Applied Mathematical Sciences, Vol. 4, 2010, no. 53, 2647 - 2651

Properties of Harmonic Meromorphic Functions which are Starlike of Complex Order with Respect to Conjugate Points

 1 Aini Janteng and 2 Suzeini Abdul Halim

¹ School of Science and Technology, Universiti Malaysia Sabah Locked Bag No. 2073, 88999 Kota Kinabalu, Sabah, Malaysia aini_jg@ums.edu.my

²Institute of Mathematical Sciences, Universiti Malaya 50603 Kuala Lumpur, Malaysia suzeini@um.edu.my

Abstract

Let $\sum_{\mathcal{H}}$ denote the class of functions f which are harmonic, meromorphic, orientation preserving and univalent in $\widetilde{U} = \{z : |z| > 1\}$. This paper defines and investigates a class of meromorphic univalent harmonic functions that are starlike of complex order with respect to conjugate points. The authors obtain convolution and convex combination properties.

Mathematics Subject Classification: Primary 30C45

Keywords: harmonic, meromorphic, starlike of complex order with respect to conjugate points

1 Introduction

A continuous function f = u + iv is a complex valued harmonic function in a complex domain $\mathcal{D} \subseteq \mathcal{C}$ if both u and v are real harmonic in \mathcal{D} . Hengartner and Schober [1], among other things, investigated the family $\sum_{\mathcal{H}}$ of functions $f = h + \overline{g}$ which are harmonic, meromorphic, orientation preserving and univalent in $\widetilde{U} = \{z : |z| > 1\}$ where

$$h(z) = z + \sum_{n=1}^{\infty} a_n z^{-n}, \quad g(z) = \sum_{n=1}^{\infty} b_n z^{-n}, \quad a_n \ge 0, \ b_n \ge 0, \ z \in \widetilde{U}.$$
 (1)

Motivated by the results of [1], Jahangiri and Silverman [3] and Jahangiri [2] studied the classes of functions in $\sum_{\mathcal{H}}$ which are starlike or convex in \widetilde{U} . In particular, they investigated starlike and convex functions in the class $\sum_{\mathcal{H}}$ consisting of functions $f = h + \overline{g}$ where h and g are of the form

$$h(z) = z + \sum_{n=1}^{\infty} |a_n| z^{-n}, \quad g(z) = -\sum_{n=1}^{\infty} |b_n| z^{-n}, \quad z \in \widetilde{U}.$$
 (2)

In [5], Nasr and Aouf introduced the class of starlike functions of complex order b. Denote $\mathcal{S}^*(b)$ to be the class consisting of functions which are analytic and starlike of complex order b(b is a non-zero complex number) and satisfying the following condition

$$Re \left\{ 1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) \right\} > 0, \ z \in U = \{ z : |z| < 1 \}.$$

In [4], Janteng and Abdul Halim were motivated to form a new subclass of $\sum_{\mathcal{H}}$ based on Nasr and Aouf's class as follows.

Definition 1.1 Let $f \in \sum_{\mathcal{H}}$. Then $f \in \sum_{\mathcal{H}} S_c^{\star}(b, \alpha)$ is said to be harmonic meromorphic starlike of complex order with respect to conjugate points, if and only if, for $0 \leq \alpha < 1$, b non-zero complex number with $|b| \leq 1$, $z' = \frac{\partial}{\partial \theta}(z = re^{i\theta})$, $f'(z) = \frac{\partial}{\partial \theta}(f(z) = f(re^{i\theta}))$, $1 < r < \infty$ and $0 \leq \theta \leq 2\pi$,

$$Re \left\{ 1 + \frac{1}{b} \left(\frac{2zf'(z)}{z'(f(z) + \overline{f(\overline{z})})} - 1 \right) \right\} \ge \alpha, \ |z| = r > 1.$$

If f takes the form (2) then we denote it as $\sum_{\bar{\mathcal{H}}} S_c^{\star}(b, \alpha)$.

2 Main Results

The following theorem proved by Janteng and Abdul Halim in [4] will be used throughout in this paper.

Theorem 2.1 Let $f = h + \overline{g}$ be given by (1). If

$$\sum_{n=1}^{\infty} \left(\frac{n+1-|b|+\alpha|b|}{(1-\alpha)|b|} \right) |a_n| + \sum_{n=1}^{\infty} \left(\frac{n-1+|b|-\alpha|b|}{(1-\alpha)|b|} \right) |b_n| \le 1, \quad (3)$$

where $0 \leq \alpha < 1$ and b a non-zero complex number with $|b| \leq 1$ then f is harmonic, orientation preserving, univalent in \widetilde{U} and $f \in \sum_{\mathcal{H}} S_c^{\star}(b, \alpha)$. Condition (3) is also necessary if $f \in \sum_{\mathcal{H}} S_c^{\star}(b, \alpha)$. Next, we show that the class $\sum_{\bar{\mathcal{H}}} S_c^{\star}(b, \alpha)$ is invariant under convolution and convex combinations of its members.

For harmonic functions
$$f(z) = z + \sum_{n=1}^{\infty} |a_n| z^{-n} - \sum_{n=1}^{\infty} |b_n| \bar{z}^{-n}$$
 and $F(z) = z + \sum_{n=1}^{\infty} |A_n| z^{-n} - \sum_{n=1}^{\infty} |B_n| \bar{z}^{-n}$, we define the convolution of f and F as

$$(f \star F)(z) = z + \sum_{n=1}^{\infty} |a_n A_n| z^{-n} - \sum_{n=1}^{\infty} |b_n B_n| \bar{z}^{-n}.$$
 (4)

In the next theorem, we examine the convolution properties of the class $\sum_{\bar{\mathcal{H}}} S_c^{\star}(b, \alpha)$.

Theorem 2.2 For $0 \leq \beta \leq \alpha < 1$, let $f \in \sum_{\bar{\mathcal{H}}} S_c^{\star}(b, \alpha)$ and $F \in \sum_{\bar{\mathcal{H}}} S_c^{\star}(b, \beta)$. Then $(f \star F) \in \sum_{\bar{\mathcal{H}}} S_c^{\star}(b, \alpha) \subset \sum_{\bar{\mathcal{H}}} S_c^{\star}(b, \beta)$. Proof. Write $f(z) = z + \sum_{n=1}^{\infty} |a_n| z^{-n} - \sum_{n=1}^{\infty} |b_n| \bar{z}^{-n}$ and $F(z) = z + \sum_{n=1}^{\infty} |A_n| z^{-n} - \sum_{n=1}^{\infty} |B_n| \bar{z}^{-n}$. Then the convolution of f and F is given by (4).

Note that $|A_n| \leq 1$ and $|B_n| \leq 1$ since $F \in \sum_{\bar{\mathcal{H}}} S_c^{\star}(b,\beta)$. Then we have

$$\sum_{n=1}^{\infty} [n - (|b| - \alpha|b| - 1)] |a_n| |A_n| + \sum_{n=1}^{\infty} [n + (|b| - \alpha|b| - 1)] |b_n| |B_n|$$

$$\leq \sum_{n=1}^{\infty} [n - (|b| - \alpha|b| - 1)] |a_n| + \sum_{n=1}^{\infty} [n + (|b| - \alpha|b| - 1)] |b_n|.$$

Therefore, $(f \star F) \in \sum_{\bar{\mathcal{H}}} S_c^{\star}(b, \alpha) \subset \sum_{\bar{\mathcal{H}}} S_c^{\star}(b, \beta)$ since the right hand side of the above inequality is bounded by $(1 - \alpha)|b|$ while $(1 - \alpha)|b| \leq (1 - \beta)|b|$.

Now, we determine the convex combination properties of the members of $\sum_{\bar{\mathcal{H}}} S_c^{\star}(b, \alpha)$.

Theorem 2.3 The class $\sum_{\bar{\mathcal{H}}} S_c^{\star}(b, \alpha)$ is closed under convex combination. Proof. For i = 1, 2, 3, ..., suppose that $f_i \in \sum_{\bar{\mathcal{H}}} S_c^{\star}(b, \alpha)$ where f_i is given by

$$f_i(z) = z + \sum_{n=1}^{\infty} |a_{n,i}| z^{-n} - \sum_{n=1}^{\infty} |b_{n,i}| \bar{z}^{-n}.$$

For $\sum_{i=1}^{\infty} c_i = 1$, $0 \le c_i \le 1$, the convex combinations of f_i may be written as

$$\begin{split} \sum_{i=1}^{\infty} c_i f_i(z) &= c_1 z + \sum_{n=1}^{\infty} c_1 |a_{n,1}| z^{-n} - \sum_{n=1}^{\infty} c_1 |b_{n,1}| \bar{z}^{-n} + c_2 z + \sum_{n=1}^{\infty} c_2 |a_{n,2}| z^{-n} - \sum_{n=1}^{\infty} c_2 |b_{n,2}| \bar{z}^{-n} \dots \\ &= z \sum_{i=1}^{\infty} c_i + \sum_{n=1}^{\infty} \left(\sum_{i=1}^{\infty} c_i |a_{n,i}| \right) z^{-n} - \sum_{n=1}^{\infty} \left(\sum_{i=1}^{\infty} c_i |b_{n,i}| \right) \bar{z}^{-n} \\ &= z + \sum_{n=1}^{\infty} \left(\sum_{i=1}^{\infty} c_i |a_{n,i}| \right) z^{-n} - \sum_{n=1}^{\infty} \left(\sum_{i=1}^{\infty} c_i |b_{n,i}| \right) \bar{z}^{-n}. \end{split}$$

Next, consider

$$\begin{split} &\sum_{n=1}^{\infty} \left(\left[n - (|b| - \alpha|b| - 1) \right] \left| \sum_{i=1}^{\infty} c_i |a_{n,i}| \right| \right) \\ &+ \sum_{n=1}^{\infty} \left(\left[n + (|b| - \alpha|b| - 1) \right] \left| \sum_{i=1}^{\infty} c_i |b_{n,i}| \right| \right) \\ &= c_1 \sum_{n=1}^{\infty} \left[n - (|b| - \alpha|b| - 1) \right] |a_{n,1}| + \dots \\ &+ c_m \sum_{n=2}^{\infty} \left[n - (|b| - \alpha|b| - 1) \right] |a_{n,m}| + \dots \\ &+ c_1 \sum_{n=1}^{\infty} \left[n + (|b| - \alpha|b| - 1) \right] |b_{n,1}| + \dots \\ &+ c_m \sum_{n=1}^{\infty} \left[n + (|b| - \alpha|b| - 1) \right] |b_{n,m}| + \dots \\ &+ c_m \sum_{n=1}^{\infty} \left[n + (|b| - \alpha|b| - 1) \right] |b_{n,m}| + \dots \\ &= \sum_{i=1}^{\infty} c_i \Big\{ \sum_{n=1}^{\infty} \left[n - (|b| - \alpha|b| - 1) \right] |a_{n,i}| \\ &+ \sum_{n=1}^{\infty} \left[n + (|b| - \alpha|b| - 1) \right] |b_{n,i}| \Big\}. \end{split}$$

Now, $f_i \in \sum_{\bar{\mathcal{H}}} S_c^{\star}(b, \alpha)$, therefore from Theorem 2.1, we have

$$\sum_{n=1}^{\infty} [n - (|b| - \alpha|b| - 1)] |a_{n,i}| + \sum_{n=1}^{\infty} [n + (|b| - \alpha|b| - 1)] |b_{n,i}| \le (1 - \alpha)|b| .$$

Hence

$$\sum_{n=1}^{\infty} \left(\left[n - (|b| - \alpha|b| - 1) \right] \left| \sum_{i=1}^{\infty} c_i |a_{n,i}| \right| \right) + \sum_{n=1}^{\infty} \left(\left[n + (|b| - \alpha|b| - 1) \right] \left| \sum_{i=1}^{\infty} c_i |b_{n,i}| \right| \right) \\ \leq (1 - \alpha) |b| \sum_{i=1}^{\infty} c_i \\ = (1 - \alpha) |b|.$$

By using Theorem 2.1 again, we have $\sum_{i=1}^{\infty} c_i f_i \in \sum_{\bar{\mathcal{H}}} S_c^{\star}(b, \alpha)$.

References

- Hengartner, W. and Schober, G. (1987). Univalent harmonic functions. Trans. Amer. Math. Soc., 299. 1-31
- [2] Jahangiri, J.M. (2000). Harmonic meromorphic starlike functions. Bull. Korean Math. Soc., 37. 291-301
- [3] Jahangiri, J.M. and Silverman, H. (1999). Meromorphic univalent harmonic functions with negative coefficients. *Bull. Korean Math. Soc.*, 36. 763-770
- [4] Janteng, A. and Abdul Halim, S. (2009). Harmonic meromorphic functions which are starlike of complex order with respect to conjugate points. *submitted*.
- [5] Nasr, M.A. and Aouf, M.K. (1985). Starlike functions of complex order. J. Natural Sci. Math., 25. 1-12

Received: April, 2009