, α) · (γ′, α′)) = HS(γ, α)◦HS(γ′, α′), where the dot denotes concatena-

tion of cotangent loops.

Proof. Let (γ(t), α(t)) be a cotangent curve in S. For each t, we have a trivialization
of p : ν(S) → S in a neighborhood of γ(t) such that p(x, y) = x. If α(t) =∑
a(t)dx|γ(t) + b(t)dy|γ(t) we consider the 1-form with constant coefficients αt =∑
a(t)dx+ b(t)dy. The lift of its restriction to S defines the time-dependent vector

field:

Xt = #α̃
‖
t + #⊥α̃⊥

t , where α̃
‖
t ∈ (TFγ(t))

0, α̃⊥
t ∈ T ∗Fγ(t) ≃ (#(TFγ(t))

0)0.

For each t, the transverse component α̃⊥
t is a closed 1-form in Fγ(t).
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The lifts γ̃ of γ are the integral curves of the vector field Xt. We claim that the
flow φt of this vector field preserves the transverse Poisson structure Π⊥

(φ−t)∗Π
⊥
φt(u) = Π⊥

u ,(3.3)

so (i) follows. Part (ii) also follows since we have just shown that we can take
HS(γ, α) as the time-1 map of some flow.

To prove (3.3) we observe that

d

dt
(φ−t)∗Π

⊥
φt(u) = (φ−t)∗

[
d

dh
(φ−h)∗Π

⊥
φh(φt(u))

]

h=0

,

and we use the following lemma:

Lemma 3.1.2. If α1, α2 ∈ T ∗
uFx ≃ (#(TuFx)0)0 then

[
d

dh
(φ−h)∗Π

⊥
φh(u)

]

h=0

(α1, α2) = (LXt
Π)u(α1, α2)

Now we have

LXt
Π(α1, α2) = L

#α̃
‖
t

Π(α1, α2) + L#⊥α̃⊥
t
Π(α1, α2)

= L
#α̃

‖
t

Π(α1, α2) + L#⊥α̃⊥
t
Π⊥(α1, α2)

The transverse component vanishes since α̃⊥
t is a closed form in the fiber, for each

t. For the parallel component we write α̃
‖
t =

∑
i aidx

i, and we compute

L
#α̃

‖
t

Π =
∑

i

(
aiL#dxiΠ + #dai ∧ #dxi

)
.

But dxi ∈ (TFx)0 and since α1, α2 ∈ (#(TuFx)0)0 we conclude that

L
#α̃

‖
t

Π(α1, α2) =
∑

i

aiL#dxiΠ(α1, α2) = 0,

so the parallel component also vanishes.
It remains to prove lemma 3.1.2. We note that for any α ∈ T ∗

uFx we have
q∗
φh(u)(φ

−h)∗α− (φ−h)∗q∗uα ∈ (TFp(φh(u)))
0. Using this remark we find:

[
d

dh
(φ−h)∗Π

⊥
φh(u)

]

h=0

(α1, α2) =

= lim
h→0

1

h

[
Πφh(u)(q

∗
φh(u)(φ

−h)∗α1, q
∗
φh(u)(φ

−h)∗α2) − Πu(q∗uα1, q
∗
uα2)

]

= Πφh(u)

[
Πφh(u)((φ

−h)∗q∗uα1, (φ
−h)∗q∗uα2) − Πu(q∗uα1, q

∗
uα2)

]

= (LXt
Π)u(q∗uα1, q

∗
uα2),

so the lemma follows.

Denoting by Ω∗(S, x) the group of piecewise smooth cotangent loops, we see that
we have a group homomorphism HS : Ω∗(S, x) → Aut(Fx), which will be called the
Poisson holonomy homomorphism of the leaf S. This Poisson holonomy homomor-
phism depends on the immersion ĩ : ν(S) → M , but two different immersions lead
to conjugate homomorphisms.

Example 3.1.3. Let S be a regular leaf of a Poisson manifold M . In decomposi-
tion 3.2 we can identify (TuFx)0 ≃ T ∗

uSu and (TuSu)0 ≃ T ∗
uFu, where Su is the

symplectic leaf through u. It follows that the horizontal lift h(u, α) is the unique
tangent vector in TuSu which projects to #α. We conclude that for a regular leaf
the Poisson holonomy coincides with the usual holonomy.
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Example 3.1.4. Let g be some finite dimensional Lie algebra and consider on M =
g∗ the canonical linear Poisson bracket. For the singular leaf S = {0} we have
ν(S) ≃ g∗ with p(u) ≡ 0 and the decomposition 3.2 collapses. Given a covector
α ∈ T ∗

0 g∗ = g we find h(u, α) = #uα = ad ∗α · u. It follows that for a constant
cotangent loop (0, α) in S we have HS(0, α) = Ad ∗(exp(α)), which of course is a
Poisson automorphism of F0 ≃ g∗.

3.2. Reduced Poisson Holonomy. As example 3.1.4 shows, Poisson holonomy is
not a homotopy invariant. Following the construction given in [4] for the linear case,
we can give a notion of reduced Poisson holonomy which is homotopy invariant.

For a Poisson manifold M let us denote by Aut (M) the group of Poisson diffeo-
morphisms of M , and by Aut 0(M) its connected component of the identity: given
φ ∈ Aut 0(M) there exists a smooth family φt ∈ Aut (M), t ∈ [0, 1], such that
φ0 = id, φ1 = φ, and φt is generated by a time-dependent vector field:

dφt

dt
= Xt ◦ φt.

The vector field Xt is an infinitesimal Poisson automorphism:

LXt
Π = 0.

We shall say that φ is a inner Poisson automorphism or a hamiltonian automor-
phism if there exists a smooth family of hamiltonian functions ht : M → R such that
Xt = Xht

= #dht. The set Inn (M) ⊂ Aut (M) of inner Poisson automorphisms is
a normal subgroup, and we define the group of outer Poisson automorphisms of M
to be the quotient Out (M) = Aut (M)/Inn (M)

Recall that for a symplectic leaf S we denote by Aut(Fx) the group of germs
at 0 of Poisson automorphisms of Fx which map 0 to 0. We shall also denote by
Out(Fx) the corresponding group of germs of outer Poisson automorphisms.

Proposition 3.2.1. Let S be a symplectic leaf of M , with Poisson holonomy ho-
momorphism HS : Ω∗(S, x) → Aut(Fx). If (γ1, α1) and (γ2, α2) are cotangent
loops with γ1 ∼ γ2 homotopic then HS(γ1, α1) and HS(γ2, α2) represent the same
equivalence class in Out(Fx).

Proof. Since any piecewise smooth path γ ⊂ S can be made into a cotangent path,
by property (ii) in proposition 3.1.1 it is enough to show that for every x ∈ S there
exists a neighborhood U of x in S such that if γ(t) ⊂ U is a piecewise smooth
loop based at x and α(t) ∈ T ∗M is a piecewise smooth family with #α = γ̇ then
HS(γ, α) ∈ Inn (Fx).

To see this we use the same notation as in the proof of proposition 3.1.1. In a
trivializing neighborhood U of p : ν(S) → S containing x, we can decompose the
vector field Xt as:

Xt = #α̃
‖
t + #⊥α̃⊥

t , where α̃
‖
t ∈ (TFγ(t))

0, α̃⊥
t ∈ T ∗Fγ(t) ≃ (#(TFγ(t))

0)0.

For each t, the transverse component α̃⊥
t can be taken a closed 1-form in Fγ(t). It

is clear that the parallel component #α̃
‖
t has no effect on the holonomy. Hence we

can assume that S = {x}, Fx = M , γ is a constant path and α̃⊥
t = α(t), so

Xt = #α(t) = #dht,

for some function ht defined in a neighborhood of x. Since HS(γ, α) is the time-1
flow of this hamiltonian vector field we conclude that HS(γ, α) ∈ Inn (Fx).

Given a loop γ in S we shall denote by H̄S(γ) ∈ Out(Fx) the equivalence class of
HS(γ, α) for some piece-wise smooth family α(t) with #α(t) = γ(t). The map H̄S :
Ω(S, x) → Out(Fx) will be called the reduced Poisson holonomy homomorphism of
S. This maps extends to continuous loops and, by a standard argument, it induces
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a homomorphism H̄S : π1(S, x) → Out(Fx) where π1(S, x) is the fundamental group
(the use of the same letter to denote both these maps should not be the cause of
any confusion).

3.3. Stability. The reduced Poisson holonomy of a leaf carries information on the
behaviour of the Poisson structure in a neighborhood of the leaf. The simplest result
in this direction can be obtained as follows: let us call S transversely stable if the
transverse Poisson manifold N is stable near S ∩N , i. e., if N has arbitrarily small
neighborhoods of N ∩S which are invariant under all hamiltonian automorphisms.

Theorem 3.3.1. (Local Stability I) Let S be a compact, transversely stable leaf,
with finite reduced holonomy. Then S is stable, i. e., S has arbitrarily small neigh-
borhoods which are invariant under all hamiltonian automorphisms. Moreover, each
symplectic leaf of M near S is a bundle over S whose fiber is a finite union of sym-
plectic leaves of the transverse Poisson structure.

Proof. Assume first that S has trivial reduced holonomy. We fix an embedding
ĩ : ν(S) → M as above and a base point x0 ∈ S. Also, we choose a Riemannian
metric on S.

By compactness of S, there exists a number c > 0 such that every point x ∈ S
can be connected to x0 by a smooth cotangent path of length < c. For some inner
product on ν(S)|x0 , let Dε be the disk of radius ε centered at 0. For each ε > 0,
there exists a neighborhood U ⊂ Dε such that:

i) for any piecewise-smooth cotangent path in S, starting at x0, with length
≤ 2c and for any u ∈ U , there exists a lifting with initial point u;

ii) the lifting of any cotangent loop based at x0 with initial point u ∈ U has end
point in U ;

iii) U is invariant under all hamiltonian automorphisms;

In fact, let (γ1, α1), . . . , (γk, αk) be cotangent loops such that γ1, . . . , γk are gen-
erators of π1(S, x0), and let φi be Poisson diffeomorphisms which represent the
germs HS(γi, αi). Since the reduced holonomy is trivial, there is a neighborhood
U ′ of 0 in Fx0 = ν(S)|x0 such that U ⊂ domain(φ1) ∩ · · · ∩ domain(φk), and
φi|U

′ ∈ Inn (Fx0), for all i. Since S is transversely stable, we can choose a smaller
neighborhood U ⊂ U ′ invariant under all hamiltonian automorphisms.

Given x ∈ S and a cotangent path (γ, α) connecting x0 to x, let us denote
by σ(γ,α) : U → Fx the diffeomorphism defined by lifting. It follows from i) and
ii) above that if (γ′, α′) is a cotangent path homotopic to (γ, α) then σ(γ,α)(U) =
σ(γ′,α′)(U). It follows from iii) that σ(γ,α)(U) is also invariant under all hamiltonian
automorphisms.

Let V be a neighborhood of S in M . There exists ε(x) > 0 such that for the
corresponding Ux ⊂ Dε(x) we have σ(γ,α)(Ux) ⊂ V ∩ Fx. By compactness of S, we
can choose ε > 0 (independent of x ∈ S) such that for the corresponding U ⊂ Dε

we have

σ(γ,α)(U) ⊂ V ∩ Fx

Set

V0 =
⋃

(γ,α)

σ(γ,α)(U).

Then V0 ⊂ V is a open neighborhood of S which is invariant under all hamiltonian
automorphisms of M .

If u, u′ ∈ V0 are two points in the same symplectic leaf such that p(u) = p(u′) = x,
then there is a path γ̃ in this symplectic leaf connecting these two points. It follows
from the decomposition (3.2) that there exists a cotangent loop (γ, α) in S such
that γ̃ is a horizontal lift of this loop. Thus u′ is the image of u by HS(γ, α) which
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is a hamiltonian automorphism of V0 ∩ Fx. Therefore, u and u′ lie in the same
symplectic of V0 ∩ Fx. We conclude that each symplectic leaf of M near S is a
bundle over S whose fiber is a symplectic leaf of the transverse Poisson structure.

Assume now that S has finite reduced Poisson holonomy. We let q : S̃ → S be a
finite covering space such that q∗π1(S̃) = Ker H̄S ⊂ π1(S). If we embed ν(S) into

M as above, and let ν(S̃) be the pull back bundle of ν(S) over S̃, we have a unique

Poisson structure in ν(S̃) such that the natural map ν(S̃) → ν(S) is a Poisson map.

Moreover, the reduced Poisson holonomy of ν(S̃) along S̃ is trivial, so we can apply

the above argument to ν(S̃) and the theorem follows.

Remark 3.3.2. If a leaf S is transversely stable and x ∈ S, let N denote a stable
neighborhood of Fx. For each cotangent path (γ, α), the Poisson holonomyHS(γ, α)
induces a homeomorphism of the orbit space of N , for the transverse Poisson struc-
ture, mapping zero to zero. If (γ1, α1) and (γ2, α2) are cotangent loops such that
HS(γ1, α1) and HS(γ2, α2) represent the same class in Out(Fx), then they induce
the same germ of homeomorphism of the orbit space mapping zero to zero. In [2]
holonomy of a general, transversely stable, foliation is defined using germs of home-
omorphisms of the orbit space, which in the case of a Poisson manifold coincide
with these ones.

3.4. Strict Poisson Holonomy. Another problem raised by the local splitting
theorem and related to stability is whether one has a global splitting of an entire
neighborhood of a leaf S. Note that if a neighborhood V of S has a Poisson splitting
S ×N then projection to the first factor is a Poisson map. This motivates the

Definition 3.4.1. Let M be a Poisson manifold and i : S →֒ M a symplectic
leaf of M . A Poisson tubular neighborhood of S is a smooth immersion
ĩ : ν(S) →M satisfying:

i) ĩ|Z = i, where Z is the zero section of ν(S);

ii) ĩ maps the fibers of ν(S) transversely to the symplectic foliation of M ;
iii) For the Poisson structure on ν(S) induced from ĩ, the canonical projection

p : ν(S) → S is a Poisson map;

Suppose S admits a Poisson tubular neighborhood. Then the regular distribution
#(Ker p∗)

0 is integrable and S, identified with the zero section, is an integral leaf
of this distribution. Hence, we can consider the holonomy of S (in the usual sense)
as a leaf of the corresponding foliation. We call this the strict Poisson holonomy of
S, and we denote by ȞS : Ω(S, x) → Diff(Fx) the associated holonomy map, where
Diff(Fx) denotes the group of germs of diffeomorphisms of Fx which map 0 to 0.
Strict Poisson holonomy is related to reduced Poisson holonomy as follows.

Proposition 3.4.2. Assume S admits a Poisson tubular neighborhood. The map
ȞS : Ω(S, x) → Diff(Fx) has image inside Aut(Fx) and the following diagram
commutes:

Ω(S, x)
ȞS //

H̄S %%K

K

K

K

K

K

K

K

K

K

Aut(Fx)

��
Out(Fx)

Proof. Fix a Poisson tubular neighborhood p : ν(S) → S and consider the genera-
lized connection in ν(S) defined by the distribution #(Ker p∗)

0. Given a loop γ(t)
in S there exists a family of closed forms αS

t ∈ Ω1(S) such that #αS
t (γ(t)) = γ̇(t).
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The horizontal lifts of this loop are integral curves of the time-dependent vector
field

X̌t = #p∗αS
t .

Since dp∗αS
t = p∗dαS

t = 0, this vector field is an infinitesimal Poisson automor-
phism. We conclude that the holonomy maps ȞS(γ) are Poisson automorphisms.

Moreover, in the notation of the proof of proposition 3.2.1, we have X̌t = #α
‖
t .

It follows that if (γ, α) is a cotangent loop in M then HS(γ, α) and ȞS(γ) represent
the same class in Out (Fx).

We can now state and prove the following splitting result:

Theorem 3.4.3. (Local Stability II) Suppose i : S →֒ M is a compact symplectic
leaf of a Poisson manifold M which admits a Poisson tubular neighborhood. Assume
further that S has finite strict Poisson holonomy and let q : S̃ → S be the finite
covering corresponding to Ker ȞS ⊂ π1(S, x). Then there is a neighborhood V of S

and a finite covering Poisson map φ : S̃×N → V , where N is a transverse Poisson
manifold to S. If S is transversely stable, then we can chose N and V to be stable
neighborhoods.

Proof. By a standard homotopy lifting argument, as in the end of the proof of
theorem 3.3.1, it is enough to consider the special case where the holonomy is
trivial. We must then show that there is a neighborhood V of S and a Poisson
diffeomorphism φ : S ×N → V , where N is a transverse Poisson manifold to S.

Again, we fix an embedding ĩ : ν(S) → M as above and a base point x0 ∈ S.
Also, we choose a Riemannian metric on S. By compactness of S, there exists a
number c > 0 such that every point x ∈ S can be connected to x0 by a smooth
cotangent path of length < c. For some inner product on ν(S)|x0 , let Dε be the disk
of radius ε centered at 0. There exists an ε > 0 such that: for any piecewise-smooth
cotangent path in S, starting at x0, with length ≤ 2c and for any u ∈ Dε, there
exists a lifting with initial point u. Moreover, by shrinking ε if necessary, we can
assume that the lifting of any cotangent loop based at x0 with initial point u also
ends at u. In fact, let (γ1, α1), . . . , (γk, αk) be cotangent loops such that γ1, . . . , γk

are generators of π1(S, x0), and let φi be Poisson diffeomorphisms which represent
the germs ȞS(γi, αi). Then, since the holonomy is trivial by assumption, there is a
neighborhood U of 0 in ν(S)|x0 such that U ⊂ domain(φ1)∩ · · · ∩ domain(φk), and
φi|U =identity, for all i. We need only to choose ε such that Dε ⊂ U .

For each u ∈ Dε we define a map σu : S →M as follows: let x ∈ S and connect
x to x0 by a cotangent path (γ, α) of length < c. Let γ̃ be the unique lift of
(γ, α) starting at u, and define σu(x) = γ̃(1). This map is well defined because the
holonomy is trivial. Also, σu is clearly a local embedding since p ◦ σu =identity on
S. Since S is compact we conclude that σu is an embedding.

The map σu clearly depends smoothly on u, and since the holonomy is trivial, the
map u 7→ σu(x), for a fixed x, is one-to-one. It follows that the map φ : S×Dε →M
given by (x, u) 7→ σu(x) is a diffeomorphism onto a neighborhood V of S.

By hypothesis, p : ν(S) → S is a Poisson map. On the other hand, the com-
position p ◦ φ : S ×Dε → S is just projection into the first factor, which is also a
Poisson map. Then φ must also be a Poisson map.

Finally, if S is transversely stable, we can choose an open set N ⊂ Dε stable for
the transverse structure, so V = φ(S ×N) is a stable neighborhood.

For simply connected leaves we obtain:

Corollary 3.4.4. Let i : S →֒ M be a compact, simply connected, symplectic leaf
of a Poisson manifold M , which admits a Poisson tubular neighborhood. Then there
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is a neighborhood V of S and a Poisson diffeomorphism φ : S × N → V , where
N is a transverse Poisson manifold to S. If S is transversely stable, then we can
chose N and V to be stable neigborhoods.

One should note that, in general, a leaf does not have a Poisson tubular neigh-
borhood, and so strict Poisson holonomy is not defined. In the following example
we give a Poisson manifold M with a compact, simply connected, symplectic leaf
S, which has no Poisson tubular neighborhood. In particular, M does not split as
S ×N in a neighborhood of S.

Example 3.4.5. First observe that CP (n) is a coadjoint orbit of U(n+1), since the
standard action of U(n + 1) on CP (n) is a transitive hamiltonian action. In fact,
a theorem of Kostant says that, for a compact Lie group, all hamiltonian G-spaces
on which G acts transitively are coadjoint orbits. The argument goes as follows:
Let Φ : CP (n) → u∗(n+ 1) be the (equivariant) moment map. Then U(n+ 1) acts
transitively on the image Y = Φ(CP (n)), which therefore is a coadjoint orbit. In
fact, Φ : CP (n) → Y is a symplectomorphism and, since CP (n) is compact, Φ is
a covering map. However, every coadjoint orbit of a compact Lie group is simply
connected (see [5], sect. 9.4), so this map is actually a diffeomorphism.

Consider in particular the case n = 2. We claim that CP (2) is a symplectic leaf
of u∗(3) which has no Poisson tubular neighborhood. In fact, if CP (2) had such a
Poisson tubular neighborhood then it would have trivial strict Poisson holonomy
and, by theorem 3.4.3, its normal bundle ν(CP (n)) would be trivial. But this
is not the case, as can be seen from the following standard argument: the total
Chern class of CP (2) is c = (1 + a)3 = 1 + 3a + 3a2, where a is a generator of
H2(CP (2),Z). The total Stiefel-Whitney class w of CP (2) is the image of c by the
canonical homomorphism H2(CP (2),Z) → H2(CP (2),Z2) and hence is non-zero.
The total Stiefel-Whitney class of the normal bundle ν(CP (2)) is w−1, which is
non-trivial. We conclude that ν(CP (2)) is non-trivial.

3.5. Linear Poisson Holonomy. Let M be a Poisson manifold and i : S →֒ M
a symplectic leaf of M with Poisson holonomy homomorphism HS : Ω∗(S, x) →
Aut(Fx) (once a tubular neighborhood as been fixed).

On T0Fx ≃ Fx we consider the Poisson bivector field ΠL which is the linear
approximation at 0 to the Poisson bracket on Fx. Also, we denote by Aut (Fx) the
set of linear Poisson automorphisms of (Fx,Π

L). There is a map d : Aut(Fx) →
Aut (Fx) which assigns to a germ of a Poisson diffeomorphism of (Fx,Π

⊥), mapping
zero to zero, its linear approximation.

Definition 3.5.1. The linear Poisson holonomy of the leaf S is the homomor-
phism HL

S ≡ dHS : Ω∗(S, x) → Aut (Fx).

One can check that this notion of linear Poisson holonomy is essentially the same
as the one introduced in [4].

To define the reduced linear Poisson holonomy of the leaf S one can either show
that the class of HL

S (γ, α) in Out (Fx) = Aut (Fx)/Inn (Fx) is homotopy invariant,
or else take the composition H̄L

S ≡ d̄H̄S : π1(S, x) → Out (Fx), where d̄ : Out(Fx) →
Out (Fx) is the natural map. Similarly, if S admits a Poisson tubular neighborhood,
one can define the strict linear Poisson holonomy has the composition ȞL

S ≡ dȞS :
π1(S, x) → GL(Fx).

One can give a differential operator formulation for linear Poisson holonomy
similar to the Bott connection of ordinary foliation theory. Instead of working with
the normal bundle ν(S) = TSM/TS it is convenient to use the dual bundle ν∗(S),
also called the conormal bundle. We have natural identifications

ν∗(S) = (Ker #)|S = (TS)0.
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On ν∗(S) we have the following contravariant analogue of the Bott connection:

Given a covector α ∈ T ∗
SM and a section β of ν∗(S), take forms α̃, β̃ ∈ Ω1(M) such

that α̃x = α, β̃|S = β, and we set:

DS
αβ ≡ [α̃, β̃]|S .(3.4)

To check that this definition is independent of the extensions considered, we note
that, by (1.3), it can also be written as

DS
αβ = L#α̃β̃|S .(3.5)

Expression (3.4) also shows that DS
αβ is in the kernel of # and so is a section

of ν∗(S). Therefore, DS associates to each 1-form α on M along S a differential
operator Dα : Γ(ν∗(S)) → Γ(ν∗(S)).

It is also easy to check that DS satisfies the analogue of properties i)-iv) of
proposition 2.1.3. Note however that, in general, DS does not give a contravariant
connection in ν∗(S), since it is defined only for 1-forms in M along S. One can now
define parallel transport of fibers of ν∗(S) along cotangent curves in S, and hence
linear holonomy of DS . The holonomy of DS coincides with the linear Poisson
holonomy introduced above.

It is convenient to consider the connections DS all together, rather than leaf by
leaf, so we set:

Definition 3.5.2. A linear contravariant connection D on M is called a basic

connection if

i) D restricts to DS on each leaf S, i. e., if α, β ∈ Ω1(M) and #β|S = 0 then

Dαβ|S = DS
αβ.

ii) D preserves the Poisson tensor, i. e.,

DΠ = 0.

It is clear that one can also define linear Poisson holonomy starting with some
basic connection. The holonomy of this basic connection determines maps of each
cotangent space T ∗

xM which map ker#x isomorphically into itself, and these are
the linear Poisson holonomy maps.

Basic connections always exist:

Proposition 3.5.3. Every Poisson manifold has basic connections. If D is a basic
connection with curvature tensor R, and γ is a 1-form such that #γ|S = 0, then

R(α, β)γ|S = 0.

Proof. Assume first that M ≃ R
m, with coordinates (x1, . . . , xm). We define a

contravariant connection on M by setting

Ddxjβ = [dxj , β].

Then, obviously, if S is a leaf of M and #β|S = 0 we have

Ddxjβ|S = DS
dxjβ.

It follows that for any 1-form α we have

Dαβ|S = DS
αβ.

Moreover, DΠ = 0 so D is a basic connection.
For an arbitrary Poisson manifold M we choose an open cover

{
U (a)

}
, with a

partition of unity
∑

a φa = 1 subordinated to this cover, and such that on each

U (a) there is a basic connection D(a). Then D =
∑

a φaD
(a) is a basic connection.
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If D is any basic connection and #γ|S = 0, we have Dαγ|S = [α, γ]|S for any
1-form α, so expression (2.22) for the curvature tensor, gives

R(α, β)γ|S = [α, [β, γ]]|S − [β, [α, γ]]|S − [[α, β], γ]|S .

But the right hand side is zero, because of Jacobi identity.

Remark 3.5.4. Although the curvature of a basic connection vanishes along ker#,
the holonomy along # need not be discrete (this is because of the presence of an
extra term in the holonomy theorem 1.5.2). Hence, in general, linear Poisson holo-
nomy is not discrete and also not homotopy invariant (cf. example 3.1.4). However,
if one can find a basic connection which is an F -connection, then Poisson holonomy
is discrete. Such is the case for a regular Poisson manifold, where (linear) Poisson
holonomy coincides with standard (linear) holonomy.

To finish this section we state the following result which by now should be obvi-
ous.

Proposition 3.5.5. Let M be a Poisson manifold, and S a symplectic leaf which
admits a transverse measure µ invariant under the hamiltonian flow. Then, for
every cotangent path (γ, α) in S

detHL
S (γ, α) = 1,

where the determinant is computed relative to µ.

This result also follows from a formula of Ginzburg and Golubev, proved in [4],
which states that for any measure µ on M one has

detHL
S (γ, α) = exp(

∫

(γ,α)

vµ),(3.6)

where vµ is the modular vector field of the measure µ (see section 4.4) and the de-
terminant is computed relative to the measure induced by µ on the transverse fiber.
This formula shows that there is a strong relationship between the modular class
and Poisson holonomy. In the next section we will introduce invariants of a Poisson
manifold which generalize the modular class, and we will make this relationship
more precise.

4. Characteristic Classes

4.1. Poisson-Chern-Weil Homomorphism. The usual Chern-Weil theory for
characteristic classes extend to contravariant connections, as was observed in [11].
We give here a short account since we shall need characteristic classes later in the
section.

Consider a principal G-bundle p : P → M over a Poisson manifold, and choose
some contravariant connection Γ on P . Given any symmetric, Ad (G)-invariant,
k-multilinear function

P : g × · · · × g → R

we can define a 2k-vector field λ(Γ)(P ) on M as follows. If Uj is a trivializing
neighborhood, x ∈ Uj and α1, . . . , α2k ∈ T ∗

xM then we set

λ(Γ)(P )(α1, . . . , α2k) =
∑

σ∈S2k

(−1)σP (Ξj(ασ(1), ασ(2)), . . . ,Ξj(ασ(2k−1), ασ(2k))).

(4.1)

By the transformation rule for the curvature bivector fields, this formula actually
defines a 2k-vector field on the whole of M .
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Proposition 4.1.1. For any symmetric, invariant, k-multilinear function P , the
2k-vector field λ(Γ)(P ) is closed:

δλ(Γ)(P ) = 0.(4.2)

Proof. We compute

δλP (Ξj , . . . ,Ξj) = kP (δΞj , . . . ,Ξj)

= kP (δΞj + [Λj ,Ξj ], . . . ,Ξj) = 0,

where we have used first the linearity and symmetry of P , then the Ad (G)-invariance
of P , and last the Bianchi identity.

Therefore, to each invariant, symmetric, k-multilinear function P ∈ Ik(G) we can
associate a Poisson cohomology class [λ(Γ)(P )] ∈ H2k

Π (M), and in fact we have:

Proposition 4.1.2. The cohomology class [λ(Γ)(P )] is independent of the con-
travariant connection used to define it.

Proof. Consider two contravariant connections Γ0 and Γ1 in P . Then we have a
family of connections Γt with connection vector fields Λt

j = tΛ1
j + (1 − t)Λ0

j . We

denote by Ξt
j its curvature bivector fields. Also, the difference Λ1,0

j = Λ1
j − Λ0

j is a

g-valued vector field. By the transformation rule (1.23), given P ∈ Ik(G), we get a
well defined (2k − 1)-vector field λ(Γ1,Γ0)(P ) by setting

(4.3) λ(Γ1,Γ0)(P )(α1, . . . , α2k−1) =

k
∑

σ∈S2k−1

(−1)σ

∫ 1

0

P (Λ1,0
j (ασ(1)),Ξ

t
j(ασ(2), ασ(3)), . . . ,Ξ

t
j(ασ(2k−2), ασ(2k−1)))dt.

We claim that

δλ(Γ1,Γ0) = λ(Γ1)(P ) − λ(Γ0)(P ),(4.4)

so [λ(Γ1)(P )] = [λ(Γ0)(P )].
To prove (4.4), we note that if we differentiate the structure equation (1.26) we

obtain

d

dt
Ξt

j = δΛ1,0
j + [Λt

j,Λ
1,0
j ].(4.5)

Hence, using Bianchi’s identity, we have

kδ

∫ 1

0

P (Λ1,0
j ,Ξt

j , . . . ,Ξ
t
j)dt =

= k

∫ 1

0

P (δΛ1,0
j ,Ξt

j , . . . ,Ξ
t
j) + P (Λ1,0

j , δΞt
j , . . . ,Ξ

t
j) + P (Λ1,0

j ,Ξt
j , . . . , δΞ

t
j)dt

= k

∫ 1

0

P (
d

dt
Ξt

j − [Λt
j,Λ

1,0
j ],Ξt

j , . . . ,Ξ
t
j)

− P (Λ1,0
j , [Λt

j,Ξ
t
j ], . . . ,Ξ

t
j) − P (Λ1,0

j ,Ξt
j , . . . , [Λ

t
j,Ξ

t
j ])dt

= k

∫ 1

0

P (
d

dt
Ξt

j ,Ξ
t
j , . . . ,Ξ

t
j)dt

=

∫ 1

0

d

dt
P (Ξt

j ,Ξ
t
j , . . . ,Ξ

t
j)dt = P (Ξ1

j , . . . ,Ξ
1
j ) − P (Ξ0

j , . . . ,Ξ
0
j).
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If we set

I∗(G) =
⊕

k≥0

Ik(G),

the assignment P 7→ [λ(Γ)(P )] gives a map I∗(G) → H∗
Π(M). This map is in fact

a ring homomorphism.

Proposition 4.1.3. The following diagram commutes

I∗(G) //

$$I

I

I

I

I

I

I

I

I

H∗(M)

#

��
H∗

Π(M)

where on the top row we have the Chern-Weil homomorphism.

Proof. Choose a contravariant connection Γ in P which is induced by a covariant
connection Γ̃. Given P ∈ Ik(G), we have a closed (2k)-form λ(Γ̃)(P ) defined by
a formula analogous to (4.1), and which induces the Chern-Weil homomorphism
I∗(G) → H∗(M). We check easily that

#λ(Γ̃)(P ) = λ(Γ)(P ),

so the proposition follows.

Recall that the ring I∗(GLq(R)) is generated by elements Pk ∈ Ik(GLq(R))
such that Pk(A, . . . , A) = σk(A), where {σ1, . . . , σq} are the elementary symmetric
functions defined by:

det(µI −
1

2π
A) = µq + σ1(A)µq−1 + · · · + σq(A).

Now consider a real vector bundle pE : E → M over a Poisson manifold, with
fiber F ≃ R

q and let p : P →M be the associated principal bundle with structure
group GLq(R). Choosing a contravariant connection Γ on P one defines the kth
Poisson-Pontrjagin class of E as

pk(E,Π) = [λ(Γ)(P2k)] ∈ H4k
Π (M).

As usual, one does not need to consider the classes for odd k since we have

[λ(Γ)(P2k−1)] = 0,

as can be seen by choosing a connection compatible with a riemannian metric. It
is clear from proposition 4.1.3 that

pk(E,Π) = #pk(E).

where pk(E) are the standard Pontrjagin classes of E. Note also, that if r =
rankM = maxx∈M (rankΠx) we have pk(E,Π) = 0 for k > r/2.

To compute these invariants one uses the contravariant derivative operator D
on E, associated with the contravariant connection Γ, and proceeds as follows. For
covectors α, β ∈ TxM , the curvature tensor R defines a linear map Rα,β = R(α, β) :
Fx → Fx which satisfies Rα,β = −Rβ,α, and so (α, β) → Rα,β can be considered as
a gl(E)-valued bivector field. By fixing a basis of local sections, we have Fx ≃ R

q

so we have Rα,β ∈ glq(R). (this matrix representation of Rα,β is defined only up to
a change of basis in R

q). Hence, if

P : glq(R) × · · · × glq(R) → R



34 RUI LOJA FERNANDES

is a symmetric, k-multilinear function, Ad (GLq(R))-invariant, we a have a 2k-
vector field λ(R)(P ) on M defined by

λ(R)(P )(α1, . . . , α2k) =
∑

σ∈S2k

(−1)σP (Rασ(1),σ(2)
, . . . , Rασ(2k−1),σ(2k)

).(4.6)

It is easy to see that λ(Γ)(P ) = λ(R)(P ), so this gives a procedure to compute the
Poisson-Chern-Weil homomorphism and the Poisson-Pontrjagin classes.

Similar considerations apply to other characteristic classes. One can define, e. g.,
the Poisson-Chern classes ck(E,Π) of a complex vector bundle E over a Poisson
manifold, and they are just the images by # of the usual Chern classes of E.

The fact that all these classes arise as image by # of some known classes is
perhaps a bit disappointing. However, we shall see below that one can define
Poisson secondary characteristic classes which are intrinsic of Poisson geometry,
and which do not arise as images by # of some de Rham cohomology classes.

4.2. Secondary Characteristic Classes. We shall now introduce secondary char-
acteristic classes of a Poisson manifold. We will see that these classes give infor-
mation on the topology, as well as, the geometry of the symplectic foliation. As
in the theory of (regular) foliations, these classes appear when we compare two
connections, each from a distinguished class.

On the Poisson manifold M , with dimM = m, we consider the following data:

i) A basic connection Γ1, with a contravariant derivative D1;
ii) A linear contravariant connection Γ0 induced by a riemannian connection, so

D0
α = ∇0

#α with ∇g = 0 for some riemannian metric g;

Given an invariant, symmetric, k-multilinear function P ∈ Ik(GL(m,R)) we con-
sider the (2k − 1)-vector field λ(Γ1,Γ0)(P ) given by (4.3).

Proposition 4.2.1. If k is odd, λ(Γ1,Γ0)(P ) is a closed (2k − 1)-vector field.

Proof. According to (4.4) we have

δλ(Γ1,Γ0) = λ(Γ1)(P ) − λ(Γ0)(P ).

and we claim that λ(Γ1)(P ) = λ(Γ0)(P ) = 0 if k is odd.
The proof that λ(Γ0)(P ) = 0 is standard: since there exists a metric such that

D0g = 0 we can reduce the structure group of Γ0 to O(m,R), so the curvature
bivector fields take there values in so(m,R). But if A ∈ so(m,R), we have Pk(A) for
any elementary symmetric function, since k is odd. Hence we obtain λ(Γ0)(P ) = 0.

Consider now the connection Γ1. Given x ∈ M we choose local coordinates
(xj , yk) around x as in the Weinstein splitting theorem:

Π =
n∑

i=1

∂

∂xi
∧

∂

∂xi+n
+

∑

k,l

φkl

∂

∂yk
∧

∂

∂yl
,

where φkl(x) = 0. Since Γ0 is a basic connection, we have:

Π(Dαdx
i, dxj) = −Π(dxi, Dαdx

j), R(α, β)dyk|x = 0.

It follows that R(α, β)x is represented in the basis (dxj , dyk) by a matrix of the
form: (

B 0
C 0

)
,(4.7)

with B a symplectic matrix. Now, if A is any matrix of this form, it is clear that
det(µI − A) = det(µI − Ã), where Ã is the same as A with B = 0, i. e., Ã is

symplectic. But if Ã is symplectic, we have Pk(A) for any elementary symmetric
function, since k is odd. Hence we obtain also λ(Γ1)(P )x = 0.
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Next we want to check that the Poisson cohomology class of λ(Γ1,Γ0)(P ) is
independent of the connections used to define it.

Given connections Γ0,Γ1,Γ2 we consider the family of connections Γs,t whose
connection vector fields are Λs,t = (1 − s − t)Γ0 + sΓ1 + tΓ2, where (s, t) vary in
the standard 2-simplex ∆2. We introduce a (2k − 2)-vector field λ(Γ2,Γ1,Γ0)(P )
given by a formula analogous to (4.6) and (4.3):

λ(Γ2,Γ1,Γ0)(P ) = k
∑

σ∈S2k−2

(−1)σ

∫

∆2

P (Λ1,0
j ,Λ2,0

j ,Ξs,t
j , . . . ,Ξs,t

j )dtds.(4.8)

Just like in the proof of proposition 4.1.2, one shows that

δλ(Γ2,Γ1,Γ0) = λ(Γ1,Γ0)(P ) − λ(Γ2,Γ0)(P ) + λ(Γ1,Γ0)(P ).(4.9)

Now, we can prove

Proposition 4.2.2. The Poisson cohomology class [λ(Γ1,Γ0)(P )] is independent
of the connections used to define it.

Proof. Let Γ1 and Γ̃1 (resp. Γ0 and Γ̃0) be basic connections (resp. riemannian
connections). It follows from (4.9) that

λ(Γ1,Γ0)(P ) − λ(Γ̃1, Γ̃0)(P ) = δλ(Γ̃1,Γ0, Γ̃0)(P ) − δλ(Γ1, Γ̃1,Γ0)(P )

+ λ(Γ̃1,Γ1)(P ) − λ(Γ0, Γ̃0)(P ).

Hence, it is enough to show that the Poisson cohomology classes of λ(Γ̃1,Γ1)(P )

and λ(Γ0, Γ̃0)(P ) are trivial.

Consider first the basic connections Γ̃1 and Γ1. The linear combination Γ1,t =
(1 − t)Γ1 + tΓ̃1 is also a basic connection. If x ∈ M , we fix splitting coordinates
(xj , yk) around x as in the proof of proposition 4.2.1. Then we see that, with

respect to the basis
{
dxj , dyk

}
, the matrix representations of D1

α, D̃1
α and Rt(α, β)

are of the form (4.7). Hence, we conclude that if P ∈ Ik(GL(m,R)), with k odd,

P (D̃1
α1

−D1
α1
, Rt(α2, α3), . . . , R

t(α2k−2, α2k−1)) = 0.

Therefore, λ(Γ̃1,Γ1)(P ) = 0, whenever Γ̃1 and Γ1 are basic connections.

Now consider the riemannian connections Γ0 and Γ̃0. The linear combination
Γ0,t = (1 − t)Γ̃0 + tΓ0 is also a riemannian connection. All these connections are

induced from covariant riemannian connections ∇0, ∇̃0 and ∇0,t, and we can define
a (2k− 1)-form λ(∇0, ∇̃0)(P ) by a formula analogous to (4.3). Moreover, this form

is closed (because k is odd), and #λ(∇0, ∇̃0)(P ) = λ(Γ0, Γ̃0)(P ). It follows from
the homotopy invariance of H∗(M), as in the usual theory of characteristic classes
of foliations (see [1], page 29), that

[λ(∇0, ∇̃0)(P )] = [λ(∇0,∇0)(P )] = 0.

Hence, the Poisson cohomology class [λ(∇0, ∇̃0)(P )] vanishes.

Remark 4.2.3. The assumption that the riemannian connections are of the special
form ∇#α was used in the proof to invoke the homotopy invariance of H∗(M).
Poisson cohomology H∗

Π(M) is not homotopy invariant, so in defining the invariant
λ(Γ1,Γ0)(P ) we cannot consider an arbitrary riemannian contravariant connection
Γ0. On the other hand, as we pointed out above, in general a Poisson manifold does
not admit a Poisson connection of the form ∇#α. Hence, the basic connections are
“genuine” contravariant connections, i. e., not induced by any covariant connection.
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We define the secondary characteristic classes {mk(M)} of a Poisson manifold
to be the Poisson cohomology classes

mk(M) = [λ(Γ1,Γ0)(Pk)] ∈ H2k−1
Π (M), (k = 1, 3, . . . ).(4.10)

If M is a symplectic manifold then these classes obviously vanish. They also
vanish if M = S × N where S is symplectic and N has the zero Poisson bracket.
However, they do not vanish for a general, regular, Poisson manifold (see the exam-
ples below). Hence these characteristic classes give information on both the Poisson
geometry and the topology of the symplectic foliation of M . In the next section
we give some explicit computations of these classes, and in the following section we
will show that the first class coincides with the modular class of M (up to a scalar
factor).

Remark 4.2.4. In general, one can only define the characteristic classes mk for k
odd. Assume, however, that M admits flat riemannian connections and flat basic
connections (we will see some non-trivial examples below). Then the proofs of
propositions 4.2.1 and 4.2.2 can be carried through, in the class of flat connections,
for any k. Hence, in this case, one can define characteristic classes mk for any k.

4.3. Examples. We give a few types of Poisson manifolds where one can compute
some of the secondary characteristic classes.

Euclidean spaces. Consider a Poisson manifold M ≃ R
m, so we have global

coordinates (x1, . . . , xm). To compute λ(Γ1,Γ0)(P ) we take as Γ0 the flat connec-
tion determined by these global coordinates, and as Γ1 we take the basic connection
defined by

Ddxidxj = [dxi, dxj ] =
∑

k

∂πij

∂xk
dxk.

Since P1(A) = 1
2π

tr (A), we find immediately that the first characteristic class is

m1(M) =
1

2π

∑

i,j

∂πij

∂xj

∂

∂xi
.(4.11)

To compute the second characteristic class, we note that Dt
dxidxj = (1− t)Ddxidxj ,

and we compute its curvature:

Rt(dxi, dxj)dxk = −t(t− 1)D[dxi,dxj]dx
k.

Now,

P3(A,B,C) =
1

24π3

[
tr (ABC) −

1

2
(trA tr (BC) + trB tr (CA) + trC tr (AB))

−
1

2
trA trB trC

]

and the expression for the characteristic class m3(M) is a certain homogeneous
polynomial of degree 5 involving the derivatives of order ≤ 3 of the components πij

of the Poisson tensor.

Linear Poisson structures. Let M = g∗ with the Lie-Poisson structure de-
termined by the Lie algebra g. Then, from the previous example, we see that the
first class is represented by the constant vector field

m1(g
∗)(v) =

1

2π
tr (ad v).

In this case both the basic connection and the riemannian connection are flat and so
we can consider the classes mk for any k. The computations simplify considerably,
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and see that all classes can be represented by constant multivector fields. For
example, a straight forward computation shows that

m2(g
∗)(v1, v2, v3) =

3!

4π2
K2(v1, [v2, v3]),

m3(g
∗)(v1, . . . , v5) =

1

8π3

∑

σ∈S5

K3(vσ(1), [vσ(2), vσ(3)], [vσ(4), vσ(5)])

where we have set

Kj(v1, . . . , vj) = tr (ad v1 · · · ad vj).

Note that K2 is just the killing form.
In this case it is possible to give a general formula for all characteristic classes:

mk(g∗)(v1, . . . , v2k−1) =
1

(2π)k

∑

σ∈S2k−1

Kk(vσ(1), [vσ(2), vσ(3)], . . . , [vσ(2k−2), vσ(2k−1)])

The proof of these formulas involves a certain amount of computation using New-
ton’s identities for the elementary symmetric polynomials.

Incidentally, we note that the classes mk are ad -invariant since each Kj is an
ad -invariant multilinear form. Therefore, the classes mk(g∗) represent certain co-
homology classes in the Lie algebra cohomology of g.

Poisson-Lie Groups. Let G be a connected Poisson-Lie group (see, e. g., [8]).
Then the set of left invariant 1-forms Ω1

Inv(G) is closed for the Lie bracket defined by
the Poisson bracket. Hence we can define a basic connection D1 in G by requiring
that

Dαβ = [α, β], ∀α, β ∈ Ω1
Inv(G).(4.12)

This connection is flat.
Let D0 = ∇#α be the unique left invariant connection in G which for left invari-

ant vector fields is given by

∇XY = [X,Y ], ∀X,Y ∈ g.

This connection is also flat.
We compute λ(D1, D0)(P ) and, generalizing the previous example, the classes

mk(G) are all represented by the left invariant multivector fields:

mk(G)(α1, . . . , α2k−1) =
1

(2π)k

∑

σ∈S2k−1

Kk(ασ(1), [ασ(2), ασ(3)], . . . , [ασ(2k−2), ασ(2k−1)])

where α1, . . . , αn ∈ Ω1
Inv(G). In these formulas, [ , ], ad and Kk are relative to the

Lie algebra g∗ = Ω1
Inv(G).

Remark 4.3.1. Note that if the Poisson bracket in G is not trivial, the contravariant
connection defined by (4.12) is not left invariant, because left translation in the
group is not a Poisson map. These type of connections are studied in a complement
to the present paper, where we deal with invariant connections ([3]).

Regular Poisson manifolds. Let M be a regular Poisson manifold of di-
mension m and corank q. First choose some riemannian connection determining a
splitting

T ∗(M) = T ∗(S) ⊕ ν∗(S),
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where T ∗(S) (resp. ν∗(S)) is the cotangent (resp. conormal) bundle to the sym-
plectic foliation. We have a riemannian connection D0 such that:

D0
α(β + γ) = ∇

0,‖
#αβ + ∇0,⊥

#αγ,

where β and γ, are sections of T ∗(S) and ν∗(S), and ∇0,‖ and ∇0,⊥, are covariant
riemannian connections in these bundles.

Becouse M is regular, we can also choose a covariant connection ∇1,‖ on TM
such that ∇1,‖Π = 0. We define the basic connection D1 on M by setting

D1
α(β + γ) = ∇

1,‖
#αβ + ∇1,⊥

#αγ,

where ∇1,⊥ is a basic connection in ν(S) in the usual sense of foliation theory (see
[1], p. 33). A computation shows that

λ(D1, D0)(P ) = #λ(∇1,⊥,∇0,⊥)(P̃ ),

where P̃ is the obvious restriction of P ∈ I∗(GLm(R)) to I∗(GLq(R)).
It is well known in foliation theory (see [1], p. 66) that the forms

ck = λ(∇1,⊥)(P̃k), (1 ≤ k ≤ q)

h2k−1 = λ(∇1,⊥,∇0,⊥)(P̃2k−1), (1 ≤ 2k − 1 ≤ q),

satisfy

dck = 0, (1 ≤ k ≤ q)(4.13)

dh2k−1 = c2k−1, (1 ≤ 2k − 1 ≤ q).(4.14)

and so they can be used to define a homomorphism of graded algebras

H∗(WOq) → H∗(M),

where H∗(WOq) is the relative Gelfand-Fuks cohomology of formal vector fields in
R

q. This homomorphism is independent of the connections and its image are the
exotic or secondary characteristic classes of foliation theory.

In this respect, the Poisson secondary characteristic classes are simpler than the
corresponding ones in foliation theory: the (2k − 1)-forms λ(∇1,⊥,∇0,⊥)(P̃k) are
not closed in general, but are closed along the symplectic leaves, so its image under
# is a closed (2k − 1)-vector field and, hence, define Poisson cohomology classes.
Therefore, one has

m2k−1(M) = [#h2k−1](4.15)

but, in general, m2k−1 is not in the image of # : H∗(M) → H∗
Π(M).

Still, one can sometimes relate the two types of secondary characteristic classes.
Take, for example, the Godbillon-Vey class which by definition is the cohomology
class w = [h1c

q
1] ∈ H2q+1(M) (it follows from relations (4.13) that d(h1c

q
1) = cq+1

1 =
0, so h1c

q
1 does define a cohomology class).

Proposition 4.3.2. If a regular Poisson manifold has a non-trivial Godbillon-Vey
class then it has a non-trivial first Poisson secondary characteristic class.

Proof. If m1(M) = [#h1] is trivial, we have #h1 = #df for some smooth function
f , i. e., h1(#α) = df(#α). But h1 is defined up to a 1-form in the differential ideal
that gives the symplectic foliation, so h1 ∧ (dh1)

q = 0 and the the Godbillon-Vey
class must vanish.

On the other hand, it is perfectly possible for the Godbillon-Vey class to vanish
while m1(M) 6= 0. One such example is provided by the Reeb foliation in S3 with
the leafwise area form (see [4, 12] for details on this example).

Another consequence of this relationship is that, for a regular Poisson manifold
M , the characteristic classes mk(M) = 0, for 2k − 1 > q = corank(M).
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As a special case, let us consider a Poisson manifold of corank 1. The only non-
vanishing class is m1(M). If the symplectic foliation is transversely orientable, let
Z be a trivializing section of the normal bundle. Let θ be the corresponding 1-form
that trivializes the conormal bundle. There exists a 1-form η such that

dθ = η ∧ θ.

For ∇1,⊥ we choose a basic connection in ν(S) such that

∇1,⊥
X Z = η(X)Z.

For ∇0,⊥ we choose a riemannian connection such that

∇0,⊥
X Z = 0.

These choices give

λ(∇1,⊥,∇0,⊥)(tr ) = η,

so we conclude that

m1(M) =
1

2π
[#η].

In fact, in this case we have h1 = 1
2π
η so w = 1

4π2 η∧dη represents the Godbillon-Vey
class.

If the symplectic foliation is not transversely orientable one can pass to a double
cover and apply the same reasoning.

4.4. The Modular Class. The modular class of a Poisson manifold is an ob-
struction lying in the first Poisson cohomology group H1

Π(M) to the existence of a
transverse invariant measure (see [12] for details on the modular class). It can be
defined as follows: Let µ be any measure in M with associated divergence operator
divµX ≡ LXµ/µ. Then one checks that the map f 7→ divµ#df is a derivation
of C∞(M) so defines a vector field vµ, called the modular vector field associated
with the measure µ. This vector field is an infinitesimal automorphism of Π. If
µ′ = aµ is another measure, we have vµ′ = vµ + #d log a = vµ + δ log a, so in fact
the modular class

mod (M) ≡ [vµ] ∈ H1
Π(M)

is well defined and independent of µ.
The examples in the previous section when compared to the computations of the

modular class done in [12] suggest the following

Theorem 4.4.1. For any Poisson manifold M

m1(M) =
1

2π
mod (M).(4.16)

Proof. Choose a basic connection D1 and a riemannian connection D0 relative to
some metric on M . Let µ be the measure defined by this metric. We claim that

λ(D1, D0)(tr ) = vµ,(4.17)

so (4.16) follows.
Observe that it is enough to show that (4.17) holds on the regular points of

M , since the set of regular points is an open dense set and both sides are smooth
vector fields on M . So assume that x ∈ M is a regular point and pick Darboux
coordinates (x1, . . . , xm). If g =

(〈
dxi, dxj

〉)
is the m×m-matrix of inner products

of the dxi’s, we have

µ = (det g)
1
2 dx1 ∧ · · · ∧ dxm.

As in the proofs of the previous section, relative to the basis
{
dx1, . . . , dxm

}
,

the operator D1
α has a matrix representation by a traceless matrix, so we only
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need to understand what is the matrix representation, relative to this basis, of the
riemannian connection D0

α = ∇#α.
Since ∇ is a metric connection, parallel transport preserves the volume, and we

have for any smooth function f ∈ C∞(M):

0 =∇#dfµ

=#df((det g)
1
2 )dx1 ∧ · · · ∧ dxm +

+ (det g)
1
2 (∇#dfdx

1 ∧ · · · ∧ dxm + · · · + dx1 ∧ · · · ∧ ∇#dfdx
m)

=
(
#df((det g)

1
2 ) + (det g)

1
2 tr∇#df

)
dx1 ∧ · · · ∧ dxm.

So we conclude that:

tr (D1
df −D0

df )µ = #df((det g)
1
2 )dx1 ∧ · · · ∧ dxm.(4.18)

Now recall that (x1, . . . , xm) were Darboux coordinates around a regular point,
so the form dx1 ∧ · · · ∧ dxm is preserved by the hamiltonian flows, and we have

L#df(dx1 ∧ · · · ∧ dxm) = 0.

Hence, we conclude that:

L#dfµ = #df((det g)
1
2 )dx1 ∧ · · · ∧ dxm.(4.19)

Comparing (4.18) and (4.19) gives

tr (D1
df −D0

df ) = divµ#df,

so relation (4.17) holds.

If (γ(t), α(t)), t ∈ [0, 1], is a cotangent path and X is a vector field, one defines
the integral

∫

(γ,α)

X = −

∫ 1

0

iX(γ(t))α(t)dt.

(For basic properties of this integral see [4]). As a corollary of the theorem and the
Ginzburg and Golubev formula (3.6), we obtain:

Corollary 4.4.2. Let (γ, α) be a cotangent loop in the symplectic leaf S. Then

detHL
S (γ, α) = exp(

∫

(γ,α)

tr(D1 −D0)),(4.20)

where the determinant is relative to the transverse measure induced by the volume
element of the metric associated with D0.
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vol. 118, Birkhäuser, Berlin, 1994.

11. , On the geometric quantization of Poisson manifolds, J. of Math. Physics 32 (1991),
3339–3345.

12. A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23

(1997), 379–394.
13. , The local structure of Poisson manifolds, J. Differential Geometry 18 (1983), 523–

557.
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