
ar
X

iv
:0

90
5.

47
40

v2
  [

q-
fi

n.
PM

] 
 1

2 
M

ar
 2

01
0

JUMP-DIFFUSION RISK-SENSITIVE ASSET MANAGEMENT

MARK DAVIS∗ AND SÉBASTIEN LLEO†

Abstract. This paper considers a portfolio optimization problem in which asset prices are
represented by SDEs driven by Brownian motion and a Poisson random measure, with drifts that
are functions of an auxiliary diffusion factor process. The criterion, following earlier work by Bielecki,
Pliska, Nagai and others, is risk-sensitive optimization (equivalent to maximizing the expected growth
rate subject to a constraint on variance.) By using a change of measure technique introduced by
Kuroda and Nagai we show that the problem reduces to solving a certain stochastic control problem
in the factor process, which has no jumps. The main result of the paper is that the Hamilton-Jacobi-
Bellman’s equation for this problem has a classical (C1,2) solution. The proof uses Bellman’s ‘policy
improvement’ method together with results on linear parabolic PDEs due to Ladyzhenskaya et al.

1. Introduction. Risk-sensitive control is a generalization of classical stochastic
control in which the degree of risk aversion or risk tolerance of the optimizing agent is
explicitly parameterized in the objective criterion and influences directly the outcome
of the optimization. In risk-sensitive control, the decision maker’s objective is to select
a control policy h(t) to maximize the criterion

J(x, t, h; θ) := −
1

θ
lnE

[

e−θF (t,x,h)
]

(1.1)

where t is the time, x is the state variable, F is a given reward function, and the
risk sensitivity θ ∈]−1, 0[∪]0,∞) is an exogenous parameter representing the decision
maker’s degree of risk aversion. A Taylor expansion of the previous expression around
θ = 0 evidences the vital role played by the risk sensitivity parameter:

J(x, t, h; θ) = E [F (x, t, h)]−
θ

2
Var [F (x, t, h)] +O(θ2) (1.2)

This criterion amounts to maximizing E [F (x, t, h)] subject to a penalty for variance.
Hence risk-sensitive control differs from traditional stochastic control in that it explic-
itly models the risk-aversion of the decision maker as an integral part of the control
framework, rather than importing it in the problem via an externally defined utility
function. For a general reference, see Whittle [34]. Much of the recent literature
concerns the infinite time horizon problem:

J∞(x, h; θ) := lim inf
t→∞

−
1

θ
t−1 lnE

[

e−θF (t,x,h)
]

(1.3)

This is interesting from a theoretical perspective, but is not applicable to practical
asset management because of the non-uniqueness of controls. Optimality in this sense
is a ‘tail property’: if h∗(t) is optimal, then so is h̃(t) = h∗(t)1t>T + h(t)1t≤T for any
arbitrary process h(t) and time T > 0. Of course, near-term decisions are of primary
importance to investment managers.

In the past decade, the applications of risk-sensitive control to asset management
have flourished. Risk-sensitive control was first applied to solve financial problems
by Lefebvre and Montulet [25] in a corporate finance context and by Fleming [12]
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in a portfolio selection context. However, Bielecki and Pliska [4] were the first to
apply the continuous time risk-sensitive control as a practical tool that could be used
to solve ‘real world’ portfolio selection problems. They considered a long-term asset
allocation problem and proposed the logarithm of the investor’s wealth as a reward
function, so that the investor’s objective is to maximize the risk-sensitive (log) re-
turn of his/her portfolio or alternatively to maximize a function of the power utility
(HARA) of terminal wealth. They derived te optimal control and solved the asso-
ciated Hamilton-Jacobi-Bellman (HJB) PDE under the restrictive assumption that
the asset and factor noise are uncorrelated. This assumption is unrealistic and it was
later relaxed (see [7]). The contribution of Bielecki and Pliska to the field is immense:
they studied the economic properties of the risk-sensitive asset management crite-
rion (see [6]), extended the asset management model into an intertemporal CAPM
([7]), worked on transaction costs ([5]), numerical methods ([3]) and considered fac-
tors driven by a CIR model ([8]). A major contribution was made by Kuroda and
Nagai [23] who introduced an elegant solution method based on a change of measure
argument which transforms the risk sensitive control problem in a linear exponen-
tial of quadratic regulator. They solved the associated HJB PDE over a finite time
horizon and then studied the properties of the ergodic HJB PDE. Recently, Davis
and Lleo [10] applied this change of measure technique to solve, at a finite and an
infinte horizon, a benchmarked investment problem in which an investor selects an
asset allocation to outperform a given financial benchmark.

Risk-sensitive asset management theory was originally set in a world of diffu-
sion dynamics where randomness is modelled using correlated Brownian motions. To
our knowledge, the only attempt to extend the risk-sensitive asset management the-
ory from a diffusion to a jump diffusion setting was made by Wan [33] who briefly
sketched a jump-diffusion extension of Bielecki and Pliska’s [4] original infinite hori-
zon risk-sensitive asset management model. Wan’s treatment is however restrictive
as it only considers a single Poisson process-driven jump per asset and assumes that
the underlying valuation factor risks and asset risks are uncorrelated. Our article ad-
dresses these two limitations. The setting of our control problem, which takes place
within a finite time horizon, allows for both infinite activity jumps in asset prices and
for a correlation structure between factor risks and asset risks. To solve this con-
trol problem we extend Kuroda and Nagai’s powerful change of measure technique
to account for the jumps. One of the difficulties we face in extending this technique
is proving that the optimal control is admissible as this requires showing that the
Doléans exponential (2.8) associated with this control is a martingale. In a pure dif-
fusion setting, this would follow easily from the Kamazaki condition or the Novikov
condition. However, when the Doléans exponential does not have continuous path, as
is the case in a jump diffusion setting, proving that it is indeed a martingale is more
difficult as only weaker partial results exist.

The problem we consider is also related to the vast literature on HARA utility
maximization. It is not our intension to present here methodical review of the nu-
merous developments which have occurred in the last 40 years. We will keep our
discussion brief and focused on references related to risk-sensitive control. In parallel
with the Bielecki and Pliska, Fleming and Sheu [14] considered a classical optimal in-
vestment problem in which the objective was to maximize the long-term growth rate
of expected HARA utility. The authors showed that this problem could also be ex-
pressed as an infinite time horizon risk sensitive control problem, and then estimated
the solution for a range of policy constraints and HARA exponent values.Building
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on their previous results and on Bielecki and Pliska [4], Fleming and Sheu [15] still
considered the objective of maximizing the long-term growth rate of expected HARA
utility, but allowed underlying factors to directly affect the securities process. They
then reformulated the problem as an infinite time horizon risk sensitive control prob-
lem and studied the associated dynamic programming equations. In Fleming and
Sheu [16], the authors applied results from risk sensitive control theory to derive an
approximately optimal Markovian investment policy. Hansen and Sargent [19], advo-
cate the use of risk sensitive control to account for model risk in dynamic economic
decision models. Their methods and objectives are quite different to those pursued
here.

In this paper the asset price processes are modelled as jump-diffusions whose
growth rates are functions of an auxiliary ‘factor’ process X(t) which satisfies a lin-
ear diffusion SDE. Our main results are that the risk-sensitive jump-diffusion asset
management problem is equivalent to an optimal control problem for a diffusion pro-
cess (no jumps) and that the HJB equation for the latter admits a unique classical
C1,2 ([0, T )× R

n) solution. Showing the existence and uniqueness of a solution to
a risk-sensitive control problem can prove difficult even in a pure diffusion setting.
For example, Bensousan, Freshe and Nagai [2] had to constrain the behaviour of the
Hamiltonian in order to prove existence of a classical solution. Still in a pure diffusion
setting, Fleming and Soner (see V.9 in [17]) proved that the value function is a contin-
uous viscosity solution of the associated Hamilton Jacobi Bellman Partial Differential
Equation (HJB PDE) but had to assume boundedness of all coefficients and of the
derivatives of the reward function. No such strong condition is required to solve the
jump diffusion problem considered in this article. In fact all our assumptions arise
naturally from the structure of the risk-sensitive asset management problem. Unique-
ness follows from a classical verification argument while the proof of existence relies
on a policy improvement algorithm and on the properties of linear parabolic PDEs.

The paper is organized as follows. We first introduce the general setting of the
model in section 2 and define the class of random Poisson measures which will be
used to model the jump component of the asset dynamics. In Section 3, we formulate
the jump-diffusion control problem and introduce the change of measure argument
of Kuroda and Nagai [23]. In a pure diffusion case, this is enough to transform the
problem into a standard Linear Exponential of Quadratic Regulator. In our jump-
diffusion setting, the change of measure simplifies the problem by associating the
HJB PDE given in Section 3.3, rather than the expected Partial Integro-Differential
Equation containing non-local terms, to the value function. It is striking that an
optimal control problem for a jump-diffusion model has a solution that is characterized
in terms of a HJB PDE and not a HJB PIDE1.

In Section 4 we address two key questions. First, the admissibility of the optimal
control is no longer guaranteed because the Doléans exponential defining the Radon-
Nikodým does not have continuous path. This point is addressed in Propositions
4.3 and 4.4. Second, the Risk-Sensitive Hamilton-Jacobi-Bellman Partial Differential
Equation (RS HJB PDE) contains a jump-induced control-dependent integral term:
it is no longer possible to find an analytical solution and the existence of a strong,
classical solution is no longer guaranteed. However, should we be able to prove the
existence of a classical C1,2 solution to the RS HJB PDE, then we can prove unique-
ness and resolve the control problem using a straightforward verification theorem,
presented in Theorem 4.1 and Corollary 4.2 in Section 4.

1See Øksendal and Sulem [22] for a treatment of jump-diffusion control problems.
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The main remaining difficulty is proving the existence of a strong solution to the
RS HJB PDE. The contribution of this article is to show, in Theorem 5.2 and Corol-
lary 5.4, that the risk-sensitive jump-diffusion control problem we consider admits a
unique classical C1,2 ([0, T )× R

n) solution. Showing the existence and uniqueness of a
solution to a risk-sensitive control problem can prove difficult even in a pure diffusion
setting. For example, Bensoussan, Frehse and Nagai [2] had to constrain the behaviour
of the Hamiltonian in their finite time horizon problem to prove existence of a classical
solution. Still in a pure diffusion setting and over a finite time horizon, Fleming and
Soner (see V.9 in [17]) proved that the value function is a continuous viscosity solu-
tion of the associated Hamilton Jacobi Bellman Partial Differential Equation (HJB
PDE) but had to assume boundedness of all coefficients and of the derivatives of the
reward function. No such strong condition is required to solve the jump diffusion
problem considered in this article. In fact all our assumptions arise naturally from
the structure of the risk-sensitive asset management problem. We obtain our result
by applying an approximation in policy space in a two-step process: first, we show
existence on a bounded region and then extend to the unbounded state space. In
Section 6, we present a summary of our results in Theorem 6.1 and Corollary 6.3
to conclude our investigation of the jump diffusion risk-sensitive asset management
problem.

Up to this point, we have assumed that the factor process X(t) is directly ob-
served by the controller, and therefore represents real economic factors: GDP growth,
inflation, the S&P500 index, etc. We may however wish to use X(t) as an abstract
latent factor, introduced to model volatility of returns, in which case only the prices,
and not X(t), will be observed. In our final Section 7, we note that this problem, once
adequately reformulated, can be solved using a classical Kalman filter, as in [28], as
the jump noise is absent from the dynamics of X(t). While this is from a technical
point of view a simple observation, it greatly enhances the applicability of our results.

2. Analytical Setting.

2.1. Overview. The growth rates of the assets are assumed to depend on n fac-
tors X1(t), . . . , Xn(t) which follow the dynamics given in equation (2.2) below. As in
Kuroda and Nagai’s asset-only model, the assets market comprises m risky securities
Si, i = 1, . . .m. In contrast to Kuroda and Nagai, we assume that the money market
account process, S0, is an affine function of the valuation factors, which enables us to
easily model a stochastic short term rate. Let M := n+m.

Let (Ω, {Ft} ,F ,P) be the underlying probability space. On this space is defined
an R

M -valued (Ft)-Brownian motion W (t) with components Wk(t), k = 1, . . . ,M .
Moreover, let (Z,BZ) be a Borel space2. Let p be an (Ft)-adapted σ-finite Poisson
point process on Z whose underlying point functions are maps from a countable set
Dp ⊂ (0,∞) into Z. Define

Zp := {U ∈ B(Z),E [Np(t, U)] <∞ ∀t} (2.1)

where Np(dt, dz) is the Poisson random measure on (0,∞)× Z induced by p.

2Z is a Polish space and BZ is the Borel σ-field
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Our analysis will focus on stationary Poisson point processes of class (QL) with
associated Poisson random measure Np(dt, dz). The class (QL) is defined in [20]
(Definition II.3.1 p. 59) as

Definition 2.1. An (Ft)-adapted point process p on (Ω,F ,P) is said to be of

class (QL) with respect to (Ft) if it is σ-finite and there exists N̂p =
(

N̂p(t, U)
)

such

that
(i.) for U ∈ Zp, t 7→ N̂p(t, U) is a continuous (Ft)-adapted increasing process;

(ii.) for each t and a.a. ω ∈ Ω, U 7→ N̂p(t, U) is a σ-finite measure on (Z,B(Z));

(iii.) for U ∈ Zp, t 7→ Ñp(t, U) = Np(t, U)− N̂p(t, U) is an (Ft)-martingale;

The random measure
{

N̂p(t, U)
}

is called the compensator of the point process p.

Because the Poisson point processes we consider are stationary, then their compen-
sators are of the form N̂p(t, U) = ν(U)t where ν is the σ-finite characteristic measure
of the Poisson point process p.

Finally, for notational convenience, we fix throughout the paper a set Z0 ∈ BZ

such that ν(Z\Z0) <∞ and define the Poisson random measure N̄p(dt, dz) as

N̄p(dt, dz)

=

{

Np(dt, dz)− N̂p(dt, dz) = Np(dt, dz)− ν(dz)dt =: Ñp(dt, dz) if z ∈ Z0

Np(dt, dz) if z ∈ Z\Z0

2.2. Factor Dynamics. The dynamics of the n factors can be expressed through
the affine diffusion equation

dX(t) = (b+BX(t))dt+ ΛdW (t), X(0) = x (2.2)

where X(t) is the R
n-valued factor process with components Xj(t) and b ∈ R

n,
B ∈ R

n×n and ΛRn×M .

2.3. Asset Market Dynamics. Let S0 denote the wealth invested in the money
market account with dynamics given by the equation:

dS0(t)

S0(t)
= (a0 +A′

0X(t)) dt, S0(0) = s0 (2.3)

where a0 ∈ R is a scalar constant, A0 ∈ R
n is a n-element column vector and through-

out the paper x′ denotes the transpose of the matrix or vector x.

Let Si(t) denote the price at time t of the ith security, with i = 1, . . . ,m. The
dynamics of risky security i can be expressed as:

dSi(t)

Si(t−)
= (a+AX(t))idt+

N
∑

k=1

σikdWk(t) +

∫

Z

γi(z)N̄p(dt, dz),

Si(0) = si, i = 1, . . . ,m (2.4)

where a ∈ R
m, A ∈ R

m×n, Σ := [σij ] , i = 1, . . . ,m, j = 1, . . . ,M and γ(z) ∈ R
m

satisfying Assumption 1:

Assumption 1. γ(z) ∈ R
m satisfies

− 1 ≤ γmin
i ≤ γi(z) ≤ γmax

i < +∞, i = 1, . . . ,m
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and

− 1 ≤ γmin
i < 0 < γmax

i < +∞, i = 1, . . . ,m

for i = 1, . . . ,m. Furthermore, define

S := supp(ν) ∈ BZ

and

S̃ := supp(ν ◦ γ−1) ∈ B (Rm)

where supp(·) denotes the measure’s support, then we assume that
∏m

i=1[γ
min
i , γmax

i ]

is the smallest closed hypercube containing S̃.

In addition, the vector-valued function γ(z) satisfies:
∫

Z0

|γ(z)|2ν(dz) <∞ (2.5)

Note that Assumption 1 requires that each asset has, with positive probability,
both upward and downward jump. As will become evident in Section 3.2, the effect
of this assumption is to bound the space of controls. Relation (2.5) is a standard
condition. See Definition II.4.1 in Ikeda and Watanabe [20] 3.

Define the set J as

J :=
{

h ∈ R
m : −1− h′ψ < 0 ∀ψ ∈ S̃

}

(2.6)

For a given z, the equation h′γ(z) = −1 describes a hyperplane in R
m. J is a convex

subset of Rm for all (t, x) ∈ [0, T ]× R
n.

2.4. Portfolio Dynamics. In this paper, we will limit ourselves to the case
θ > 0, which implies that the investor has positive risk aversion. In our analysis, we
make the following assumption:

Assumption 2.

ΣΣ′ > 0

The effect of Assumption 2 is to prevent redundant assets. For example, we will
not able to model in our investment market a share and an option or futures on that
share. However, this assumption leaves us free to model a wide range of assets such
as shares, bonds and commodities products as well as related indexes.

Let Gt := σ((S(s), X(s)), 0 ≤ s ≤ t) be the sigma-field generated by the security
and factor processes up to time t.

3In [20], FP and F
2,loc

P
are respectively given in equations II(3.2) and II(3.5)
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An investment strategy or control process is an R
m-valued process with the in-

terpretation that hi(t) is the fraction of current portfolio value invested in the ith
asset, i = 1, . . . ,m. The fraction invested in the money market account is then
h0(t) = 1−

∑m
i=1 hi(t).

Definition 2.2. An R
m-valued control process h(t) is in class H if the following

conditions are satisfied:
1. h(t) is progressively measurable with respect to {B([0, t])⊗ Gt}t≥0 and is càdlàg;

2. P
(

∫ T

0 |h(s)|
2
ds < +∞

)

= 1, ∀T > 0;

3. h′(t)γ(z) > −1, ∀t > 0, z ∈ Z, a.s. dν.
Define the set K as

K := {h ∈ H : h ∈ J for a.a.t} (2.7)

Lemma 2.3. Under Assumption 1, a control process h(t) satisfying condition 3
in Definition 2.2 is bounded.

Proof. The proof of this result is immediate.
Definition 2.4. A control process h(t) is in class A(T ) if the following conditions

are satisfied:
1. h ∈ H;
2. Eχh

T = 1 where χh
t , t ∈ (0, T ], is the Doléans exponential defined as

χh
t := exp

{

−θ

∫ t

0

h(s)′ΣdWs −
1

2
θ2
∫ t

0

h(s)′ΣΣ′h(s)ds

+

∫ t

0

∫

Z

ln (1−G(z, h(s); θ)) Ñp(ds, dz)

+

∫ t

0

∫

Z

{ln (1−G(z, h(s); θ)) +G(z, h(s); θ)} ν(dz)ds

}

,

(2.8)

and

G(z, h; θ) = 1− (1 + h′γ(z))
−θ

(2.9)

Definition 2.5. We say that a control process h(t) is admissible if h(t) ∈ A(T ).
The proportion invested in the money market account is h0(t) = 1−

∑m
i=1 hi(t).

Taking this budget equation into consideration, the wealth, V (t) of the investor in
response to an investment strategy h(t) ∈ H, follows the dynamics

dV (t)

V (t−)
= (a0 +A′

0X(t)) dt+ h′(t) (a− a01+ (A− 1A′
0)X(t)) dt

+h′(t)ΣdWt +

∫

Z

h′(t)γ(z)N̄p(dt, dz)

where 1 ∈ Rm denotes them-element unit column vector and with V (0) = v. Defining
â := a− a01 and Â := A− 1A′

0, we can express the portfolio dynamics as

dV (t)

V (t−)
= (a0 +A′

0X(t)) dt+ h′(t)
(

â+ ÂX(t)
)

dt+ h′(t)ΣdWt +

∫

Z

h′(t)γ(z)N̄p(dt, dz)

(2.10)

with initial endowment V (0) = 0.
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3. Problem Setup.

3.1. Optimization Criterion. We will assume that the objective of the in-
vestor is to maximize the risk adjusted growth of his/her portfolio of assets over a
finite time horizon. In this context, the objective of the risk-sensitive management
problem is to find h∗(t) ∈ A(T ) that maximizes the control criterion

J(x, t, h; θ) := −
1

θ
lnE

[

e−θ lnV (t,x,h)
]

(3.1)

By Itô, the log of the portfolio value in response to a strategy h is

lnV (t) = ln v +

∫ t

0

(a0 +A′
0X(s)) + h(s)′

(

â+ ÂX(s)
)

ds−
1

2

∫ t

0

h(s)′ΣΣ′h(s)ds

+

∫ t

0

h(s)′ΣdW (s)

+

∫ t

0

∫

Z0

{ln (1 + h(s)′γ(z))− h(s)′γ(z)} ν(dz)ds

+

∫ t

0

∫

Z

ln (1 + h(s)′γ(z)) N̄p(ds, dz) (3.2)

Hence,

e−θ lnV (t) = v−θ exp

{

θ

∫ t

0

g(Xs, h(s); θ)ds

}

χh
t (3.3)

where

g(x, h; θ) =
1

2
(θ + 1)h′ΣΣ′h− a0 −A′

0x− h′(â+ Âx)

+

∫

Z

{

1

θ

[

(1 + h′γ(z))
−θ

− 1
]

+ h′γ(z)1Z0(z)

}

ν(dz) (3.4)

and the Doléans exponential χh
t is given by (2.8).

3.2. Change of Measure. Let P
θ
h be the measure on (Ω,FT ) defined via the

Radon-Nikodým derivative

dPθ
h

dP
:= χh

T (3.5)

For a change of measure to be possible, we must ensure that the following technical
condition holds:

G(z, h(s); θ) < 1

This condition is satisfied iff

h′(s)γ(z) > −1 (3.6)

a.s. dν, which was already required for h(t) to be in class H (Condition 3 in Defini-
tion 2.2). Condition (3.6) is endogenous to the control problem and can be interpreted
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as a risk management safeguard preventing the investor from investing in some of the
portfolios if the jump component of these portfolios could result in the investor’s
bankruptcy. One could contrast this change of measure condition with the introduc-
tion of stopping time to track bankruptcy time and define the solvency region in the
Merton model (see For example Mertom [?]), since both are related to the risk that
the investor might go bankrupt. Two main differences exist between these approaches.
First, in the jump diffusion version of the Merton model, bankruptcy could arise from
either large enough jumps in the asset prices or large enough diffusive change in price.
However, in our JDRSAM model the only movement which could potentially result
in bankruptcy arises from jumps. This is due to the geometric nature of the model
which prevents bankruptcy in the pure diffusion case. Second, in the Merton model,
the solvency constraint is exogenous to the control problem: it has to be imposed
through the introduction of a stopping time. On the other hand, in our JDRSAM
model the constraint is endogenous to the control problem: it arises naturally from
the change in measure.

Observe that Pθ
h is a probability measure for h ∈ A(T ).

For h ∈ A(T ),

Wh
t =Wt + θ

∫ t

0

Σ′h(s)ds

is a standard Brownian motion under the measure P
θ
h and we have

∫ t

0

∫

Z

Ñh
p (ds, dz) =

∫ t

0

∫

Z

Np(ds, dz)−

∫ t

0

∫

Z

{1−G(z, h(s); θ)} ν(dz)ds

=

∫ t

0

∫

Z

Np(ds, dz)−

∫ t

0

∫

Z

{

(1 + h′γ(z))
−θ
}

ν(dz)ds

As a result, X(t) satisfies the SDE:

dX(t) = (b+BX(t)− θΛΣ′h(t)) dt+ ΛdWh
t , t ∈ [0, T ] (3.7)

We will now introduce the following two auxiliary criterion functions under the
measure P

θ
h:

• the auxiliary function directly associated with the risk-sensitive control prob-
lem:

I(v, x;h; t, T ; θ) = −
1

θ
lnEh,θ

t,x

[

exp

{

θ

∫ T

t

g(Xs, h(s); θ)ds − θ ln v

}]

(3.8)

where Et,x [·] denotes the expectation taken with respect to the measure P
θ
h

and with initial conditions (t, x).
• the exponentially transformed criterion

Ĩ(v, x, h; t, T ; θ) := E
h,θ
t,x

[

exp

{

θ

∫ T

t

g(s,Xs, h(s); θ)ds − θ ln v

}]

(3.9)

which we will find convenient to use in our derivations.

We have completed our reformulation of the problem under the measure Pθ
h. The

state dynamics (3.7) is a diffusion and our objective is to maximize the criterion (3.8)
or alternatively minimize (3.9).
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3.3. The Risk-Sensitive Control Problems under P
θ
h. Let Φ be the value

function for the auxiliary criterion function I(v, x;h; t, T ). Then Φ is defined as

Φ(t, x) = sup
h∈A(T )

I(v, x;h; t, T ) (3.10)

We will show that Φ satisfies the HJB PDE

∂Φ

∂t
(t, x) + sup

h∈J
Lh
t Φ(t, x) = 0, (t, x) ∈ (0, T )× R

n (3.11)

where

Lh
t Φ(t, x) = (b+Bx− θΛΣ′h(s))

′
DΦ

+
1

2
tr
(

ΛΛ′D2Φ
)

−
θ

2
(DΦ)′ΛΛ′DΦ− g(x, h; θ) (3.12)

and subject to terminal condition

Φ(T, x) = ln v, x ∈ R
n (3.13)

Similarly, let Φ̃ be the value function for the auxiliary criterion function Ĩ(v, x;h; t, T ).
Then Φ̃ is defined as

Φ̃(t, x) = inf
h∈A(T )

Ĩ(v, x;h; t, T ) (3.14)

The corresponding HJB PDE is

∂Φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛ′D2Φ̃(t, x)
)

+H(t, x, Φ̃, DΦ̃) = 0 (3.15)

and subject to terminal condition

Φ̃(T, x) = v−θ (3.16)

and where

H(s, x, r, p) = inf
h∈J

{

(b+Bx− θΛΣ′h(s))
′
p+ θg(x, h; θ)r

}

(3.17)

for r ∈ R, p ∈ R
n and in particular,

Φ̃(t, x) = exp {−θΦ(t, x)} (3.18)

Note that since Φ and Φ̃ are related through a strictly monotone continuous
transformation, an admissible (optimal) strategy for the exponentially transformed
problem is also admissible (optimal) for the risk-sensitive problem.

The supremum in (3.11) can be expressed as

sup
h∈J

Lh
tΦ

= (b +Bx)
′
DΦ+

1

2
tr
(

ΛΛ′D2Φ
)

−
θ

2
(DΦ)′ΛΛ′DΦ + a0 +A′

0x

+ sup
h∈J

{

−
1

2
(θ + 1)h′ΣΣ′h− θh′ΣΛ′DΦ + h′(â+ Âx)

−
1

θ

∫

Z

{[

(1 + h′γ(z))
−θ

− 1
]

+ θh′γ(z)1Z0(z)
}

ν(dz)

}

(3.19)
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Under Assumption 2, for any p ∈ R
n the terms

−
1

2
(θ + 1)h′ΣΣ′h− θh′ΣΛ′p+ h′(â+ Âx) −

∫

Z

h′γ(z)1Z0(z)ν(dz)

and

−
1

θ

∫

Z

{[

(1 + h′γ(z))
−θ

− 1
]}

ν(dz)

are both strictly concave in h ∀z ∈ Z a.s. dν. Therefore, the supremum is reached for
a unique maximizer ĥ(t, x, p), which is an interior point of the set J defined in equa-

tion (2.6), and the supremum, evaluated at ĥ(t, x, p) ∈ R
n, is finite. By measurable

selection, ĥ can be taken as a Borel measurable function on [0, T ]× R
n × R

n.

4. Verification Theorems. In this section, we prove a verification theorem to
the effect that if (3.11) has a C1,2 solution then that solution is equal to Φ defined

by (3.10) and the control h∗(t) = ĥ(t, x,DΦ) is optimal. We will first prove a verifica-
tion theorem for the exponentially transformed problem (3.14) with HJB PDE (3.15)
and value function Φ̃(t, x). As a corollary, we will obtain a verification theorem for
the risk sensitive control problem with (3.10), HJB PDE (3.11) and value function
Φ(t, x). Define the second order operator

L̃h
t ϕ(t, x) = (b+Bx− θΛΣ′h(s))

′
Dϕ(t, x) + θg(x, h; θ)ϕ(t, x) (4.1)

Theorem 4.1 (Verification Theorem for the Exponentially Transformed Control
Problem). Let φ̃ be a C1,2 ([0, T ]× R

n) bounded function.
(i) Assume that φ̃(T, x) ≤ e−θ ln v ∀x ∈ R

n and

∂φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛ′D2φ̃(t, x)
)

+H(t, x, φ̃,Dφ̃) ≥ 0

on [0, T ]× R
n, then φ̃(t, x) ≤ Φ̃(t, x) ∀(t, x) ∈ [0, T ]× R

n

(ii) Further assume that φ̃(T, x) = e−θ ln v ∀x ∈ R
n and there exists a Borel-

measurable minimizer h̃∗(t, x) of h̃ 7→ L̃h̃φ̃ defined in (4.1) such that

∂φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛ′D2φ̃(t, x)
)

+H(t, x, φ̃,Dφ̃)

=
∂φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛ′D2φ̃(t, x)
)

+ L̃h̃∗

φ̃

= 0

and the stochastic differential equation

dX(t) = (b+BX(t)− θΛΣ′h(t)) dt+ ΛdW θ
t

defines a unique solution X(s) for each given initial data Xt = x and the process
π∗(s) := h̃∗(s,X(s)) is a well-defined control process in Ã(T ). Then φ̃ = Φ̃ and
π∗(s) is an optimal Markov control process.

Proof. The following proof is based on an argument used by Touzi [32].
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(i). Let h̃ ∈ Ã(T ) be an arbitrary control, with X(t) the state process with initial
data X(t) = x. Define the stopping time

τN := T ∧ inf {s > t : |Xs − x| ≥ N}

Define Z(s) = θ
∫ s

t g(s,Xs, ĥs; θ)ds, then

d
(

eZs
)

:= θg(s,Xs, ĥs; θ)e
Zs

Also, by Itô, for s ∈ [t, τδ],

dφ̃s =

{

∂φ̃

∂s
+ Lφ̃

}

ds+Dφ̃′ΛdW θ
s

where L is the generator of the state process X(t) defined as:

Lφ̃(t, x) := (b+Bx− θΛΣ′h(s))
′
Dφ̃+

1

2
tr
(

ΛΛ′D2φ̃
)

By the Itô product rule, and since dZs · φ̃s = 0, we get

d
(

φ̃se
Zs

)

= φ̃sd
(

eZs
)

+ eZsdφ̃s

and hence for s ∈ [t, τN ]

φ̃(s,Xs)e
Zs = φ̃(t, x)eZt + θ

∫ s

t

φ̃(u,Xu)g(u,Xu, ĥu; θ)e
Zudu

+

∫ s

t

(

∂φ̃

∂u
(u,Xu) + Lφ̃(u,Xu)e

Zu

)

du+

∫ s

t

Dφ̃′ΛdW θ
u

Because for an arbitrary control h,

∂φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛ′D2φ̃(t, x)
)

+ Lh̃φ̃(t,Xt)

≥
∂φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛ′D2φ̃(t, x)
)

+H(t, x, φ̃,Dφ̃)

≥ 0

and eZs ≥ 0 ∀s ∈ [t, τN ] we have

φ̃(t, x)eZt ≤ φ̃(s,Xs)e
Zs +

∫ s

t

Dφ̃′ΛdW θ
u

Taking the expectation, we obtain

φ̃(t, x)eZt ≤ E
h̃,θ
t,x

[

φ̃(s,Xs)e
Zs

]

= E
h̃,θ
t,x

[

φ̃(s,Xs)e
θ
∫

s

t
g(u,Xu,ĥu;θ)du

]
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In particular, take s = τN and note that eZt = 1, then

φ̃(t, x)eZt ≤ E
h̃,θ
t,x

[

φ̃(τN , XτN )e
θ
∫ τN
t g(u,Xu,ĥu;θ)du

]

Since φ̃ is assumed to be bounded, there exists a constant C1 > 0 such that:
∣

∣

∣
φ̃(s,Xs)e

θ
∫

τN
s

g(s,Xs,ĥs;θ)ds
∣

∣

∣
≤ C1e

θ
∫ τN
t g(u,Xu,ĥu;θ)du

Since for an arbitrary admissible control h̃ ∈ A(T ) and fixed s ∈ [t, T ] there
exists some constant C2 > 0 such that

∣

∣

∣
g(s,Xs, ĥs; θ)

∣

∣

∣
≤ C2 |1 +X(s)|

Then
∣

∣

∣
φ̃(s,Xs)e

θ
∫

τN
s

g(s,Xs,ĥs;θ)ds
∣

∣

∣
≤ C3e

θ
∫ τN
t |1+X(s)|du

≤ C3e
θ(τN−t)+θ

∫ τN
t |X(s)|du

≤ C4e
θ
∫ τN
t |X(s)|du

≤ C4e
θ(T−t) supt≤s≤T |X(s)|

for C3 = C1e
C2 and C4 = C3e

θ(T−t).

By the dominated convergence theorem and the assumption that φ̃(T,Xt) ≤
e−θ ln v,

φ̃(t, x) ≤ E
h̃,θ
t,x

[

φ̃(T,XT )e
θ
∫

T

t
g(u,Xu,ĥu;θ)du

]

≤ E
h̃,θ
t,x

[

eθ
∫

T

t
g(u,Xu,ĥu;θ)du − θ ln v

]

We have now proved the first part of the theorem.
(ii). To prove the second part, we can simply apply the same reasoning for the

optimal control h̃∗. Note, however, that with this choice of control we would
have

∂φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛ′D2φ̃(t, x)
)

+H(t, x, φ̃,Dφ̃)

=
∂φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛ′D2φ̃(t, x)
)

+ L̃h̃∗

φ̃

= 0

which would lead us to equality in the last equation, i.e.

φ̃(t, x) = E
h̃,θ
t,x

[

eθ
∫

T

t
g(u,Xu,ĥu;θ)du − θ ln v

]

Corollary 4.2 (Verification Theorem for the Risk-Sensitive Control Problem).
Let φ be a C1,2 ([0, T ]× R

n) ∩ C ([0, T ]× R
n) bounded function.

13



(i) Assume that φ(T, x) ≤ e−θ ln v ∀x ∈ R
n and

∂φ

∂t
+ sup

h∈J
Lh
t φ(t,X(t)) ≥ 0

on [0, T ]× R
n, then φ(t, x) ≤ Φ̃(t, x) ∀(t, x) ∈ [0, T ]× R

n

(ii) Further assume that φ(T, x) = e−θ ln v ∀x ∈ R
n and there exists a minimizer

h∗(t, x) of h 7→ Lhφ defined in (3.12) such that

∂φ

∂t
+ sup

h∈J
Lh
t φ(t,X(t)) =

∂φ

∂t
+ Lh∗

t φ(t,X(t)) = 0

and the stochastic differential equation

dX(s) =
(

b+BX(s−)− θΛΣ′h(s)
)

ds+ ΛdW θ
s

defines a unique solution X for each given initial data Xt = x and the process
π∗(s) := h̃∗(s,X(s)) is a well-defined control process in Ã(T ). Then φ = Φ and
π∗(s) is an optimal Markov control process.

Proof. This corollary follows from equation (3.18) and from the fact that an
admissible (optimal) strategy for the exponentially transformed problem is also ad-
missible (optimal) for the risk-sensitive problem.

Proposition 4.3. The minimizer h∗(t, x) of h 7→ Lhφ defined in (3.12) is
admissible: h∗(t) ∈ A(T ).

Proof. Refer to Appendix A for a full discussion and a proof of this proposition.

Applying Proposition 4.3 we deduce that the control h∗(t) is optimal for the aux-
iliary problems (3.8) and (3.9) resulting from the change of measure. However, this
proposition is not sufficient to conclude that h∗(t) is optimal for the original prob-
lem (3.1) set under the P-measure. The next result show that this is indeed the case.

Proposition 4.4. The optimal control h∗(t) for the auxiliary problem suph∈A(T ) I(v, x;h; t, T ; θ)
where I is defined in (3.8) is also optimal for the initial problem suph∈A(T ) J(x, t, h; θ)
where J is defined in (3.1).

Proof. Refer to Appendix A for a proof.

5. Existence of a Classical Solution. Historically, proving the existence of
a strong, analytical solution to the HJB PDE was both the main difficulty and the
main objective when solving a control problem. Fleming and Rishel [13] as well as
Krylov [?] and [?] have been the main contributors, proposing techniques based ei-
ther on PDE arguments or on probability theory. Recently however, the emphasis
has switched from strong solutions to weaker types of solution. Viscosity solutions
have proved particularly useful and successful, gaining many applications in stochas-
tic control theory (see for example the classic article by Crandall, Ishii and Lions [?]
as well as Fleming and Soner [17] for a tour applications ot stochastic control). The
reason for this appeal is twofold. First, it is significantly easier to prove the existence
of a viscosity solution than a classical solution. In the viscosity world, the difficulty
is shifted from proof of existence to proof of uniqueness, and even then it is gener-
ally easier to prove uniqueness of a viscosity solution via a comparison theorem than
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the existence of a classical solution. Second, the stability result due to Barles and
Souganidis [?] connects directly viscosity solutions to numerical methods, making it
easy to solve ‘real world’ control problems.

This section follows similar arguments to those developed by Fleming and Rishel [13]
(Theorem 6.2 and Appendix E). Namely, we use an approximation in policy space
alongside results on linear parabolic partial differential equations to prove that the
exponentially transformed value functions Φ̃ is of class C1,2((0, T ) × R

n). Then it
follows that the value functions Φ is also of class C1,2((0, T )× R

n). The approxima-
tion in policy space algorithm was originally proposed by Bellman in the 1950s (see
Bellman [1] for details) as a numerical method to compute the value function. Our
approach has two steps. First, we use the approximation in policy space algorithm
to show existence of a classical solution in a bounded region. Then, we extend our
argument to unbounded state space. To derive this second result we follow a different
argument than Fleming and Rishel [13] which makes more use of the actual structure
of the control problem.

Our interest in classical solutions is as much mathematical as practical. First,
since a smooth solution is a viscosity solution but the converse is not necessarily true,
we are proving a stronger result. Second, this stronger result immediately translates
a better grasp of the analytical properties of the value function. While viscosity
solutions provide continuity, they do not generally give information about higher
order derivatives. By contrast, classical solutions are smooth in the state, implying
that they are (at least) C1 in time and C2 in the state. Third, viscosity solutions
are purely about solving the PDE and although they show that the value function is
the unique solution of the HJB PDE they do not prove directly the control problem
has a solution, that is a pair of a value function and an admissible optimal control.
Fourth and finally, in our case seeking a strong solution does not impair our search
for numerical results. Because our state process X(t) can clearly be interpreted as the
continuous time limit of a Markov Chain, we can apply well-known results by Kushner
and Dupuis [?] to prove convergence of a finite approximation scheme to the value
function. We can therefore solve concrete portfolio selection problems quite directly.

5.1. “Zero Beta” Policies. In this section, we introduce a new class of control
policies: the “zero beta” (0β) policies:

Definition 5.1 (0β-policy). By reference to the definition of the function g in
equation (3.4), a ‘zero beta’ (0β) control policy ȟ(t) is an admissible control policy
for which the function g is independent from the state variable x.

The term ‘zero beta’ is borrowed from financial economics (see for instance
Black [9]). To avoid assuming the existence of a globally risk-free rate in factor models
such as the CAPM, the APT or in ad-hoc valuation models, it is customary to build
portfolios without any exposure to the factor(s) as a substitute for the risk-free rate.
These special portfolios are referred to as ‘zero beta’ portfolios by reference to the slope
coefficient β used to measure the sensitivity of asset returns to the valuation factor(s).

In the risk sensitive asset management model, if A0 = 0, then the policy h0 = 0,
i.e. invest all the wealth in the risk-free asset, is a 0β-policy. In the general case when
A0 6= 0, the set Z of 0β-policies is the set of admissible policies ȟ which satisfy the
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equation

(h0β)′Â = −A0

Note that since m > n, there is potentially an infinite number of 0β-policies as long
as the following assumption is satisfied

Assumption 3. The matrix Â has rank n.
Without loss of generality, in the following we will fix a 0β control ȟ as a constant

function of time so that

g(x, ȟ; θ) = ǧ

where ǧ is a constant.

5.2. The Lη(K) and L η(K), 1 < η < ∞ Spaces. The following ideas and
notations relate to the treatment of linear parabolic partial differential equations found
in Ladyzhenskaya, Solonnikov and Uralceva [24]. The relevant results are summarized
in Appendix E of Fleming and Rishel. They concern PDEs of the form

∂ψ

∂t
+

1

2
tr
(

a(t, x)D2ψ
)

+ b(t, x)′Dψ + θc(t, x)ψ + d(t, x) = 0 (5.1)

on a set Q = (0, T )×G and with boundary condition

ψ(t, x) = ΨT (x) x ∈ G

ψ(t, x) = Ψ(t, x) (t, x) ∈ (0, T )× ∂G

The set G is open and is such that ∂G is a compact manifold of class C2. Denote by
• ∂∗Q the boundary of Q, i.e.

∂∗Q := ({T } ×G) ∪ ((0, T )× ∂G)

• Lη(K) the space of η-th power integrable functions on K ⊂ Q;
• ‖·‖η,K the norm in Lη(K).

Also, denote by L η(Q), 1 < η < ∞ the space of all functions ψ such that ψ and
all its generalized partial derivatives are in Lη(K). We associate with this space the
Sobolev-type norm:

‖ψ‖
(2)
η,K := ‖ψ‖η,K +

∥

∥

∥

∂ψ

∂t

∥

∥

∥

η,K
+

n
∑

i=1

∥

∥

∥

∂ψ

∂xi

∥

∥

∥

η,K
+

n
∑

i,j=1

∥

∥

∥

∂2ψ

∂xixj

∥

∥

∥

η,K
(5.2)

We will also introduce additional notation and concepts as required in the proofs.

5.3. Existence of a Classical Solution. In this section, we use an approxima-
tion in policy space to show the existence of a C1,2 solution to the RS HJB PDE (3.11).

Theorem 5.2 (Existence of a Classical Solution for the Exponentially Trans-
formed Control Problem). The RS HJB PDE (3.15) with terminal condition Φ̃(T, x) =
e−θ ln v has a solution Φ̃ ∈ C1,2 ((0, T )× R

n) with Φ̃ continuous in [0, T ]× R
n.

Proof. Step 1: Approximation in policy space - bounded space

Consider the following auxiliary problem: fix R > 0 and let BR be the open n-
dimensional ball of radius R > 0 centered at 0 defined as BR := {x ∈ R

n : |x| < R}.
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We construct an investment portfolio by solving the optimal risk-sensitive asset al-
location problem as long as X(t) ∈ BR for R > 0. Then, as soon as X(t) /∈ BR,
we switch all of the wealth into the 0β policy ȟ from the exit time t until the end of
the investment horizon at time T . The HJB PDE for this auxiliary problem can be
expressed as

∂Φ̃

∂t
+

1

2
tr
(

ΛΛ′(t)D2Φ̃
)

+H(t, x, Φ̃, DΦ̃) = 0 ∀(t, x) ∈ QR := (0, T )× BR

(5.3)

where

H(s, x, r, p) = inf
h∈J

{f(t, x, h)′p+ θg(t, x, h)r}

for p ∈ R
n and subject to boundary conditions

Φ̃(t, x) = Ψ(t, x) ∀(t, x) ∈ ∂∗QR := ((0, T )× ∂BR) ∪ ({T } × BR)

with
• Ψ(T, x) = e−θ ln v ∀x ∈ BR;
• Ψ(t, x) := ψ(t, x) := eθǧ(T−t) ∀(t, x) ∈ (0, T ) × ∂BR and where ȟ is a fixed
arbitrary 0β policy which is constant as a function of time. Note that ψ is
obviously of class C1,2(QR) and that the Sobolev-type norm

‖Ψ‖
(2)
η,∂∗QR

= ‖Ψ̃‖
(2)
η,QR

(5.4)

is finite.

Define a sequence of functions Φ̃1, Φ̃2,... Φ̃k,... on QR = [0, T ] × BR and of
bounded measurable feedback control laws h0, h1,... hk,... where h0 is an arbitrary
control. Φ̃k+1 solves the boundary value problem:

∂Φ̃k+1

∂t
+

1

2
tr
(

ΛΛ′(t)D2Φ̃k+1
)

+ f(t, x, hk)′DΦ̃k+1 + θg(t, x, hk)Φ̃k+1 = 0

(5.5)

subject to boundary conditions

Φ̃(t, x) = Ψ(t, x) ∀(t, x) ∈ ∂∗QR := ((0, T )× ∂BR) ∪ ({T } × BR)

Moreover, for almost all (t, x) ∈ QR, k = 1, 2, . . ., we define hk by the prescription

hk = Argminh∈J

{

f(t, x, h)′DΦ̃k + θg(t, x, h)Φ̃k
}

(5.6)

so that

f(t, x, hk)′DΦ̃k + θg(t, x, hk)Φ̃k = inf
h∈J

{

f(t, x, h)′DΦ̃k + θg(t, x, h)Φ̃k
}

= H(t, x, Φ̃k, DΦ̃k) (5.7)

17



Observe that the sequence
(

Φ̃k
)

k∈N

is globally bounded. Indeed, by Feynman-

Kǎc, the sequence
(

Φ̃k
)

k∈N

is bounded from below by 0. By the optimality principle,

it is also bounded from above by eθ
∫

T

t
g(X(s),ȟ;θ)ds = eθǧ(T−t). Moreover, these bounds

do not depend on the radius R and are therefore valid over the entire space (0, T )×R
n.

Note also that the boundary value problem (5.5) is a special case of the generic
problem introduced earlier in equation (5.1) with

a(t, x) = ΛΛ′(t)

b(t, x) = f(t, x, hk)

c(t, x) = g(t, x, hk)

d(t, x) = 0

Moreover, since BR is bounded and J is compact, all of these functions are also
bounded. Thus, based on standard results on parabolic Partial Differential Equa-
tions (see for example Appendix E in Fleming and Rishel [13] and Chapter IV in
Ladyzhenskaya, Solonnikov and Uralceva [24]), the boundary value problem (5.5) ad-
mits a unique solution in L

η(QR).

Step 2: Convergence Inside the Cylinder (0, T )× BR

Step 2.1: Monotonicity of the Sequence

Take k ≥ 1. Subtracting the PDE for Φ̃k+1 from the PDE for Φ̃k, we see that

(

∂Φ̃k+1

∂t
−
∂Φ̃k

∂t

)

+

(

1

2
tr
[(

ΛΛ′(t)D2Φ̃k+1
)

−
(

ΛΛ′(t)D2Φ̃k
)]

+
(

f(t, x, hk)′DΦ̃k+1 − f(t, x, hk−1)′DΦ̃k
)

+ θ
(

g(t, x, hk)Φ̃k+1 − g(t, x, hk−1)Φ̃k
)]

= 0 in (0, T )× R
n

with Φ̃k+1 − Φ̃k = 0 on R
n.

Add and subtract f(t, x, hk)′DΦ̃k + θg(t, x, hk)Φ̃k,

(

∂Φ̃k+1

∂t
−
∂Φ̃k

∂t

)

+

(

1

2
tr
[(

ΛΛ′(t)D2Φ̃k+1
)

−
(

ΛΛ′(t)D2Φ̃k
)]

+
(

f(t, x, hk)′DΦ̃k+1 − f(t, x, hk−1)′DΦ̃k
)

+ θ
(

g(t, x, hk)Φ̃k+1 − g(t, x, hk−1)Φ̃k
)

+
(

f(t, x, hk)′DΦ̃k + θg(t, x, hk)Φ̃k
)

−
(

f(t, x, hk)′DΦ̃k + θg(t, x, hk)Φ̃k
)

= 0 in (0, T )× R
n
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Rearranging,
(

∂Φ̃k+1

∂t
−
∂Φ̃k

∂t

)

+

(

1

2
tr
[(

ΛΛ′(t)D2Φ̃k+1
)

−
(

ΛΛ′(t)D2Φ̃k
)]

+f(t, x, hk)′
(

DΦ̃k+1 −DΦ̃k
)

+ θg(t, x, hk)
(

Φ̃k+1 − Φ̃k
)

+
(

f(t, x, hk)′DΦ̃k + θg(t, x, hk)Φ̃k
)

−
(

f(t, x, hk−1)′DΦ̃k + θg(t, x, hk−1)Φ̃k
)

= 0 in (0, T )× R
n

Define the function ℓk(t, x) as

ℓk(t, x) :=
(

f(t, x, hk)′DΦ̃k + θg(t, x, hk)Φ̃k
)

−
(

f(t, x, hk−1)′DΦ̃k + θg(t, x, hk−1)Φ̃k
)

By the definition of hk given in (5.6), ℓk(t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×R
n, ∀k ∈ N. Define

the sequence of functions (W k)k∈N as

W k := Φ̃k+1 − Φ̃k

then W k satisfies the PDE

∂W k

∂t
+

1

2
tr
(

ΛΛ′(t)D2W k
)

+ f(t, x, hk)′DW k + θg(t, x, hk)W k + ℓk(t, x) = 0

(5.8)

in (0, T )×BR, and with boundary conditionW k(T, x) = 0 on ∂∗QR = ((0, T )× ∂BR)∪
({T } × BR).

Define the stopping time τG as the first exit time from BR:

τG := inf {t : X(t) /∈ G}

By Lemma 5.3 below, W k(t, x) can be represented by the expectation

W k(t, x) = E

[

∫ T∧τG

t

ℓk(s,Xs)e
θ
∫

s

0
g(r,Xr)drds

]

(5.9)

Because ℓ(t, x) ≤ 0, W k(t, x) ≤ 0 for k ≥ 1 and hence by definition of W k,

Φ̃k ≥ Φ̃k+1, ∀k ∈ N

which implies that the sequence
{

Φ̃k
}

k∈N

is non increasing.

Step 2.2: Convergence of the Sequence

Since the sequence (Φ̃k)k∈N is non increasing and is also bounded, it converges. Denote

by Φ̃ its limit as k → ∞. Now, since the Sobolev-type norm ‖Φ̃k+1‖
(2)
η,QR

is bounded
for 1 < η < ∞, we can apply the following estimate given by equation (E.9) in
Appendix E of Fleming and Rishel

|Φ̃k|1+µ
QR

≤MR‖Φ̃
k‖

(2)
η,QR

(5.10)
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for some constant MR (depending on R) and where

µ = 1−
n+ 2

η

|Φ̃k|1+µ
QR

= |Φ̃k|µQR
+

n
∑

i=1

|Φ̃k
xi
|µQR

and

|Φ̃k|µQR
= sup

(t,x)∈QR

|Φ̃k(t, x)|+ sup
(x, y) ∈ G
0 ≤ t ≤ T

|Φ̃k(t, x) − Φ̃k(t, y)|

|x− y|µ

+ sup
x ∈ G

0 ≤ s, t ≤ T

|Φ̃k(s, x)− Φ̃k(t, x)|

|s− t|µ/2

to show that the Hölder-type norm |Φ̃k|1+µ
QR

is bounded. As k → ∞ we conclude that

• DΦ̃k converges to DΦ̃ uniformly in Lη(QR) ;
• D2Φ̃k converges to D2Φ̃ weakly in Lη(QR) ; and

• ∂Φ̃k

∂t converges to ∂Φ̃
∂t weakly in Lη(QR).

Step 2.3: Proving that Φ̃ ∈ C1,2(QR)
Using estimate (5.10), we see that |Φ̃k|1+µ

QR
is bounded for µ > 0, which implies that

η > n+ 2. Using relationship (5.7) and then equation (5.5), we get:

∂Φ̃k

∂t
+

1

2
tr
(

ΛΛ′(t)D2Φ̃k
)

+ f(t, x, h)′DΦ̃k + θg(t, x, h)Φ̃k

≥
∂Φ̃k

∂t
+

1

2
tr
(

ΛΛ′(t)D2Φ̃k
)

+ f(t, x, hk)′DΦ̃k + θg(t, x, hk)Φ̃k

=

(

∂Φ̃k

∂t
−
∂Φ̃k+1

∂t

)

+

(

1

2
tr
[(

ΛΛ′(t)D2Φ̃k
)

−
(

ΛΛ′(t)D2Φ̃k+1
)]

+f(t, x, hk)′
(

DΦ̃k −DΦ̃k+1
)

+ θg(t, x, hk)
(

Φ̃k − Φ̃k+1
)]

(5.11)

for any admissible control h.

Since the left-hand side of (5.11) tends weakly in Lη(QR) to

∂Φ̃

∂t
+

1

2
tr
(

ΛΛ′(t)D2Φ̃
)

+ f(t, x, h)′DΦ̃ + θg(t, x, h)Φ̃ (5.12)

as k → ∞ and the right-hand side tends tends weakly to 0, then we obtain the
following inequality

∂Φ̃

∂t
+

1

2
tr
(

ΛΛ′(t)D2Φ̃
)

+ f(t, x, h)′DΦ̃ + θg(t, x, h)Φ̃ ≥ 0

almost everywhere in QR.
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Using a measurable selection theorem and following an argument similar to that of
Lemma VI.6.1 of Fleming and Rishel [13], we see that there exists a Borel measurable
function h∗ from (0, T )× BR into J such that

f(t, x, h∗)′DΦ̃ + θg(t, x, h∗)Φ̃ = inf
h∈J

{

f(t, x, h)′DΦ̃ + θg(t, x, h)Φ̃
}

holds for almost all (t, x) ∈ (0, T )× BR. Then

∂Φ̃k

∂t
+

1

2
tr
(

ΛΛ′(t)D2Φ̃k
)

+ f(t, x, h∗)′DΦ̃k + θg(t, x, h∗)Φ̃k

≤
∂Φ̃k

∂t
+

1

2
tr
(

ΛΛ′(t)D2Φ̃k
)

+ f(t, x, hk)′DΦ̃k + θg(t, x, hk)Φ̃k

=

(

∂Φ̃k

∂t
−
∂Φ̃k+1

∂t

)

+

(

1

2
tr
[(

ΛΛ′(t)D2Φ̃k
)

−
(

ΛΛ′(t)D2Φ̃k+1
)]

+f(t, x, hk)′
(

DΦ̃k −DΦ̃k+1
)

+ θg(t, x, hk)
(

Φ̃k −DΦ̃k+1
)]

(5.13)

Since the left-hand side of (5.13) tends weakly in Lη(QR) to

∂Φ̃

∂t
+

1

2
tr
(

ΛΛ′(t)D2Φ̃
)

+ f(t, x, h∗)′DΦ̃ + θg(t, x, h∗)Φ̃

as k → ∞ and the right-hand side tends weakly to 0, then we obtain the inequality

∂Φ̃

∂t
+

1

2
tr
(

ΛΛ′(t)D2Φ̃
)

+ f(t, x, h∗)′DΦ̃ + θg(t, x, h∗)Φ̃ ≤ 0 (5.14)

almost everywhere in QR.

Combining (5.12) and (5.14), we have shown that

∂Φ̃

∂t
+

1

2
tr
(

ΛΛ′(t)D2Φ̃
)

+ f(t, x, h∗)′DΦ̃ + θg(t, x, h∗)Φ̃ = 0

almost everywhere in QR.

Hence, Φ̃ is a solution of equation (3.15) on a bounded domain. Moreover,
Φ̃ ∈ Lη(QR). Also, since H is locally Lipschitz, |Φ̃k|µQR

< ∞ for µ > 0 and

|DΦ̃k|µQR
<∞ for µ > 0, then |H(t, x, Φ̃k, DΦ̃k)|µQR

<∞.

We can now show that Φ̃ ∈ C1,2(QR). Define

|Φ̃k|2+µ
QR

:= |Φ̃k|1+µ
QR

+
∣

∣

∣

∂Φ̃k

∂t

∣

∣

∣

µ

QR

+

n
∑

i,j=1

|Φ̃k
xixj

|µQR

Consider the following estimate given by equation (E10) in Appendix E of Fleming
and Rishel

|Φ̃|2+µ
Q′ ≤M2‖Φ̃‖Q′′ (5.15)
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for some constant M2, and two open subsets Q′ and Q′′ of Q such that Q̄′ ⊂ Q̄′′. In
this estimate, set Q′′ = QR and take Q′ to be any subset of Q such that Q̄′ ⊂ Q.
Thus

|Φ̃|2+µ
Q′ <∞ (5.16)

When interpreted in light of estimate (5.10) (stemming from (E9)), we see that the

derivatives ∂Φ̃
∂t ,

∂Φ̃
∂xi

and ∂2Φ̃
∂xixj

satisfy a uniform Hölder condition on any compact

subset Q′ of QR. By Theorem 10.1 in Chapter IV of Ladyzhenskaya, Solonnikov and
Uralceva [24], we can therefore conclude that Φ̃ ∈ C1,2(QR).

Step 3: Convergence from the Cylinder [0, T )× BR to the State Space

[0, T )× R
n

Step 3.1: Setting

Let {Ri}i∈N
> 0 be a non decreasing sequence with limi→∞Ri → ∞ and let {τi}i∈N

be the sequence of stopping times defined as

τi := inf {t : X(t) /∈ BRi
}

Note that {τi}i∈N
is non decreasing and limi→∞ τi = ∞.

Denote by Φ̃(i) the limit of the sequence
(

Φ̃k
)

k∈N

on (0, T )× BRi
, i.e.

Φ̃(i)(t, x) = lim
k→∞

Φ̃k(t, x) ∀(t, x) ∈ (0, T )× BRi
(5.17)

Step 3.2: Convergence of the sequence
(

Φ̃(i)
)

i∈N

First, observe that the sequence (Φ̃(i))i∈N is non increasing. Indeed, for i < j the
stochastic control problem defined over (0, T ) × BRi

is nested into the stochastic
control problem defined over (0, T ) × BRj

. In particular, a suboptimal strategy for
the stochastic control problem defined over (0, T )×BRj

would be to invest optimally

while x ∈ BRi
and then switch to the 0β policy ȟ when x ∈ BRj

\BRi
. By the

optimality principle, the expected total cost of such strategy is greater than the value
function Φ̃(j). But this suboptimal strategy also corresponds to the optimal strategy
for the stochastic control problem defined over (0, T )× BRi

. Hence

Φ̃(i)(t, x) ≥ Φ̃(j)(t, x) ∀i, j ∈ N, ∀(t, x) ∈ (0, T )× BRi

By the argument in Step 1, the sequence (Φ̃(i))i∈N is also bounded. As a result,
it converges to a limit Φ̃. This limit satisfies the boundary condition (3.16). We now
show that Φ̃ is C1,2 and satisfies the HJB PDE. These statements are local properties
so we can restrict ourselves to a finite ball QR.

Step 3.3: Proving that Φ̃ ∈ C1,2(QR)
Using the following estimate given by equation (E8) in Appendix E of Fleming and
Rishel

‖ψ‖
(2)
η,QR

≤M
(

‖d‖η,K + ‖Ψ‖
(2)
η,∂∗QR

)
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for some constant M , we deduce that

‖Φ̃(i)‖
(2)
η,QR

≤M‖Ψ‖
(2)
η,∂∗QR

(5.18)

which, combined with assumption (5.4), implies that ‖Φ̃k+1‖
(2)
η,QR

is bounded for η > 1.

Critically, the bound M does not depend on k. Moreover, by Step 2 Φ̃(i) and DΦ̃(i)

are uniformly bounded on any compact subset of Q0. By equation (5.18) we know

that ‖Φ̃‖
(2)
η,QR

is bounded for any bounded set QR ⊂ Q0.

On QR, Φ̃
(i) also satisfies the Hölder estimate

|Φ̃(i)|1+µ
QR

≤M1‖Φ̃
(i)‖

(2)
η,QR

for some constant M1 depending on QR and η. Recalling that H(s, x, p) is locally
Lipshitz and taking into account the estimate (5.15) (i.e. condition (E10) in Appendix
E of Fleming and Rishel [13] and also Theorem 10.1 in Chapter IV of Ladyzhenskaya,

Solonnikov and Uralceva [24]), we find, that ∂Φ̃(i)

∂t and ∂2Φ̃(i)

∂xixj
also satisfy a uniform

Hölder condition on any compact subset of Q.

By Ascoli’s theorem, we can find a subsequence
(

Φ̃l
)

l∈N

of
(

Φ̃(i)
)

i∈N

such that

(i).
(

Φ̃l
)

l∈N

tends to a limit Φ̃ uniformly on each compact subset of Q0;

(ii).

(

∂Φ̃
∂t

l
)

l∈N

tends to a limit ∂Φ̃
∂t uniformly on each compact subset of Q0;

(iii).
(

DΦ̃l
)

l∈N

tends to a limit DΦ̃ uniformly on each compact subset of Q0;

(iv).
(

D2Φ̃l
)

l∈N

tends to a limit D2Φ̃ uniformly on each compact subset of Q0.

Finally, the function Φ̃ is the desired solution of equation (3.15) with terminal
condition Φ̃(T, x) = e−θ ln v

We used the following Lemma in Step 2.1 of the proof of Theorem 5.2.

Lemma 5.3. If the function u(t, x) satisfies the PDE

∂u

∂t
+

1

2
tr
(

ΛΛ′(t, x)D2u
)

+ f(t, x)′Du+ θg(t, x)u+ ℓ(t, x) = 0 (5.19)

in Q := (0, T )×G,G ⊆ R
n, and subject to boundary conditions

Φ̃(t, x) = Ψ(t, x) ∀(t, x) ∈ ∂∗Q := ((0, T )× ∂G) ∪ ({T } ×G)

then

u(t, x) = E

[

Ψ(T ∧ τG, XT∧τG)e
θ
∫ T∧τG
t g(s,Xs)ds +

∫ T∧τG

t

ℓ(s,Xs)e
θ
∫

s

t
g(r,Xr)drds

]

(5.20)

where
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• The n-dimensional diffusion process X(t) satisfies the SDE

dX(t) = f(t,X(t))dt+ Λ(t)dW (t), X(0) = x

where W (t) is a n-dimensional Brownian motion
• the stopping time τG is defined as

τG := inf {t : X(t) /∈ G}

Proof. Take a non-decreasing sequence of stopping times {τj}j∈N
. Define Ur :=

u(r,Xr) and Zj := θ
∫ r

t
g(s,Xs)ds. By the Itô product rule,

Uτj∧τG∧T e
Zτj∧τG∧T +

∫ τj∧τG∧T

t

ℓ(s,Xs)e
Zsds

= u(t, x) +

∫ τj∧τG∧T

t

θg(s, x)Use
Zsds+

∫ τj∧τG∧T

t

(

∂U

∂s
+AUs

)

eZsds

+

∫ τj∧τG∧T

t

Λ(s,Xs)e
Z(s)dW (s) +

∫ τj∧τG∧T

t

ℓ(s,Xs)e
Zsds (5.21)

where Af is the generator of the function F (t,Xt), defined as

AF (t, x) := f(t, x)′DF (t, x) +
1

2
tr
(

ΛΛ′(t, x)D2F (t, x)
)

Rearranging and taking the expectation on both sides of (5.21), we get

E

[

Uτj∧τG∧T e
Zτj∧τG∧T +

∫ τj∧τG∧T

t

ℓ(s,Xs)e
Zsds

]

= u(t, x) +E

[

∫ τj∧τG∧T

t

(

∂U

∂s
+AUs + θg(s, x)Us + ℓ(s,Xs)

)

eZsds

]

(5.22)

Taking into account relation (5.19), this equation simplifies to

u(t, x) = E

[

Uτj∧τG∧T e
Zτj∧τG∧T +

∫ τj∧τG∧T

t

ℓ(s,Xs)e
Zsds

]

(5.23)

Letting j → ∞, equation (5.23) converges pointwise to

u(t, x) = E

[

Ψ(T ∧ τG, XT∧τG)e
θ
∫ T∧τG
t g(s,Xs)ds +

∫ T∧τG

t

ℓ(s,Xs)e
θ
∫

s

t
g(r,Xr)drds

]

(5.24)

Corollary 5.4 (Existence of a Classical Solution for the Risk-Sensitive Control
Problem). The RS HJB PDE (3.11) with terminal condition Φ(T, x) = ln v has a
solution Φ ∈ C1,2 ([0, T ]× R

n) with Φ continuous in [0, T ]× Rn.
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6. Summary of Main Results. We now conclude by deducing that Φ is
the unique classical solution of the HJB PDE (3.11) subject to terminal condition
Φ(T, x) = ln v and that a similar result holds for the exponentially transformed value
function Φ̃. We will also show that the value function Φ is convex.

Theorem 6.1.
Choosing as optimal control the unique maximizer of the supremum (3.19), Φ̃ is

the unique C1,2 ([0, T ]× R
n) ∩ C ([0, T ]× R

n) solution of the RS HJB PDE (3.15)-
(3.16). Moreover, Φ̃ satisfies the property (6.2).

Proof. By Corollary 5.4, Φ̃ is a C1,2 ([0, T ]× R
n) ∩ C ([0, T ]× R

n) solution of
the RS HJB PDE (3.15)-(3.16). Moreover, the existence of zero beta policies enable
us to deduce (as in Step 1 of the proof of Theorem 5.2) that Φ̃ is bounded. Part
(i). of Theorem 4.1 therefore applies to Φ̃. Choosing as optimal control the unique
maximizer of the supremum (3.19), part (ii). of Theorem 4.1 also applies: Φ̃ is the
unique solution to the HJB PDE. Property (6.2) is proved in Corollary 6.3.

This result proves that we have solved our original control problem in the context
of strong, classical solutions. What would this imply in terms of weaker viscosity
solutions? As a classical solution is also a viscosity solution, our result implies that
the value function is indeed a viscosity solution of the HJB PDE. However, uniqueness
of classical solutions does not necessarily imply uniqueness of viscosity solutions. To
prove uniqueness in the viscosity sense, we would need a comparison result such as
Theorem 33 in Davis and Lleo [11].

Proposition 6.2. The value function Φ(t, x) is convex in x.
Proof.
To prove that the value function Φ(t, x) is convex in x, it is necessary and sufficient

to show that ∀(x1, x2) ∈ R
n and for any κ ∈ (0, 1),

Φ(t, κx1 + (1− κ)x2) ≤ κΦ(t, x1) + (1 − κ)Φ(t, x2) (6.1)

Start from the left hand side:

Φ(t, κx1 + (1− κ)x2)

= sup
h∈A(T )

−
1

θ
lnEt,κx1+(1−κ)x2

[

exp

{

θ

∫ T

t

g(Xs, h(s); θ)ds− θ ln v

}

χ(t)

]

= sup
h∈A(T )

−
1

θ
lnEt,(x1,x2)

[

exp

{

θ

∫ T

t

g(κX1(s) + (1 − κ)X2(s), h(s); θ)ds − θ ln v

}

χ(t)

]

= sup
h∈A(T )

−
1

θ
lnEt,(x1,x2)

[

exp

{

κθ

∫ T

t

g(X1(s), h(s); θ)ds

+(1− κ)θ

∫ T

t

g(X2(s), h(s); θ)ds− θ ln v

}

χ(t)

]

= sup
h∈A(T )

−
1

θ
lnEt,(x1,x2)

[(

exp

{

θ

∫ T

t

g(X1(s), h(s); θ)ds − θ ln v

}

χ(t)

)κ

×

(

exp

{

θ

∫ T

t

g(X2(s), h(s); θ)ds − θ ln v

}

χ(t)

)1−κ
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≤ sup
h∈A(T )

−
1

θ
ln

{

Et,x1

[(

exp

{

θ

∫ T

t

g(X1(s), h(s); θ)ds− θ ln v

}

χ(t)

)κ]

×Et,x2





(

exp

{

θ

∫ T

t

g(X2(s), h(s); θ)ds− θ ln v

}

χ(t)

)1−κ










= sup
h∈A(T )

{

−
1

θ
lnEt,x1

[(

exp

{

θ

∫ T

t

g(X1(s), h(s); θ)ds− θ ln v

}

χ(t)

)κ]

−
1

θ
lnEt,x2





(

exp

{

θ

∫ T

t

g(X2(s), h(s); θ)ds − θ ln v

}

χ(t)

)1−κ










≤ sup
h∈A(T )

−
1

θ
lnEt,x1

[(

exp

{

θ

∫ T

t

g(X1(s), h(s); θ)ds− θ ln v

}

χ(t)

)κ]

+ sup
h∈A(T )

−
1

θ
lnEt,x2





(

exp

{

θ

∫ T

t

g(X2(s), h(s); θ)ds − θ ln v

}

χ(t)

)1−κ




≤ sup
h∈A(T )

−
κ

θ
lnEt,x1

[

exp

{

θ

∫ T

t

g(X1(s), h(s); θ)ds − θ ln v

}

χ(t)

]

+ sup
h∈A(T )

−
1− κ

θ
lnEt,x2

[

exp

{

θ

∫ T

t

g(X2(s), h(s); θ)ds− θ ln v

}

χ(t)

]

= κΦ(t, x1) + (1− κ)Φ(t, x2)

where
• the fifth line follows from the fact that the covariance of two random variables
inside the expectations is positive;

• the eighth line is due to the fact that the function x 7→ xα for x > 0 and
α ∈ (0, 1) is concave.

Corollary 6.3. The exponentially transformed value function Φ̃ has the follow-
ing property: ∀(x1, x2) ∈ R

2, κ ∈ (0, 1, ),

Φ̃(t, κx1 + (1− κ)x2) ≥ Φ̃κ(t, x1)Φ̃
1−κ(t, x2) (6.2)

Proof. The properties follows immediately from the definition of Φ(t, x) = − 1
θ ln Φ̃(t, x).

The following corollary applies to the risk sensitive value function Φ.
Corollary 6.4.
Choosing as optimal control the unique maximizer of the supremum (3.19), Φ is

the unique C1,2 ([0, T ]× R
n) ∩ C ([0, T ]× R

n) solution of the RS HJB PDE (3.11)-
(3.13). Moreover, Φ is convex in its second argument x.

Note that the approach presented in this article extends naturally to a jump-
diffusion version of the risk-sensitive benchmarked asset management problem intro-
duced by Davis and Lleo [10] and would yield similar results, namely the existence of
a unique admissible control policy and of a classical C1,2 solution to the associated
RS HJB PDE.
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7. Partial Observation. In this section we show how the results of the paper
can be extended to the case where the factor process X(t) is not directly observed and
the asset allocation strategy ht must be adapted to the filtration FS

t = σ{Si(u), 0 ≤
u ≤ t, j = 0, . . . ,m} generated by the asset price processes alone. In the linear
diffusion case studied by Nagai [27] and Nagai and Peng [28], the authors noted
that the pair of processes (X(t), Y (t)), where Yi(t) = logSi(t), take the form of the
‘signal’ and ‘observation’ processes in a Kalman filter system, and consequently the
conditional distribution of X(t) is normal N(X̂(t), P (t)) where X̂(t) = E[X(t)|FS

t ]
satisfies the Kalman filter equation and P (t) is a deterministic matrix-valued function.
By using this idea they obtain an equivalent form of the problem in which X(t) is
replaced by X̂(t) and the dynamic equation (2.2) by the Kalman filter. Optimal
strategies take the form h(t, X̂(t)). This is in fact a very old idea in stochastic control,
going back at least to Wonham [35].

7.1. Decomposition. At first sight it does not seem apparent that the same
approach can be used here, as the price processes contain jumps, but a simple ob-
servation shows that the jumps play no role in the estimation process, which is still,
at base, the Kalman filter; see Proposition 7.1 below. A further complication is that
the money market interest rate r(t) = a0 + A′

0X(t) (see (2.3)) is observed directly
and contains information about X(t). This was not the case in [27] and [28] where,
in our notation, A0 = 0. We start by assuming that A0 = 0, and briefly discuss the
extension to A0 6= 0 at the end of the section.

Recall first that X(t) satisfies

dX(t) = (b +BX(t))dt+ ΛdW (t), X(0) = X0 (7.1)

When Xt is observed, the initial value X0 is just a constant. In the present case we
need to assume that X0 is a normal random vector N(m0, P0) with known mean m0

and covariance P0, and that X0 is independent of the processes W,Np.
An application of the general Itô formula4 shows that for i = 1, . . . ,m the log-

prices Yi(t) satisfy Yi(0) = log si and

dYi(t) =

[

(â+ ÂX(t))i −
1

2
ΣΣ′

ii

]

dt+

N
∑

k=1

σikdWk(t)

+

∫

Z0

{ln (1 + γi(z))− γi(z)} ν(dz)dt+

∫

Z

ln (1 + γi(z)) N̄p(dt, dz). (7.2)

Proposition 7.1. Define processes Y 1(t), Y 2(t) ∈ R
m as follows.

dY 1(t) = ÂX(t) + ΣdW (t), Y 1
i (0) = 0, (7.3)

dY 2
i (t) = cidt+

∫

Z

ln (1 + γ(z))i N̄p(dt, dz), i = 1, . . . ,m, Y 2
i (0) = log si

with c ∈ R
m defined by

ci := âi −
1

2
ΣΣ′

ii +

∫

Z0

{ln (1 + γi(z))− γi(z)} ν(dz)

so that Y (t) = Y 1(t) + Y 2(t). Also, define Yit = σ{Y i(u), 0 ≤ u ≤ t}, i = 1, 2. Then

4See Øksendal and Sulem [22] for this calculation.
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(i) The processes Y 1, Y 2 are each adapted to the filtration FS
t .

(ii) For any bounded measurable function f and t ≥ 0,

E[f(X(t))|FS
t ] = E[f(X(t))|Y1t].

Proof. (i) S(t) and Y (t) are in 1-1 correspondence and therefore generate the
same filtration FS

t . Apart from rearrangement of deterministic terms, the decompo-
sition Y = Y 1 + Y 2 is the same as the standard decomposition Y = Y c + Y d of a
semimartingale into its continuous and discontinuous components, see paragraph VI.
37 of Rogers and Williams [31].
(ii) Np and W (t) are independent and as a result Y1t and Y2t are independent, and
clearly FS

t = Y1t ∨ Y2t. The result follows, since X(t) is independent of Y2t. �

7.2. Kalman Filter. The processes (X(t), Y 1(t)) satisfying (7.1) and (7.3) and
the filtering equations, which are standard, are stated in the following proposition.

Proposition 7.2 (Kalman Filter). The conditional distribution of X(t) given
Y1t is N(X̂(t), P (t)), calculated as follows.
(i) The innovations process U(t) ∈ R

m defined by

dU(t) = (ΣΣ′)−1/2(dY 1(t)− ÂX̂(t)dt), U(0) = 0 (7.4)

is a vector Brownian motion.
(ii) X̂(t) is the unique solution of the SDE

dX̂(t) = (b+BX̂(t))dt +
(

ΛΣ′ + P (t)Â′
)

(ΣΣ′)−1/2dU(t), X̂(0) = m0. (7.5)

(iii) P (t) is the unique non-negative definite symmetric solution of the matrix Riccati
equation

Ṗ (t) = ΛΞΞ′Λ′ − P (t)Â′(ΣΣ′)−1ÂP (t) +
(

B − ΛΣ′(ΣΣ′)−1Â
)

P (t)

+P (t)
(

B′ − Â′(ΣΣ′)−1ΣΛ′
)

, P (0) = P0

where Ξ := I − Σ′ (Σ′Σ)
−1

Σ.

To conclude, the Kalman filter has replaced our initial state process X(t) by an
estimate X̂(t) with dynamics given in (7.5). To recover the asset price process, we
use (7.3) together with (7.4) to obtain the dynamics of Y (t):

dYi(t) = dY 1
i (t) + dY 2

i (t)

= âi + ÂX̂(t)dt−
1

2
ΣΣ′

iidt+ (ΣΣ′)1/2dU(t)

+

∫

Z0

{ln (1 + γi(z))− γi(z)} ν(dz) +

∫

Z

ln (1 + γ(z))i N̄p(dt, dz). (7.6)

We then apply Itô to Si(t) = expYi(t) to get

dSi(t)

Si(t−)
= (a+AX̂(t))idt+

N
∑

k=1

[

(ΣΣ′)1/2
]

ik
dUk(t) +

∫

Z

γi(z)N̄p(dt, dz),

Si(0) = si, i = 1, . . . ,m (7.7)
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We now solve the stochastic control problem with partial observation simply by
replacing the original asset price description (2.4) by (7.7), and the factor process
description (2.2) by the Kalman filter equation (7.5), in our solution of full observation
case. The Kalman filter has time-varying coefficients, but this does not affect the
preceding arguments.

Finally, we briefly sketch what to do if A0 6= 0. We observe the short rate
r(t) = a0 + A′

0X(t), and hence the 1-dimensional statistic Y0(t) ≡ A′
0X(t), exactly.

We need to assume that this observation contains positive ‘noise’, i.e. A′
0ΛΛ

′A0 >
0. Changing coordinates if necessary, we can assume that A′

0 = (0, 0, . . . , 1) and
hence Y0(t) = Xn(t). Our ‘observation’ is now the (m + 1)-dimensional process
Ȳ = (Y0, . . . , Ym) and we can set up a Kalman filter system to estimate the unobserved
states X̄ = (X1, . . . , Xn−1)

′ ∈ R
n−1. Ultimately, our optimal strategy will take

the form h(t,Xn(t),
ˆ̄X(t)), where ˆ̄X(t) is the Kalman filter estimate for X̄(t) given

{Ȳ (u), u ≤ t}. The details are left to the reader.

8. Conclusion. In this article, we extended the classical risk-sensitive asset
management setting to include the possibility of infinite activity jumps in asset prices.
We applied the change of measure technique proposed by Kuroda and Nagai [23] to
derive the Hamilton-Jacobi-Bellman Partial Differential Equation associated with the
control problem and then proved the existence and uniqueness of an admissible opti-
mal control policy. Using an approximation in policy space algorithm, we established
the existence of a classical C1,2 ((0, T )× R

n) solution and obtained the uniqueness
of this solution through a verification result. This approach also extends naturally
and with similar results to a jump-diffusion version of the risk-sensitive benchmarked
asset management problem.

Finally, we have observed that an attractive, if somewhat surprising, feature of
the jump diffusion risk sensitive asset management is that it naturally prohibits any
investment policy which may result in the investor’s bankruptcy. In particular, in
the risk-sensitive setting presented in this article, an investor who implements the
optimal asset allocation is certain of remaining solvent over the investment horizon.
This contrasts with the Merton type of approach in which the threat of bankruptcy
remains present and has to be accounted for using a stopping time.

Appendix A. Admissibility of the Optimal Control Policy. The admis-
sibility of the optimal control process h∗(t) solving (3.19) is linked to the existence
of a probability measure P

θ
h∗ , which itself hinges on the characterisation as an ex-

ponential martingale of the Radon-Nikodým derivative
dPθ

h∗

dP = χ∗
T defined in (3.5)

via the Doléans exponential introduced in (2.8). In the setting of Kuroda and Na-
gai [23], the admissibility of the control follows easily from an argument in Gihman
and Skhorokhod [18] which proves that the the Doléans exponential (here a Girsanov
exponential with Gaussian integrand) is an exponential martingale. However, when
the Doléans exponential does not have continuous path, as is the case in a jump dif-
fusion setting, proving that it is indeed a martingale is more difficult. As noted by
Protter [30], some partial results exist in this case (see for example Mémin [26] and
more recently Protter and Shimbo [29]), but none is as powerful as their counterparts
in the continuous case, namely the Kamazaki or the Novikov conditions.

To show that the Doléans exponential introduced in (2.8) is a martingale we will
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apply results derived by Mémin [26]. We recall here the definition of the Doléans-
Dade exponential as well as results from Mémin [26] (see also Exercise 13 in Chapter
V of [30]) on the multiplicative decomposition of local martingales that we will use to
prove our point.

Definition A.1 (Doléans-Dade exponential). The Doléans-Dade exponential
E(X)(t) of a semimartingale X(t) is defined as

E(X)(t) = exp

{

X(t)−
1

2
[Xc, Xc]t

}

∏

0<s≤t

(1 + ∆Xt)e
−∆Xs (A.1)

Definition A.2 (Mémin’s Additive Decomposition of Local Martingales).

Let M(t) be a local martingale. We define an additive decomposition of M into
two processes M1(t) and M2(t), i.e. such that M(t) =M1(t) +M2(t).

In this decomposition, the process M1(t) is defined as M1(t) = L(t)− L̃(t) where

L(t) =
∑

0<s≤t

∆Ms1{|∆Ms|≥
1
2}

and L̃(t) is the compensator of L(t).

Proposition A.3 (Mémin’s Proposition III-1). Let M(t) be a local martingale
with additive decomposition as per definition A.2 and such that M0 = 0. Then

(i) E(M) has the decomposition

E(M) = E(M2)E(M̃1)

where

M̃1(t) =M1(t)−
∑

0<s≤t

∆M1(s)∆M2(s)

1 + ∆M2(s)
, t <∞

(ii) E(M2)M̃1 is a local martingale.
(iii) If ∆M(s) > −1 then ∆M̃1(s) > −1 for all finite s.

Corollary A.4 (Mémin’s Corollary III-2). Let N be a local martingale such
that ∆N(s) > −1 for all finite s, and such that E(N(∞) is uniformly integrable. Let
P
′ be the probability defined as

dP′

dP
= E(N)(∞)

Let N1 be a local martingale with locally integrable variations and denote by Ñ1

the P-semimartingale defined as

Ñ1(t) = N1(t)−
∑

0<s≤t

∆N1(s)∆N(s)

1 + ∆N(s)
, t <∞

then Ñ1 is a P
′ local martingale, with locally integrable variations. Moreover, the P

′

predictable compensator of
∑

0<s≤t |∆Ñ1(s)| is equal to the P predictable compensator
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of
∑

0<s≤t |∆N1(s)|.

Theorem A.5 (Mémin’s Theorem III-3). Let M(t) be a local martingale with
additive decomposition as per definition A.2. If the predictable compensator of the
process

Y (t) = [M c,M c]t +
∑

0<s≤t

|∆M1(s)|+
∑

0<s≤t

(∆M2(s))
2

(A.2)

is bounded, then E(M)(t) is uniformly integrable.

Proof of Proposition 4.3. To prove that the control h∗(t) is admissible, we need
to show that the local martingale M∗(t) defined as

M∗(t) := −θ

∫ t

0

h∗(s)′ΣdWs −

∫ t

0

∫

Z

ln (1−G(z, h∗(s); θ)) Ñp(ds, dz) (A.3)

and such that

E(M)(t) = χ∗
t

is an exponential martingale.

To achieve this objective, we will define a new class of control processes to which
the optimal control belongs. We will start from the definition of a control h as a
function:

h : [0, T ]× R
n → J

(t, x) 7→ h(t, x)

where the set J was defined in (2.6). Based on this definition, the control space can
be viewed as a functional space.

Define the functional L(x, p, h) as

L(x, p, h) := −
1

2
(θ + 1)h′ΣΣ′h− θh′ΣΛ′p+ h′(â+ Âx)

−
1

θ

∫

Z

{[

(1 + h′γ(z))
−θ

− 1
]

+ θh′γ(z)1Z0(z)
}

ν(dz)

(A.4)

where p ∈ R
n so that

sup
h∈J

Lh
t Φ = (b+Bx)′DΦ+

1

2
tr
(

ΛΛ′D2Φ
)

−
θ

2
(DΦ)′ΛΛ′DΦ+ a0 +A′

0x

+sup
h∈J

L(x,DΦ, h)

(A.5)

and the unique maximizer of Lh
t Φ(t, x), h

∗(t, x), is also the unique maximizer of
L(x,DΦ, h).
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Observe that with the choice of control function h0(t, x) := 0 ∀(t, x) ∈ [0, T ]×R
n,

the functional L(x, p, h0) = 0 ∀(t, x, p) ∈ [0, T ] × R
n × R

n. Invoking the optimality
principle, we deduce that L(x,DΦ, h∗(t, x)) ≥ 0.

Denote by Ĵ the range of the control functions ĥ(t, x) such that L(x, p, ĥ) ≥
0. Under Assumption 1, the set J , defined by (2.6), is in the interior of a hy-
percube and since the functional L(x, p, h) is smooth, strictly concave in h and
limh→∂J L(x, p, h) = −∞, we deduce that the set Ĵ is a closed convex subset of

J for all (t, x) ∈ [0, T ]× R
n. The control functions ĥ take the form

ĥ : [0, T ]× R
n → Ĵ ⊂ J

(t, x) 7→ ĥ(t, x)

More formally, we can define a class Ĥ(T ) of Markov control processes as

Definition A.6. A control process ĥ(t) is in class Ĥ(T ) if the following condi-
tions are satisfied:

1. ĥ(t) is in class H introduced in Definition 2.2;

2. ĥ(t, x) ∈ Ĵ ∀(t, x) ∈ [0, T ]× R
n.

In particular, we note that the optimal control process h∗(t) ∈ Ĥ(T ) ∀t ∈ [0, T ]
and ∀ω ∈ Ω.

For any control policy ĥ(t) ∈ Ĥ(T ), define the local martingale M̂(t) as

M̂(t) := −θ

∫ t

0

ĥ(s)′ΣdWs −

∫ t

0

∫

Z

ln
(

1−G(z, ĥ(s); θ)
)

Ñp(ds, dz) (A.6)

Also, let L(t) be the process defined as

L(t) =
∑

0<s≤t

∆Ys1{|∆Ys|≥
1
2}

= −

∫ t

0

∫

Z\Z1

ln
(

1−G(z, ĥ(s); θ)
)

Np(ds, dz)

where Z1 =
{

z ∈ Z : |∆Ys| <
1
2 , 0 ≤ s ≤ t

}

. Then, the process M1(t) := L(t) − L̃(t)
can be expressed as:

M1(t) = −

∫ t

0

∫

Z\Z1

ln
(

1−G(z, ĥ(s); θ)
)

Ñp(ds, dz)

To complete our decomposition of the local martingale M(t), we define the process
M2(t) as

M2(t) =M(t)−M1(t)

= −

∫ t

0

∫

Z1

ln
(

1−G(z, ĥ(s); θ)
)

Ñp(ds, dz)

The next step is to study each component of the process Y (t) defined in (A.2):

32



• The process

[M c,M c]t = exp

{

θ2
∫ t

0

ĥ(s)′ΣΣ′ĥ(s)ds

}

is clearly bounded because ĥ(s) ∈ Ĥ(T ) for all s ∈ [0, t];
• The process

∑

0<s≤t

|∆M1(s)| =

∫ t

0

∫

Z\Z1

∣

∣

∣
ln
(

1−G(z, ĥ(s); θ)
)
∣

∣

∣
Np(ds, dz)

is bounded because ĥ(s) ∈ Ĥ(T ) for all s ∈ [0, t]. In addition, the number of
jumps greater than 1

2 is finite:

# {0 ≤ s ≤ t; |∆M1(s)|} = #
{

0 ≤ s ≤ t; |∆M(s)|1{|∆Ms|≥
1
2}

}

= N

(

t,

]

−∞,−
1

2

[

∪

]

1

2
,∞

[)

<∞

• Finally, we turn our attention to the process

∑

0<s≤t

(∆M2(s))
2 =

∫ t

0

∫

Z1

∣

∣

∣
ln
(

1−G(z, ĥ(s); θ)
) ∣

∣

∣

2

Np(ds, dz)

Recalling that we assumed that in our setting
∫

Z0

|γ(z)|2ν(dz) <∞

and taking into consideration the fact that ĥ(s) ∈ Ĥ(T ) for all s ∈ [0, t], then
we deduce that

∫

Z0

∣

∣

∣
ln
(

1−G(z, ĥ(s); θ)
) ∣

∣

∣

2

ν(dz) <∞

for any ω ∈ Ω, which proves that

∫ t

0

∫

Z1

∣

∣

∣
ln
(

1−G(z, ĥ(s); θ)
) ∣

∣

∣

2

Np(ds, dz) <∞

By Theorem A.5, the Doléans-Dade exponential

E(M̂)(t) = χ∗
t

is uniformly integrable for all ĥ ∈ Ĥ(T ). We can now apply Corollary A.4 to formally
define the measure P

θ
ĥ
. In particular, the measure P

θ
h∗ characterized via the Radon-

Nikodým derivative χ∗
t is well defined because h∗(t) ∈ Ĥ(T ) ∀ω ∈ Ω. This proves

that the control h∗(t) is admissible for all t ∈ [0, T ] and ω ∈ Ω.

Note that the control policy h0(t) = 0 corresponds to investing the entire wealth
into the money market asset for the duration of the investment period. The associ-
ated measure P

θ
h0 is well defined and it is equal to the physical measure P. In fact,
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this proof not only shows that the optimal control process h∗(t) is admissible, but

also that a large class of “reasonable” control processes ĥ(t) is also admissible and is
associated with a well-defined probability measure.

Proof of Proposition 4.4. Consider the exponentially transformed problem infh∈A(T ) J̃(x, t, h; θ)
where

J̃(x, t, h; θ) := lnE
[

e−θ lnV (t,x,h)
]

(A.7)

Note that because the term e−θ lnV (t,x,h) is bounded from below by 0, infh∈A(T ) J̃(x, t, h; θ)

is well defined which implies that there exists at least one minimizer ĥ.

E
[

e−θ lnV (t,x,h)
]

= E
h,θ
t,x

[

exp

{

θ

∫ T

t

g(s,Xs, h(s); θ)ds− θ ln v

}]

(see for example Lemma 8.6.2. in [21]) and hence

inf
h∈A(T )

E
[

e−θ lnV (t,x,h)
]

= inf
h∈A(T )

E
h,θ
t,x

[

exp

{

θ

∫ T

t

g(s,Xs, h(s); θ)ds− θ ln v

}]

= I(v, x;h∗(t); t, T ; θ)

which proves that the optimal control h∗(t) for the auxiliary problem suph∈A(T ) I(v, x;h; t, T ; θ)
derived in Section 3.3 is indeed optimal for the problem suph∈A(T ) J(x, t, h; θ).
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