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Abstract

Constant Proportion Portfolio Insurance (CPPI) is an investment strategy designed to give par-
ticipation in the performance of a risky asset while protecting the invested capital. This protection
is however not perfect and the gap risk must be quantified. CPPI strategies are path-dependent
and may have American exercise which makes their valuation complex. A naive description of the
state of the portfolio would involve three or even four variables. In this paper we prove that the
system can be described as a discrete-time Markov process in one single variable if the underlying
asset follows a process with independent increments. This yields an efficient pricing scheme using
transition probabilities. Our framework is flexible enough to handle most features of traded CPPIs
including profit lock-in and other kinds of strategies with discrete-time reallocation.
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1 Introduction

Constant Proportion Portfolio Insurance is a dynamic strategy designed to give participation in risky
assets while protecting the invested capital [Mer71]. This is achieved by periodically rebalancing
between a risk-free asset (Zero-Coupon bond) and a risky asset (share, index, fund, fund of funds. . . ).
In the simplest form, if the underlying asset has no jumps and if one can rebalance continuously, the
final payoff depends in a deterministic way on the risky underlying. However both hypotheses are
strong and do not fit real market conditions. If they are relaxed, the strategy is not as efficient:
there is a small chance of not recovering at maturity the invested capital. This gap risk may be
held by the issuer, so that the principal is really guaranteed to the investor. In this case, there
is an option included in the product, which must be priced and hedged. For a very simple CPPI
strategy with continuous rebalancing, the gap risk comes only from instantaneous jumps and can be
quantified analytically [CT07]. With a discrete rebalancing scheme, there is a closed formula for the
embedded option price if the underlying follows a Black-Scholes diffusion [BBM05]. This formula
can as well be generalized to jump-diffusion models, and more generally to Levy processes [PL09].
However these methods work only for an idealized CPPI product where there are no caps on the
risky exposure, no spreads on the risk-free and financing rates, no fees, no profit lock-in, a natural
bond floor... Unfortunately, real CPPIs have usually such features, which prevent from using closed
formulas. Moreover, such formulas does not hold for options with strikes differing from the guaranteed
amount. This makes necessary to use other methods for real-life, more complex products. As CPPIs
are very path dependent, they are usually priced through Monte-Carlo simulations (see [BK95] for an
example). Extreme value theory has also been used to estimate the gap risk of such products [BP02].

Monte-Carlo pricing is perfectly suited to path dependence but the dimension of the problem is
generally quite large. As an example, a monthly CPPI defined on a single risky asset with monthly
rebalancing and a 10 years maturity requires simulating 120 values of the underlying. This means a
120-dimensional Monte-Carlo integration. Furthermore, the tails of the distributions are crucial in the
pricing. First of all, the lower tail gives the gap risk part. It must be computed with enough precision
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to produce a reasonable Put price and an accurate Delta. The upper tail is important to reach
the correct mean value of the CPPI strategy. The payoff distribution is close to a shifted lognormal
distribution with high leverage: most trajectories will end below the mean and will be compensated by
a few very high terminal values. The high path dependence and barrier-like structure of the strategy
makes the Put price and its Delta converge very slowly. As an illustration, we refer to figure 1 in
which we present an example of the convergence of a put option on the CPPI portfolio. One needs
100 millions Monte-Carlo simulations (and hours of computation) to get a rough estimation of the
price of the derivative.

An other way to price CPPI derivatives would be to use a PIDE scheme. This would also handle
the American or more precisely Bermudan exercise which is more and more present in such products.
However, there are at least three variables to propagate which depend on each other: the risky
underlying value, the CPPI portfolio value and the risk asset weighting. If some profit lock-in feature
is present, the guarantee level increases the dimension of the PIDE to four. The high dimensionality
combined with the large number of time steps needed (at least the number of reallocations) makes
this solution very computationally expensive.

There are drastic simplifications if one considers the portfolio value at rebalancing times only.
We prove that if the underlying asset has independent increments, the dynamics of the portfolio at
rebalancing dates is described by a discrete time Markov process in one single variable. This property
leads to a simple and efficient numerical scheme. The main advantages of this technique are its speed,
the smoothness of greeks and the ability to handle Bermudan exercise. For example in the simplest
cases, only a few milliseconds are needed to get an accurate price. More complex cases with profit
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Figure 1: Convergence of the Monte Carlo method for the price of a put on a CPPI portfolio as
functions of the number of paths. Maturity is 10 years, multiplier is 4, reallocation is performed
monthly, volatility is 35% and initial investment is 1 000. The strike is set to this value. The dashed
line indicates the best estimate obtained in section 3.4.
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lock-in, artificial cushion or coupons take more time but never more than a few seconds.

In section 2, we start by describing our pricing method in simple cases for which the guarantee
amount is constant: after introducing our working hypothesis, we formulate the main result concerning
the transition probabilities of the CPPI portfolio at rebalancing dates. Then we discuss the numerical
implementation of this method in section 3. In section 4, we allow the guaranteed amount to vary
over time through a feature called ”profit lock-in”. Under some homogeneity assumption on the
rebalancing rule, we show that the problem is still one-dimensional and discuss the steps involved in
the numerical implementation.

2 Basic algorithm

2.1 Sketch of the method

At a time t, we consider a portfolio (the CPPI portfolio) with total value C(t). This portfolio is split
between a risky and a risk-free components:

C(t) = Crisky(t) + Crisk-free(t)

The risk-free part is invested in zero-coupons of same maturity as the CPPI, B(t), whose dynamic is
completely deterministic

B(t′) = B(t)er(t
′−t)

with r the risk-free interest rate (taken constant for simplicity). The risky part is invested in an asset
S(t). For simplicity in this part we consider a Black-Scholes dynamics which under the risk-neutral
measure is

dS(t) = rS(t)dt+ σS(t)dW (t)

A CPPI strategy is designed to protect some part of the investment and we shall denote by G
this ”guaranteed” amount. At this point, G is just some constant, which is generally taken to be the
initial value of the portfolio C(0). Taking a fraction 1/G of the portfolio, we can consider without
loss of generality a unit guarantee. In this section we take therefore G = 1.

Let t0 = 0 < t1 < · · · < tn be some fixed times, called rebalancing dates. At each rebalancing
date ti, the allotment of the portfolio between the risky and risk-free components is adjusted (without
any change in the total value of the portfolio) according to a rule specified through a non-negative
deterministic function w(t, x) called the risky asset weighting (or simply RAW):

Crisky(ti) = w
(
ti, C(ti)

)
C(ti) (1)

For a CPPI strategy, w is usually chosen of the form

w
(
t, C

)
= max

(
m
C −H(t)

C
, 0

)
(2)

where m is called the multiplier of the strategy and H is a positive deterministic function called the
floor whose terminal value is the guarantee (equal to 1 here). A natural choice is to set the floor to
be

H(t) = e−r(tn−t)

H(t) is equal to the value of a (unit nominal) zero-coupon bond one must hold to recover 1 at
maturity tn. Within this setup, this investment strategy indeed offers some protection: when the
portfolio poorly performs the investment is smoothly allocated to the risk-free asset. With continuous
rebalancing and without jumps in the asset price, the bond floor cannot be breached. With discrete
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rebalancing there is still a probability of going under the floor: the floor is breached if the risky asset
goes down by more than 1/m between two rebalancing dates.

Between rebalancing dates, the composition of the portfolio is left unchanged. For t ∈ [ti, ti+1],
this reads

C(t) = Crisky(ti)
S(t)

S(ti)
+ Crisk-free(ti)

B(t)

B(ti)
(3)

In the case t = ti+1, this equation gives the evolution of the portfolio between two consecutive
rebalancing dates:

C(ti+1) = Crisky(ti)
S(ti+1)

S(ti)
+ Crisk-free(ti)

B(ti+1)

B(ti)

or equivalently, eliminating Crisky using equation (1),

C(ti+1) = w
(
ti, C(ti)

)
C(ti)

S(ti+1)

S(ti)
+
(
1− w

(
ti, C(ti)

))
C(ti)

B(ti+1)

B(ti)
(4)

Then, at date ti+1, the manager computes the new Risky Asset Weighting w
(
ti+1, C(ti+1)

)
and real-

locates the resources. Once again, we emphasize that this rebalancing procedure has no instantaneous
effect on the total value of the portfolio.

In a first step, we look at the risk-neutral probability distribution of the portfolio value over a
single rebalancing period. It can be seen from equation (4) that C(ti+1) depends on C(ti) and on
the ratio of the risky asset values S(ti+1)/S(ti). However, if the process logS(t) has independent
increments (which clearly is the case of the lognormal dynamic we consider here), this ratio does not
depend on S(ti) itself. If in addition we suppose that the risky asset has independent increments, the
distribution of C(ti+1) conditionally on time ti depends only on C(ti):

P
[
C(ti+1) < y

∣∣Fti] = P
[
C(ti+1) < y

∣∣C(ti)
]

= P

[
S(ti+1)

S(ti)
<
y −

(
1− w

(
ti, C(ti)

))
C(ti)B(ti+1)/B(ti)

w
(
ti, C(ti)

)
C(ti)

∣∣∣∣C(ti)

]
(5)

This equation relates the distribution of C(ti+1) conditionally on C(ti) to the distribution of S(ti+1)/S(ti).
In the case of Black-Scholes diffusion that we consider, the cumulative function is

P
[
S(ti+1)

S(ti)
< z

]
= N

(
ln z −

(
r − 1

2σ
2
)

(ti+1 − ti)
σ
√
ti+1 − ti

)
(6)

Combining these two equations we get an explicit formula for P
[
C(ti+1) < y

∣∣Fti] as a function

of C(ti). The process for the portfolio value at rebalancing times is therefore a Markov process in
discrete time. The general framework for the study of Markov processes leads to introducing the
risk-neutral probability density of C(tj) conditionally on C(ti), also called transition kernel for the
period [ti, ti+1]:

Φti,ti+1(x, y) =
∂

∂y
P
[
C(ti+1) < y

∣∣C(ti) = x
]

which is computed explicitly using equations (5) and (5).

Let us consider a European derivative product V written on the CPPI portfolio with terminal
payoff at tn given by

V
(
tn, C(tn)

)
= P

(
C(tn)

)
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If we know the value of this derivative at time ti+1 for all values of C(ti+1), its value at time ti and
CPPI value C(ti) is given by the discounted risk-neutral expected value

V
(
ti, C(ti)

)
= e−r(ti+1−ti) E

[
V
(
ti+1, C(ti+1)

) ∣∣C(ti)
]

= e−r(ti+1−ti)
∫

dy Φti,ti+1

(
C(ti), y

)
V
(
ti+1, y

)
Starting from the terminal payoff and applying recursively this formula yields today fair price of the
derivative V

(
t0, C(t0)

)
.

This backward recursion is also suited to Bermudan exercise (on rebalancing dates):

V
(
ti, C(ti)

)
= max

(
e−r(ti+1−ti)

∫
dy Φti,ti+1

(
C(ti), y

)
V
(
ti+1, y

)
, P
(
C(ti)

))

2.2 Mathematical formulation

We collect the previous results (with slightly more general hypothesis) in the following proposition.

Proposition 1. Let us consider a CPPI portfolio with a given set of rebalancing dates t0, . . . , tn and
guaranteed amount G. If the following hypotheses hold:

• the risky asset weighting is given by a deterministic function w(t, C/G);

• the underlying risky asset follows a one-dimensional process, its logarithm has independent
increments and it has a density

φt,t′(z) = ∂zP
[
S(t′)

S(t)
< z

]
which depends only on t, t′ and z;

• the risk free asset is deterministic with value B(t);

then the CPPI portfolio value taken at rebalancing dates C(ti) is a Markov process in discrete time.
The probability transition operator of the normalized variable C(ti)/G

Φti,ti+1(x, y) = E
[
δ

(
C(ti+1)

G
− y
) ∣∣∣ C(ti)

G
= x

]
given by

Φti,ti+1(x, y) =


1

w
(
ti, x

)
x
φti,ti+1

[
y −

(
1− w

(
ti, x

))
xB(ti+1)/B(ti)

w
(
ti, x

)
x

]
if w

(
ti, x

)
x > 0

δ

(
y − xB(ti+1)

B(ti)

)
if w

(
ti, x

)
x = 0

(7)

European derivatives on the CPPI portfolio are valued recursively through

V
(
ti, C(ti)

)
= e−r(ti+1−ti)

∫
dy Φti,ti+1

(
C(ti)

G
, y

)
V
(
ti+1, G y

)
(8)

and Bermudan derivatives using

V
(
ti, C(ti)

)
= max

(
e−r(ti+1−ti)

∫
dy Φti,ti+1

(
C(ti)

G
, y

)
V
(
ti+1, G y

)
, P
(
C(ti)

))
(9)
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Proof. The proof goes along the lines of the last section for a fraction 1/G of the portfolio. The explicit
expressions for the risk-free asset and the floor are simply relaxed and the lognormal cumulative law
is replaced by a more general cumulative law. The Markovian property stems from the fact that the
transition probability depends only on C(ti)/G.

Remark 1. The condition on the density between rebalancing dates excludes stochastic volatility and
more generally models with hidden variables. In fact such models can be used within our framework at
the cost of increasing the dimensionality of the Markov process by the number of additional variables.
For example a stochastic volatility model for the underlying will be converted into a 2-dimensional
discrete-time Markov process. As matrix-vector multiplications on a grid of size N have a complexity
O(N2), adding a second dimension with grid size M will increase by a factor M2 the computation
time. Therefore it looks more reasonable to use a volatility regime-switching model rather than a
model with continuous stochastic volatility. In such a model, there are a small number M of regimes,
each with its own volatility. One computes the joint probability of the CPPI portfolio value and the
volatility regime conditionally on the initial portfolio value and volatility regime.

3 Numerical implementation

3.1 Order 2 scheme

The numerical implementation is rather direct from proposition 1.

• The normalized value C(ti)/G of the portfolio was previously allowed to be any real number.
This real line is discretized into a grid hj , j = 0 . . . N . The (rescaled) initial value of the
portfolio C(t0)/G is supposed to lay on the jth0 grid node: C(t0) = Ghj0 .

• The transition operator of equation (7) acting on real functions is replaced with a transition

matrix M
(i,i+1)
jk acting on vectors.

Let Qti,ti+1 and Q(1)
ti,ti+1

denote the cumulative density and partial expected value of the under-
lying process

Qti,ti+1(z) = P
[
S(t′)

S(t)
< z

]
=

∫ z

−∞
dy φti,ti+1(y)

Q1
ti,ti+1

(z) = E
[
S(t′)

S(t)
1]−∞;z[

(
S(t′)

S(t)

)]
=

∫ z

−∞
dy φti,ti+1(y) y

Let X
(i)
jk denote the value of the underlying return S(ti+1)

S(ti)
for which a portfolio worth Ghj at ti

is worth Ghk at ti+1:

X
(i)
jk =

hk −
(
1− w

(
ti, hj

))
hjB(ti+1)/B(ti)

w
(
ti, hj

)
hj

Starting from a grid point hj at time ti, for w
(
ti, hj

)
hj > 0 the probability of being between

hk and hk+1 at time ti+1 is the finite difference

Q
(i,i+1)
jk = P

[
hk ≤

C(ti+1)

G
< hk+1

∣∣∣ C(ti)

G
= hj

]
= Qti,ti+1

(
X

(i)
j,k+1

)
−Qti,ti+1

(
X

(i)
jk

)
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Similarly the partial expected value is

Q
1 (i,i+1)
jk = E

[
C(ti+1)

G
1[hk;hk+1[

(
C(ti+1)

G

) ∣∣∣ C(ti)

G
= hj

]
= w

(
ti, hj

)
hj

[
Q1
ti,ti+1

(
X

(i)
j,k+1

)
−Q1

ti,ti+1

(
X

(i)
jk

)]
+
(
1− w

(
ti, hj

))
hj
B(ti+1)

B(ti)

[
Qti,ti+1

(
X

(i)
j,k+1

)
−Qti,ti+1

(
X

(i)
jk

)]
For w

(
ti, hj

)
hj = 0 we have respectively

Q
(i,i+1)
jk = 1[hk;hk+1[

(
hj
B(ti+1)

B(ti)

)
Q

1 (i,i+1)
jk = hj

B(ti+1)

B(ti)
1[hk;hk+1[

(
hj
B(ti+1)

B(ti)

)
Using these matrices, we take as transition matrix between ti and ti+1

M
(i,i+1)
jk = M

+(i,i+1)
jk +M

− (i,i+1)
jk

with

M
+(i,i+1)
jk =

hk+1Q
(i,i+1)
jk −Q1 (i,i+1)

jk

hk+1 − hk

M
− (i,i+1)
jk =

Q
1 (i,i+1)
j,k−1 − hk−1Q

(i,i+1)
j,k−1

hk − hk−1

These matrices are such that the probability Q
(i,i+1)
jk to be inside the interval [hk, hk+1[ and the

partial mean Q
1 (i,i+1)
jk are exact:∫ hk+1

hk

dyΦ(ti,ti+1)(hj , y) = Q
(i,i+1)
jk = M

+(i,i+1)
jk +M

− (i,i+1)
j,k+1∫ hk+1

hk

dyΦ(ti,ti+1)(hj , y) y = Q
1 (i,i+1)
jk = M

+(i,i+1)
jk hk +M

− (i,i+1)
j,k+1 hk+1

• For a European product, we define a vector V
(i)
j with the value of the derivative at date ti

conditionally to C(ti) = Ghj . The backward propagation (8) is turned into the matrix–vector
product

V
(i)
j = e−r(ti+1−ti)

∑
k

M
(i,i+1)
jk V

(i+1)
k

with terminal condition
V

(n)
j = P (Ghj)

The fair price of the derivative at time 0 is given by

V (t0, C(t0)) = V
(0)
j0

• In the case of a Bermudan product the recursion is

V
(i)
j = max

(
e−r(ti+1−ti)

∑
k

M
(i,i+1)
jk V

(i+1)
k , P (Ghj)

)
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3.2 Error analysis

We now sketch an analysis of the numerical error for a European payoff. Denoting by N the number
of grid points and omitting the discount factor, the error in backward propagation on one time step
from ti+1 to ti is

ei(hj) =
N∑
k=0

M
(i,i+1)
jk V (i+1)(hk)−

∫
dyΦti,ti+1(hj , y)V (i+1)(y)

=
N−1∑
k=0

[
M

+(i,i+1)
jk V (i+1)(hk) +M

− (i,i+1)
j,k+1 V (i+1)(hk+1)−

∫ hk+1

hk

dyΦti,ti+1(hj , y)V (i+1)(y)

]

M
+(i,i+1)
jk and M

− (i,i+1)
j,k+1 have been defined such that they give exact results on constant and linear

terms on each interval [hk;hk+1[:

M
+(i,i+1)
jk V (hk) +M

− (i,i+1)
j,k+1 V (hk+1) =∫ hk+1

hk

dyΦti,ti+1(hj , y)

[
hk+1 − y
hk+1 − hk

V (i+1)(hk) +
y − hk

hk+1 − hk
V (i+1)(hk+1)

]
As in the case of a trapezoidal quadrature, we are left with a second order term

ei(hj) =

N−1∑
k=0

[
1

12
Φti,ti+1(hj , hk)V

(i+1)′′(hk) ∆h3k + o
(
∆h3k

)]
with ∆hk = hk+1−hk. The second derivative can be evaluated by finite differences at the same order

of precision. We denote it by D2V
(i)
k .

The error computed at time ti and grid node hj must then be backward propagated to time t0
to get the contribution to the final price. Summing errors from all time steps and grid points we get
the total error for a European payoff

e =
1

12

N−1∑
k=0

[(
n∑
i=1

e−r(ti−t0)M
(0,i)
j0,k

D2V
(i)
k

)
∆h3k + o

(
∆h3k

)]

As ∆hk is proportional to N−1, we end up with an asymptotic error

e(hj) = O
(
N−2

)
Moreover, minimizing the error under the constraint of a constant

∑
k

∆hk gives an optimal grid step

∆hk ∝
1√√√√∣∣∣∣∣

n∑
i=1

e−r(ti−t0)M
(0,i)
j0,k

D2V
(i)
k

∣∣∣∣∣
(10)

with M (0,i) the transition matrix between time t0 and ti: M
(0,i) =

i−1∏
l=0

M (l,l+1). In order to estimate

the optimal grid, one can either use an approximative analytical solution for the portfolio values and
transition matrices or run a first round of the algorithm using a basic coarser grid as an initial guess.

9



3.3 Higher order schemes

The algorithm can be generalized to reach aO(N−p) convergence for any p. To construct the transition
matrix in the second order case, we have weighted the boundaries of all grid intervals in order to
match both the probability to be in the interval and the partial mean on the interval. Introducing
p − 2 intermediate grid points inside all intervals allows to match all conditional moments on every
interval up to order p− 1. Following the lines of the error analysis of section 3.2, one gets an O(N−p)
error

e ∝
N−1∑
k=0

[(
n∑
i=1

e−r(ti−t0)M
(0,i)
j0,k

DpV
(i)
k

)
∆hp+1

k + o
(

∆hp+1
k

)]
with an optimal grid for a European payoff given by

∆hk ∝
1

p

√√√√∣∣∣∣∣
n∑
i=1

e−r(ti−t0)M
(0,i)
j0,k

DpV
(i)
k

∣∣∣∣∣
(11)

There is however a drawback: this (partial) moment matching procedure may introduce negative
transition probabilities on some grid points, which could result in numerical instabilities.

3.4 Numerical results

We consider a put on a CPPI portfolio with strike at the guaranteed amount. Maturity is ten years,
the portfolio is reallocated monthly with multiplier 4; the bond floor is linear starting at 75% so that
the initial investment in the risky asset is 100%. The initial portfolio value is 1000. On rebalancing
dates, proportional fees are removed from the portfolio value at an annual rate of 30 bp. For our
test we choose a constant, flat 35% volatility. The yield curve is the EUR yield curve on January 15,
2010.

Prices and computation times (CPU time) as functions of the grid size are presented in table 1
and figure 2 for four numerical schemes: second (II) and third (III) order schemes using the grid
described in the next paragraph and second (II’) and third (III’) order schemes using the optimal
grids computed using formulas (10) and (11) with p = 3, bootstrapped from the previous grid.

The grid used in cases (II) and (III) is built in the following way. We first evaluate an upper
bound inverting the cumulative distribution of a self-financing CPPI with natural bond floor and
continuous reallocation: this distribution is a shifted lognormal distribution with volatility mσ. We
set the bound such that the cumulative at this bound is 1− 10−20. In the worst case where the risky
asset drops to zero, the loss is equal to m times the current portfolio value. Hence we set the lower
bound to (1 − m) times the upper bound. These bounds are usually very large but the grid must
be refined where there is convexity in the CPPI price, according to the error analysis of the previous
section. We therefore take a parametric form for the grid between the bounds. We split the grid in
three parts: a log-linear (y = aebx) central region which includes the bond floor value at all times and
the strike of the option or the guarantee and two log-quadratic (y = c+defx

2
) outer regions. Regions

are glued together so that the parametric function describing the grid is C1. This particular choice
of the parametric form allows us to have sufficient refinement in the central region while reaching
extreme bounds.

We observe that for all schemes, prices smoothly converge as the grid size is increased. As expected,
third order schemes perform better than second order ones. Asymptotically, the computation of an
optimal grid gives better results. However at lower grid sizes the error is larger; in addition the
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Figure 2: Price of a put on a CPPI portfolio as a function of the grid size in four implementations of
the algorithm: (II) second order scheme, (II’) second order scheme with computation of an optimal
grid, (III) third order scheme, (III’) third order scheme with computation of an optimal grid.
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Grid size II II’ III III’

50 4.713352
0.078

3.998833
0.156

4.230729
0.094

4.183711
0.219

100 4.614899
0.156

4.461027
0.438

4.492105
0.234

4.487217
0.641

200 4.61589
0.531

4.549288
1.641

4.572986
0.781

4.548754
2.313

300 4.594584
1.188

4.578181
3.641

4.572749
1.688

4.57237
4.969

400 4.586547
2.063

4.575781
6.203

4.572500
2.844

4.572397
8.469

500 4.582519
3.250

4.574238
9.766

4.572446
4.438

4.572311
13.734

750 4.578084
6.859

4.573407
23.000

4.572371
10.469

4.572382
29.063

1000 4.576436
12.234

4.572998
40.531

4.572351
17.813

4.572309
50.844

2000 4.574094
47.703

4.57253
166.281

4.572314
71.375

4.572327
196.391

3000 4.573509
112.016

4.572426
356.875

4.572333
163.547

4.572319
436.609

Table 1: Price of a put on a CPPI portfolio (top numbers) and CPU time in seconds (bottom)
as a function of the grid size in four implementations of the algorithm: (II) second order scheme,
(II’) second order scheme with computation of an optimal grid, (III) third order scheme, (III’) third
order scheme with computation of an optimal grid.

computation is almost three times longer. In practice, we therefore prefer scheme (III) which gives a
smooth and fast convergence.

A precise price can be obtained1 in less than 1s. When the rates or the volatility are not constant,
one needs to compute a transition matrix for each rebalancing period. In our test case, this means
we generate 120 matrices. When all parameters are constant or piecewise constant, the number of
matrices to be computed can be greatly reduced and the pricing is faster.

4 Profit lock-in

4.1 Pricing with profit lock-in

CPPI strategies often include a profit lock-in feature: a fraction λ of the performance is periodically
locked in. G therefore becomes a piecewise constant stochastic process G(t). The floor is scaled
accordingly as

H(ti) = e−r(tn−ti)G(ti)

such that the terminal value of the CPPI portfolio should ideally be at least G(tn).

We denote by t`I , I = 1 . . . N the subset of rebalancing dates at which the profit lock-in occurs
(typically annually). For convenience, we set `0 = 0 and `N = n. Whenever the performance of the
portfolio is positive between t`I and t`I+1

the guarantee is raised to

G
(
t`I+1

)
= G(t`I ) + λ

[
C
(
t`I+1

)
− C(t`I )

]+
(12)

1Computations were performed on a standard PC equipped with an Intel Core 2 6600 at 2.4 GHz and 3.50 GB of
memory. We used the optimized Intel’s Math Kernel Library to perform matrix-vector multiplications. Quoted times
are CPU times.
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This expression can be recast into the more general form

G(t`I+1
)

G(t`I )
= f

(
C(t`I )

G(t`I )
,
C(t`I+1

)

G(t`I )

)
(13)

with f(x, y) a positive function.

The rebalancing rule

Crisky(ti) = max

(
m
C(ti)− e−r(tn−ti)G(ti)

C(ti)
, 0

)
C(ti)

is of the more general form

Crisky(ti) = w

(
ti,
C(ti)

G(ti)

)
C(ti)

We are concerned with the pricing of a European derivative product V written on the CPPI
portfolio whose terminal payoff P might depend on C and G at maturity. The fair price at time t`i
can be written as the risk-neutral expectation

V
(
t`I , C(t`I ), G(t`I )

)
= e−r(t`I+1

−t`I ) E
[
V
(
t`I+1

, C(t`I+1
), G(t`I+1

)
) ∣∣Ft`I ] (14)

This problem is two-dimensional as one must know the joint law of C and G to apply this formula.
However, beautiful simplifications occur in the case of a homogeneous payoff of the form

P (C,G) = G P̃

(
C

G

)
(15)

This includes the CPPI portfolio itself or options with strike in percentage of the final guarantee.
Owing to the special form of the payoff we can state the following proposition.

Proposition 2. Consider the same hypothesis as in proposition 1, except for the fact that the guaran-
tee is not constant but is rescaled at dates t`I along equation (13). For a European derivative product
whose payoff at maturity is given by equation (15), the fair price at date t`I is homogeneous:

V
(
t`I , C(t`I ), G(t`I )

)
= G(t`I ) Ṽ

(
t`I ,

C(t`I )

G(t`I )

)
(16)

and Ṽ satisfies the recursion formula

Ṽ

(
t`I ,

C(t`I )

G(t`I )

)
= e−r(t`I+1

−t`I )
∫

dy Φ̃t`I ,t`I+1

(
C(t`I )

G(t`I )
, y

)
Ṽ
(
t`I+1

, y
)

(17)

with the kernel

Φ̃t`I ,t`I+1
(x, y) =

∫
dz δ

(
y − z

f(x, z)

)
f(x, z) Φt`I ,t`I+1

(x, z) (18)

In this equation, Φt`I ,t`I+1
(x, z) is the transition operator defined in proposition 1.

Proof. At time tn, equation (16) is verified due to equation (15). We assume now equation (16)
holds at time t`I+1

. We denote by t−`I+1
a time just before the profit lock-in, i.e. before the jump in

G(t), but after possible jumps in the risky asset S(t) (this describes the state of the system before
applying the lock-in). As there is no profit lock-in between t`I and t−`I+1

, we can use proposition 1
with transition operator Φt`I ,t

−
`I+1

and write

V
(
t`I , C(t`I ), G(t`I )

)
= e−r(t`I+1

−t`I )
∫

dyΦt`I ,t
−
`I+1

(
C(t`I )

G(t`I )
, y

)
V
(
t−`I+1

, G(t`I )y,G(t`I )
)

(19)
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When the lock-in is performed, the portfolio value is not changed:

V
(
t−`I+1

, G(t`I )y,G(t`I )
)

= V
(
t`I+1

, G(t`I )y,G
(
t`I+1

))
This value can be rewritten further using the recursion hypothesis (16) as

V
(
t−`I+1

, G(t`I )y,G(t`I )
)

= G
(
t`I+1

)
Ṽ

(
t`I+1

,
G(t`I )y

G
(
t`I+1

)) (20)

The profit lock-in is deterministic as a function of G(t`I ), C(t`I ) and C(t`I+1
). It is given by

equation (13) which reads here

G
(
t`I+1

)
= G(t`I ) f

(
C(t`I )

G(t`I )
, y

)
(21)

Using equations (20) and (21), equation (19) is rewritten as

V
(
t`I , C(t`I ), G(t`I )

)
=

e−r(t`I+1
−t`I )G(t`I )

∫
dyΦt`I ,t

−
`I+1

(
C(t`I )

G(t`I )
, y

)
f

(
C(t`I )

G(t`I )
, y

)
Ṽ

t`I+1
,

y

f
(
C(t`I )

G(t`I )
, y
)


Inserting ∫
dz δ

z − y

f
(
C(t`I )

G(t`I )
, y
)
 = 1

we find that V
(
t`I , C(t`I ), G(t`I )

)
is indeed of the form given by equation (16) with equations (17)

and (18) satisfied.

Remark 2. Proposition 2 can be generalized to a homogeneous payoff of degree α:

P (C,G) = Gα P̃

(
C

G

)
The only modifications are in equation (18) where G(t`I ) is replaced with G(t`I )α and in equation (18)
where f(x, z) is replaced with f(x, z)α.

Remark 3. Proposition 2 can also be generalized to a Bermudan payoff with exercise allowed at lock-
in or reallocation dates: as usual, the maximum of values with and without exercising has to be taken
during the backward propagation.

4.2 Numerical implementation

The numerical implementation of proposition 2 is straightforward, building on the basis of section 3.

• A grid is built as in the basic case of section 3, such that C(t0)/G(t0) = hj0 for some index j0.

• From the local transition matrices M
(i,i+1)
jk of section 1, we compute the transition matrices

between two lock-in dates as the matrix product

M (`I ,`I+1) = M (`I ,`I+1) M (`I+1,`I+2) . . . M (`I+1−1,`I+1)
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• Using the lock-in function f(x, y), the discrete analogue of the kernel Φ̃t`I ,t`I+1
(x, y) of equation

(18) is a matrix M̃
(I,I+1)
jk . We compute first

Q̃
(I,I+1)
jk =

∫ hk+1

hk

dy Φ̃(tlI ,tlI+1
)(hj , y)

=

∫
dz 1[hk;hk+1[

(
z

f(hj , z)

)
f(hj , z) Φ(tlI ,tlI+1

)(hj , z)

'
∑
l

1[hk;hk+1[

(
hl

f(hj , hl)

)
f(hj , hl)M

(`I ,`I+1)
jl

Q̃
1 (I,I+1)
jk =

∫ hk+1

hk

dy Φ̃(tlI ,tlI+1
)(hj , y) y

=

∫
dz 1[hk;hk+1[

(
z

f(hj , z)

)
Φ(tlI ,tlI+1

)(hj , z) z

'
∑
l

1[hk;hk+1[

(
hl

f(hj , hl)

)
M

(`I ,`I+1)
jl hl

We define the matrix M̃ (I,I+1) from Q̃(I,I+1) and Q̃1 (I,I+1) exactly as in section 3:

M̃
(I,I+1)
jk = M̃

+(I,I+1)
jk + M̃

− (I,I+1)
jk

with

M̃
+(I,I+1)
jk =

hk+1Q̃
(I,I+1)
jk − Q̃1 (I,I+1)

jk

hk+1 − hk

M̃
− (I,I+1)
jk =

Q̃
1 (I,I+1)
j,k−1 − hk−1Q̃

(I,I+1)
j,k−1

hk − hk−1

• The rescaled payoff Ṽ of proposition 2 is discretized as Ṽ
(I)
j = Ṽ (t`I , hj). It is propagated

backward from lock-in date to lock-in date through equation (17) which becomes

Ṽ
(I)
j = e−r(t`I+1

−t`I )
∑
k

M̃
(I,I+1)
jk Ṽ

(I+1)
k

with terminal condition
Ṽ

(N)
j = P̃ (hj)

• The fair price of the derivative at time 0 is given by

V (t0, C(t0), G(t0)) = G(t0)Ṽ
(0)
j0

4.3 Probability transition

Proposition 2 provides a pricing algorithm for payoff which are homogeneous in C,G. The distribution
of the portfolio value can also be computed, which may be useful for valuation and risk management
of options with strike given as a fixed amount or for computing the final probability density function
of a CPPI portfolio.
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Proposition 3. The probability transition operator between two lock-in dates t`I and t`J

Ψt`I ,t`J
(x, y) = E

[
δ

(
C(t`J )

G(t`I )
− y
) ∣∣∣ C(t`I )

G(t`I )
= x

]
can be computed from the transition operator without profit lock-in as

Ψt`I ,t`J
(x, y) =

∫
dz

1

f(x, z)
Φt`I ,t`I+1

(x, z) Ψt`I+1
,t`J

(
z

f(x, z)
,

y

f(x, z)

)
(22)

Proof. This result is a rewriting of

E
[
δ

(
C(t`J )

G(t`I )
− y
) ∣∣∣ C(t`I )

G(t`I )
= x

]
=∫

dz E
[
δ

(
C(t`I+1

)

G(t`I )
− z
) ∣∣∣ C(t`I )

G(t`I )
= x

]
E
[
δ

(
C(t`J )

G(t`I+1
)

G(t`I+1
)

G(t`I )
− y
) ∣∣∣ C(t`I+1

)

G(t`I+1
)

G(t`I+1
)

G(t`I )
= z

]
using equation (13).

Supposing for simplicity that `0 = 0 and `N = n, the distribution of the portfolio at final maturity
tn can then be obtained as

E
[
δ
(
C(tn)− y

) ∣∣ C(t0) = x
]

=
1

G(t0)
Ψt0,tn

(
x

G(t0)
,

y

G(t0)

)
(23)

The main difference with the homogeneous payoff is the following: whereas the dynamics of
C(t`I )/G(t`I ) taken at lock-in dates is Markovian, it is not true for the dynamics of C(t`I ) itself.

The numerical implementation is similar to the other cases. Equation (22) is not a product of
operators. As a consequence, it is also numerically more time-consuming.

5 Numerical examples

In order to illustrate the smoothness of the results, we plot in figure 3 the probability distribution at
maturity for three different CPPI strategies. We take a risky asset which follows the jump-diffusion
model introduced by Kou [Kou02]. There are upward and downward jumps, both exponentially
distributed with distinct parameters. The diffusion has volatility 20%, downward jump with intensity
0.1 yr−1 and mean value 0.1, upward jumps with intensity 0.1 yr−1 and mean value 0.05. We consider
strategies on this risky asset with a maturity of 10 years and weekly rebalancing. The risk-free rate
gives an initial zero-coupon value of 0.606.

• We consider first the vanilla case of section 2 with multiplier m = 4:

w
(
t, C

)
= max

(
m
C −H(t)

C
, 0

)
• We add a cap (150%) to the risky asset exposure so that

w
(
t, C

)
= min

(
Cap , max

(
m
C −H(t)

C
, 0

))
• Removing the cap, we finally incorporate to the strategy an annual lock-in of 75% as described

in section 4.

We refer the reader to [PL09] for further discussions of the effects of the various features commonly
found in CPPI-based contracts.
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Figure 3: Probability Density of a CPPI portfolio value at maturity for three different strategies.
For the first curve, the CPPI has maturity 10 years, weekly rebalancing, multiplier 4. The initial
investment and the initial guaranteed level are 1. The mean price of the strategy is 1.65. The risky
asset follows a Brownian motion with 20% constant volatility with additional jumps (Kou model):
downward jump with intensity 0.1 yr−1 and mean value 0.1, upward jumps with intensity 0.1 yr−1

and mean value 0.05. For the second curve the risky asset weighting is capped to 150%. For the
third one there is no cap on the exposure but a profit lock-in of 75% of the performance is performed
annually. The second graph is a zoom on the tails of the distribution.
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6 Conclusion

We introduced an efficient scheme for the pricing of CPPI strategies and options. Instead of following
the underlying spot, the portfolio value, the risky asset weighting and the guaranteed amount as in
a Monte-Carlo pricing or a classical PIDE backward propagation, only the CPPI portfolio value at
rebalancing dates is considered (or the ratio of the CPPI over the guaranteed amount in the case
of lock-in). We proved that under the hypothesis of independent increments of the logarithm of
the underlying, the portfolio value at reallocation dates (or lock-in dates) is a discrete time Markov
process in one single variable. We derived a natural pricing scheme which uses this property to price
both European and Bermudan derivatives on the CPPI portfolio. Numerical experiments exhibit a
very fast convergence. This can be used to estimate the gap risk of guaranteed CPPI products, price
options on CPPI strategies and design hedging strategies.
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