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Abstract

Double no-touch options, contracts which pay out a fixed amount pro-
vided an underlying asset remains within a given interval, are commonly
traded, particularly in FX markets. In this work, we establish model-free
bounds on the price of these options based on the prices of more liquidly
traded options (call and digital call options). Key steps are the construc-
tion of super- and sub-hedging strategies to establish the bounds, and the
use of Skorokhod embedding techniques to show the bounds are the best
possible.

In addition to establishing rigorous bounds, we consider carefully what
is meant by arbitrage in settings where there is no a priori known probabil-
ity measure. We discuss two natural extensions of the notion of arbitrage,
weak arbitrage and weak free lunch with vanishing risk, which are needed
to establish equivalence between the lack of arbitrage and the existence
of a market model.

1 Introduction

It is classical in the Mathematical Finance literature to begin by assuming the
existence of a filtered probability space (Ω,F , (Ft)t≥0, P) on which an underly-
ing price process is defined. In this work we do not assume any given model.
Instead we are given the observed prices of vanilla options and our aim is to
derive information concerning the arbitrage-free price of an exotic option, while
assuming as little as possible about the underlying asset’s behaviour.

More precisely, our starting point is the following question: suppose we
know the call prices on a fixed underlying at a given maturity date, what can
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we deduce about the prices of a double no-touch option, written on the same
underlying and settled at the same maturity as the call options? A double no-
touch option is a contract which pays a fixed amount at maturity (which we will
assume always to be 1 unit), provided the asset remains (strictly) between two
fixed barriers. They appear most commonly in FX markets, and (in different
contexts to the one we consider) have been considered recently by e.g. [CC08]
and [Mij08].

The approach we take to the problem is based on the approach which was ini-
tially established in [Hob98], and later in different settings in [BHR01, CHO08,
CO08]. The basic principle is to use constructions from the theory of Skorokhod
embeddings to identify extremal processes, which may then give intuition to
identify optimal super- and sub-hedges. A model based on the extremal solu-
tion to the Skorokhod embedding allows one to deduce that the price bounds
implied by the hedges are tight. In the setting considered here, as we will show
shortly, the relevant constructions already exist in the Skorokhod embedding
literature (due to [Per86, Jac88, CH06]). However the hedging strategies have
not been explicitly derived. One of the goals of this paper is to open up these
results to the finance community.

A second aspect of our discussion concerns a careful consideration of the
technical framework in which our results are valid: we let the ‘market’ deter-
mine a set of asset prices, and we assume that these prices satisfy standard
linearity assumptions. In particular, our starting point is a linear operator on
a set of functions from a path space (our asset histories) to the real line (the
payoff of the option). Since there is no specified probability measure, a suitable
notion of arbitrage has to be introduced: the simplest arbitrage concept here
is that any non-negative payoff must be assigned a non-negative price, which
we call a ‘model-free arbitrage’. However, as noted in [DH06], this definition
is insufficient to exclude some undesirable cases. In [DH06], this issue was re-
solved by introducing the notion of ‘weak arbitrage,’ and this is a concept we
also introduce, along with the notion of ‘weak free lunch with vanishing risk.’
Our main results are then along the following lines: if the stated prices sat-
isfy the stronger no-arbitrage condition, then there exists a market model, i.e.
a probability space with a stock price process which is a martingale and such
that the expectation agrees with the pricing operator. On the other hand, if
we see prices which exhibit no model-free arbitrage, but which admit a weaker
arbitrage, then there is no market model, but we are restricted to a ‘boundary’
between the prices for which there is a martingale measure, and the prices for
which there exists a model-free arbitrage. Interestingly, we only need one of the
stronger types of arbitrage depending on the call prices considered – when we
consider markets in which calls trade at all strikes, then the weak free lunch
with vanishing risk condition is needed. When we suppose only a finite number
of strikes are traded, then the weak arbitrage condition is required.

We note that there are a number of papers that have considered a similar
‘operator’ based approach, where certain prices are specified, and an arbitrage
concept introduced: [BC07] suppose the existence of a pricing operator sat-
isfying a number of conditions, which turn out to be sufficient to deduce the
existence of a probability measure (although their conditions mean that the
pricing operator has to be defined for all bounded payoffs); [Che07] considers a
similar setting, but with a stronger form of arbitrage, from which a version of
the Fundamental Theorem of Asset Pricing is recovered. [Cas08] also consid-
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ers a similar setup, and is able to connect notions of arbitrage to the existence
of finitely additive martingale measures, and under certain conditions, to the
existence of martingale measures.

The paper is organised as follows. We first carefully introduce our setup
and then in Section 2 we study when call prices (at a finite or infinite number
of strikes), possibly along with some digital calls, are free of different types
of arbitrage and when they are compatible with a market model. Then in
Section 3 we construct sub- and super-hedges of a double no-touch option which
only use calls and puts, digital calls at the barriers and forward transactions.
We then combine these hedges with no arbitrage results and in Section 4 we
determine the range of arbitrage-free (for different notions of arbitrage) prices
of double no-touch options given prices of calls and digital calls. Finally in
Section 5 we discuss possible applications and present some brief numerical
simulations. Additional technical results about weak arbitrage along with the
proof of Theorem 4.9 are given in Appendix A. Appendix B contains some
remarks about the joint law of the maximum and minimum of a uniformly
integrable martingale with a given terminal law, which follow from the results
in this paper.

1.1 Market input and the modelling setup

Our main assumptions concern the behaviour of the asset price (St)t≥0. We will
assume that the asset has zero cost of carry: this can come about in a number
of ways — St might be a forward price, the asset might be paying dividends
continuously, at a rate equal to the prevailing interest rate, or the underlying
could be the exchange rate between two economies with similar interest rates.
In addition, through most of the paper, we assume that the paths of St are con-
tinuous. In principle, these are really the only assumptions that we need on the
asset, combined with some assumptions on the behaviour of the market (that the
asset and certain derivative products – calls and forwards – are traded without
transaction costs and at prices which are themselves free of arbitrage). Specif-
ically, we do not need to assume that the price process is a semi-martingale,
or that there is any probability space or measure given. The statement of the
results will concern the existence of an arbitrage for any path which satisfies
the above conditions, or alternatively the existence of an arbitrage free model
which satisfies the above conditions.

More formally, we let (St : t ≤ T ) be an element of P – the space of
possible paths of the stock price process. Let us assume that P = C([0, T ]; S0)
is the space of continuous non-negative functions on [0, T ] with a fixed initial
value S0 > 0, we shall discuss extensions to discontinuous setups later on.
We suppose there are number of traded assets, which we define as real-valued
functions on P, priced by the market. The simplest transactions which we price
are ‘constants,’ where we assume that the constant payoff F can be purchased at
initial cost F (recall that we are assuming zero cost of carry). Then we assume
that calls with strikes K ∈ K, with payoffs (ST −K)+, are traded at respective
prices C(K), where K is a set of strikes K ⊂ R+. Finally, we also assume
that forward transactions have zero cost. A forward transaction is one where
at some time ρ parties exchange the current value of the stock price Sρ against
the terminal value ST . More precisely, let (Fn

t )t≤T be the natural filtration of
the co-ordinate process on C([0, T ]) and consider a class T of stopping times ρ
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relative to (Fn
t )t≤T . Then the forward transaction has payoff (ST − Sρ)1ρ≤T .

In particular, we will consider here hitting times of levels Hb : P → [0, T ]∪{∞}
defined by Hb = inf{t ≤ T : St = b}, b ≥ 0. As the paths are continuous these
are indeed stopping times and we have Hb = inf{t ≤ T : St ≥ b} for b ≥ S0,
with similar expression for b ≤ S0, and SHb

= b whenever Hb ≤ T . We let

X =
{

F, (ST − K)+, (ST − Sρ)1ρ≤T : F ∈ R, K ∈ K, ρ ∈ T
}

. (1)

Note that here X is a just a set of real-valued functions on P. We denote Lin(X )
the set of finite linear combinations of elements of X .
We assume the prices of elements of X are known in the market, as discussed
above, and portfolios of assets in X are priced linearly. More precisely, we
suppose there exists a pricing operator P defined on Lin(X ) which is linear,
and satisfies the following rules:

P1 = 1; (2)

P(ST − K)+ = C(K), ∀K ∈ K; (3)

P(ST − Sρ)1{ρ≤T} = 0, ∀ρ ∈ T. (4)

Later in the paper we will consider examples of T but for now it is arbitrary
and we only assume 0 ∈ T. It then follows that ST = (ST − S0)10≤T + S0 is an
element of Lin(X ) and PST = S0.1 Note also that ST = (ST )+ so that we can
always assume 0 ∈ K and we have C(0) = S0 by linearity of P .2 We deduce
that European puts are also in Lin(X ), we write P (K) for their prices, and note
that the put-call parity follows from linearity:

P(K − ST )+ = P(K − ST + (ST − K)+) = K − S0 + C(K).

In later applications, we will also at times wish to suppose that X is a larger
set and in particular that P also prices digital call options at certain strikes.

The above setup is rather general and we relate it now to more ‘classical
models’.

Definition 1.1. A model is a probability space (Ω,F , P) with filtration (Ft)t≤T

satisfying the usual hypothesis and an adapted stochastic process (St) with
paths in P.
A model is called a (P ,X )-market model if (St) is a P-martingale and

∀X ∈ X E[X((St : t ≤ T ))] = PX, (5)

where we implicitly assume that the LHS is well defined.

Note that for a (P ,X )-market model (5) holds for all X ∈ Lin(X ) by linearity
of E and P . The notion of market model is relative to the market input, i.e. the
set of assets X and their prices P(X), X ∈ X . However when (P ,X ) are clear
from the context we simply say that there exists a market model.

Our aim is to understand the possible extensions of P to Lin(X∪{Y }), where
Y is the payoff of an additional asset, in particular of a barrier option. Specif-
ically, we are interested in whether there is a linear extension which preserves
the no-arbitrage property:

1We note that in some financial markets, in particular in the presence of bubbles, it may be
sensible to assume that PST = PC(0) 6= S0 even when the cost of carry is zero, see [CH06].

2Alternatively, we could have assumed C(0) = S0 and then deduce from no arbitrage that
(St) has non-negative paths.
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Definition 1.2. We say a pricing operator P admits no model-free arbitrage on
X if

∀X ∈ Lin(X ) : X ≥ 0 =⇒ PX ≥ 0. (6)

Naturally, whenever there exists a market model then we can extend P using
(5) to all payoffs X for which E|X(St : t ≤ T )| < ∞. In analogy with the Fun-
damental Theorem of Asset Pricing, we would expect the following dichotomy:
either there is no extension which preserves the no-arbitrage property, or else
there is a market model and hence a natural extension for P . To some extent,
this is the behaviour we will see, however model-free arbitrage is too weak to
grant this dichotomy. One of the features of this paper is the introduction of
weak free lunch with vanishing risk criterion (cf. Definition 2.1) which is then
applied together with weak arbitrage of Davis and Hobson [DH06].

Notation: The minimum and maximum of two numbers are denoted a∧b =
min{a, b} and a ∨ b = max{a, b}. The running maximum and minimum of the
price process are denoted respectively St = supu≤t Su and St = infu≤t Su. We
are interested in derivatives with digital payoff conditional on the price process
staying in a given range. Such an option is often called a double no-touch option
or a range option and has payoff 1ST <b, ST >b. It is often convenient to express

events involving the running maximum and minimum in terms of the first hitting
times Hx = inf{t : St = x}, x ≥ 0. As an example, note that when the asset is
assumed to be continuous, we have 1ST <b, ST >b = 1H

b
∧Hb>T .

2 Arbitrage-free prices of call and digital op-

tions

Before we consider extensions of P beyond X we need to understand the neces-
sary and sufficient conditions on the market prices which guarantee that P does
not admit model-free arbitrage on X . This and related questions have been
considered a number of times in the literature, e.g. Hobson [Hob98], Carr and
Madan [CM05], Davis and Hobson [DH06], however never in the full generality
of our setup, and there remained some open issues which we resolve below.

It turns out the constraints on C(·) resulting from the condition of no model-
free arbitrage of Definition 1.2 are not sufficient to guarantee existence of a
market model. We will give examples of this below both when K = R+ and
when K is finite (the latter coming from Davis and Hobson [DH06]). This
phenomena motivates stronger notions of no-arbitrage.

Definition 2.1. We say that the pricing operator P admits a weak free lunch
with vanishing risk (WFLVR) on X if there exist (Xn)n∈N, Z ∈ Lin(X ) such
that Xn → X pointwise on P, Xn ≥ Z, X ≥ 0 and limn PXn < 0.

Note that if P admits a model-free arbitrage on X then it also admits a
WFLVR on X . No WFLVR is a stronger condition as it also tells us about the
behaviour of P on (a certain) closure of X . It is naturally a weak analogue of
the NFLVR condition of Delbaen and Schachermayer [DS94].

This new notion proves to be sufficiently strong to guarantee existence of a
market model.
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Proposition 2.2. Assume K = R+. Then P admits no WFLVR on X if and
only if there exists a (P ,X )-market model, which happens if and only if

C(·) is a non-negative, convex, decreasing function, C(0) = S0, C′
+(0) ≥ −1, (7)

C(K) → 0 as K → ∞. (8)

In comparison, P admits no model-free arbitrage on X if and only if (7) holds.
In consequence, when (7) holds but (8) fails P admits no model-free arbitrage
but a market model does not exist.

Proof. That absence of a model-free arbitrage implies (7) is straightforward
and classical. Note that since C(·) is convex C′

+(0) = C′(0+) is well defined.
Let α := limK→∞ C(K) which is well defined by (7) with α ≥ 0. If α > 0
then Xn = −(ST − n)+ is a WFLVR since Xn → 0 pointwise as n → ∞ and
PXn = −C(n) → −α < 0. We conclude that no WFLVR implies (7)–(8). But
then we may define a measure µ on R+ via

µ([0, K]) = 1 + C′
+(K), (9)

which is a probability measure with µ([K,∞)) = −C′
−(K) and

∫

xµ(dx) =

∫

µ((x,∞)) dx = −
∫

C′
+(x) dx = C(0) − C(∞) = S0.

In fact, (9) is the well known relation between the risk neutral distribution of
the stock price and the call prices due to Breeden and Litzenberger [BL78]. Let
(Bt) be a Brownian motion, B0 = S0, relative to its natural filtration on some
probability space (Ω,F , P) and τ be a solution to the Skorokhod embedding
problem for µ, i.e. τ is a stopping time such that Bτ has law µ and (Bt∧τ ) is a
uniformly integrable martingale. Then St := B t

T−t
∧τ is a continuous martingale

with T -distribution given by µ. Hence it is a market model as E(ST − K)+ =
C(K) by (9) and E(ST − Sρ)1ρ<T = 0 for all stopping times, in particular for
ρ ∈ T, since (St) is a martingale. Finally, whenever a market model exists then
clearly we have no WFLVR since P is the expectation.
It remains to argue that (7) alone implies that P admits no model-free arbitrage.
Suppose to the contrary that there exists X ∈ Lin(X ) such that X ≥ 0 and
P(X) < ǫ < 0. As X is a finite linear combination of elements of X , we let K be
the largest among the strikes of call options present in X . Then, for any δ > 0,
there exists a function Cδ satisfying (7)–(8) and such that C(K) ≥ Cδ(K) ≥
C(K) − δ, K ≤ K. More precisely, if C′

+(K) > 0 then C is strictly decreasing

on [0, K] and we may in fact take Cδ = C on [0, K]. Otherwise C is constant on
some interval [K0,∞) but then either it is zero or we can clearly construct Cδ

which approximates it arbitrarily closely on [0, K]. By the arguments above, the
pricing operator Pδ corresponding to prices Cδ satisfies no WFLVR and hence
no model-free arbitrage, so PδX ≥ 0. However, we can take δ small enough so
that |PX − PδX | < ǫ/2 which gives the desired contradiction.

We now turn to the case where K is a finite set. The no WFLVR condition
does not appear to be helpful here, and we need to use a different notion of
no-arbitrage due to Davis and Hobson [DH06].
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Definition 2.3. We say that a pricing operator P admits a weak arbitrage (WA)
on X if, for any model P, there exists an X ∈ Lin(X ) such that PX ≤ 0 but
P(X((St : t ≤ T )) ≥ 0) = 1 and P(X((St : t ≤ T )) > 0) > 0.

Note that no WA implies no model-free arbitrage. Indeed, let X be a model-
free arbitrage so that X ≥ 0 and P(X) < ǫ < 0. Then Y = X + ǫ/2 is a WA
since Y > 0 on all paths in P and P(Y ) < 0. In addition, the existence of a
market model clearly excludes weak arbitrage. Strictly speaking, our definition
of a weak arbitrage differs from [DH06], since we include model-free arbitrages
in the set of weak arbitrages.

Proposition 2.4 (Davis and Hobson [DH06]). Assume K ⊂ R+ is a finite set.
Then P admits no WA on X if and only if there exists a (P ,X )-market model,
which happens if and only if C(K), K ∈ K, may be extended to a function C
on R+ satisfying (7)–(8).
Furthermore, P may admit no model-free arbitrage but admit a WA.

Proof. Clearly if C(K), K ∈ K may be extended to a function C on R+ satis-
fying (7)–(8) then from Proposition 2.2 there exists a market model, P is the
expectation and hence there is no WA. If C(K) is not convex, positive or de-
creasing on K then a model-free arbitrage can be constructed easily. It remains
to see what happens if C(K1) = C(K2) = α > 0 with K1 < K2. This alone
does not entail a model-free arbitrage as observed in the proof of Proposition
2.2. However a WA can be constructed as follows:

{

X = (ST − K1)+ − (ST − K2)+ if P(ST > K1) > 0, else
X = α − (ST − K1)+ if P(ST > K1) = 0.

We now enlarge the set of assets to include digital calls. More precisely let
0 < b < b and consider

XD = X ∪ {1{ST >b},1{ST ≥b}} (10)

setting P on the new assets to be equal to their (given) market prices: P1{ST >b} =

D(b) and P1{ST≥b} = D(b) and imposing linearity on Lin(XD).

Proposition 2.5. Assume K = R+. Then P admits no WFLVR on XD if
and only if there exists a (P ,XD)-market model, which happens if and only if
(7)–(8) hold and

D(b) = −C′
+(b) and D(b) = −C′

−(b). (11)

Proof. Obviously existence of a market model implies no WFLVR. The conver-
gences (pointwise in P), as ǫ → 0,

1

ε

[

(ST − (K − ε))+ − (ST − K)+
]

→ 1{ST ≥K},

1

ε

[

(ST − K)+ − (ST − (K + ε))+
]

→ 1{ST >K},

readily entail that no WFLVR implies (11) hold and from Proposition 2.2 it also
implies (7)–(8). Finally, if (7)–(8) hold we can can consider a (P ,X )-market
model by Proposition 2.2. We see that E1{ST≥b} = µ([b,∞)) = −C′

−(b) and

E1{ST >b} = µ((b,∞)) = −C′
+(b) from (9), and hence (11) guarantees that the

model matches P on XD, i.e. we have a market model.
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Finally, we have an analogous proposition in the case where finitely many
strikes are traded.

Proposition 2.6. Assume K ⊂ R+ is a finite set and b, b ∈ K. Then P admits
no WA on XD if and only if there exists a (P ,XD)-market model, which happens
if and only if C(K), K ∈ K, may be extended to a function C on R+ satisfying
(7)–(8) and (11).

The Proposition follows from Lemma A.1 given in the appendix, which also
details the case b, b /∈ K.

3 Robust hedging strategies

We turn now to robust hedging of double no-touch options. We fix b < S0 < b
and consider the derivative paying 1ST <b, S

T
>b. Our aim is to devise simple

super- and sub- hedging strategies (inequalities) using the assets in XD. If
successful, such inequalities will instantly yield bounds on P(1ST <b, ST >b) under

the assumption of no model-free arbitrage.

3.1 Superhedges

We devise now simple a.s. inequalities of the form

1ST <b, ST >b ≤ NT + g(ST ), (12)

where (Nt : t ≤ T ), when considered in a market model, is a martingale. That is,
we want (Nt) to have a simple interpretation in terms of a trading strategy and
further (Nt) should ideally only involve assets from XD. A natural candidate
for (Nt) is a sum of terms of the type β(St − z)1St≥z, which is a purchase of
β forwards when the stock price reaches the level z. We note also that in a
market model, it is a simple example of an Azéma-Yor martingale, that is of
a martingale which is of the type H(St, St) for some function H (see Ob lój
[Ob l06]).

We give three instances of (12). They correspond in fact to the three types
of behaviour of the ‘extremal market model’ which maximises the price of the
double no-touch option, which we will see below in the proof of Lemma 4.2.

(i) We take Nt ≡ 0 and g(ST ) = 1ST∈(b,b) =: H
I
. The superhedge is static

and consists simply of buying a digital options paying 1 when b < ST < b.

(ii) In this case we superhedge the double no-touch option as if it was simply
a barrier option paying 1S

T
>b and we adapt the superhedge from Brown,

Hobson and Rogers [BHR01]. More precisely we have

1ST <b, ST >b ≤ 1ST >b−
(b − ST )+

K − b
+

(ST − K)+

K − b
−ST − b

K − b
1S

T
≤b =: H

II
(K),

(13)

where K > b is an arbitrary strike. The portfolio H
II

(K) is a combination
of initially buying a digital option paying 1 if ST > b, buying α = 1/(K−b)
calls with strike K and selling α puts with strike b. Upon reaching b we

8



b K

Portfolio for t < Hb

Portfolio for t ≥ Hb

Figure 1: The value of the portfolio H
II

as a function of the asset price.

then sell α forward contracts. Note that α is chosen so that our portfolio
is worth zero everywhere except for ST ∈ (b, K) after selling the forwards.
This is represented graphically in Figure 1.

(iii) We mirror the last case but now we superhedge a barrier option paying
1ST <b. We have

1ST <b, ST >b ≤ 1ST <b+
(K − ST )+

b − K
− (ST − b)+

b − K
+

ST − b

b − K
1ST ≥b =: H

III
(K),

(14)

where K < b is an arbitrary strike. In this case the portfolio H
III

(K)
consists of buying a digital option paying 1 on {ST < b} and α = 1/(b−K)
puts with strike K, selling α calls with strike b and buying α forwards
when the stock price reaches b. Similarly to (13), α is chosen so that

H
III

(K) = 0 for ST 6∈ (K, b) when ST ≥ b, i.e. when we have carried out
the forward transaction.

3.2 Subhedges

We now consider the sub-hedging strategies, i.e. we look for (Nt) and g which
would satisfy

1ST <b, ST >b ≤ NT + g(ST ).

We design two such strategies. The first one is trivial as it consists in doing
nothing: we let HI ≡ 0 and obviously HI ≤ 1ST <b, S

T
>b. The second strategy

involves holding cash, selling a call and a put and entering a forward transaction
upon the stock price reaching a given level. More precisely, we have

1ST <b, ST >b ≥ 1 − (ST − K2)+

b − K2

− (K1 − ST )+

K1 − b

+
ST − b

b − K2

1H
b
<Hb∧T − ST − b

K1 − b
1Hb<H

b
∧T =: HII(K1, K2),

(15)
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b K1 bK2

Portfolio for t < Hb ∧ Hb

Portfolio for Hb < t ∧ Hb

Portfolio for Hb < t ∧ Hb

Figure 2: The value of the portfolio HII as a function of the asset price.

where b < K1 < K2 < b are arbitrary strikes. A graphical representation of the
inequality is given in Figure 2. The inequality follows from the choice of the
coefficients which are such that

• on {T < Hb ∧ Hb}, i.e. on {1ST <b, ST >b = 1}, HII(K1, K2) ≤ 1 and

HII(K1, K2) is equal to one on ST ∈ [K1, K2], and is equal to zero for
ST = b or ST = b,

• on {Hb < Hb ∧T }, HII is non-positive and is equal to zero on {ST ≥ K2}
and

• on {Hb < Hb∧T }, HII is non-positive and is equal to zero on {ST ≤ K1}.

3.3 Model-free bounds on double no-touch options

We have exhibited above several super- and sub- hedging strategies of the double
no-touch option. They involved four stopping times and from now on we always
assume that they are included in T:

{

0, Hb, Hb, inf{t < T ∧ Hb : St = b}, inf{t < T ∧ Hb : St = b}
}

⊂ T. (16)

It follows from the linearity of P that these induce bounds on the prices P(1ST <b, S
T

>b)

admissible under no model-free arbitrage. More precisely, we have the following:

Lemma 3.1. Let b < S0 < b and suppose P admits no model-free arbitrage on
XD ∪ {1ST <b, ST >b}. Then

P(1ST <b, S
T

>b) ≤ inf
K2,K3∈K, K2>b,K3<b

{

P(H
I
),P(H

II
(K2)),P(H

III
(K3))

}

,

P(1ST <b, ST >b) ≥ sup
K1,K2∈K, b<K1<K2<b

{

P(HI),P(HII(K1, K2))
}

.

(17)
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4 Model-free pricing of double no-touch options

In the previous section we exhibited a necessary condition (17) for no model-free
arbitrage and hence for existence of a market model. Our aim in this section
is to derive sufficient conditions. In fact we will show that (17), together with
appropriate restrictions on call prices from Propositions 2.5 and 2.6, is essentially
equivalent to no WFLVR, or no WA when K is a finite set, and we can then
build a market model. Furthermore, we will compute explicitly the supremum
and infimum in (17). To do this we have to understand market models which
are likely to achieve the bounds in (17). This is done using the technique of
Skorokhod embeddings which we now discuss.

4.1 The Skorokhod embedding problem

Let (Bt) be a standard real-valued Brownian motion with an arbitrary starting
point B0. Let µ be a probability measure on R with

∫

R
|x|µ(dx) < ∞ and

∫

R
xµ(dx) = B0.
The Skorokhod embedding problem, (SEP ), is the following: given (Bt), µ,

find a stopping time τ such that the stopped process Bτ has the distribution
µ, or simply: Bτ ∼ µ, and such that the process (Bt∧τ ) is uniformly integrable
(UI)3. We will often refer to stopping times which satisfy this last condition as
‘UI stopping times’. The existence of a solution was established by Skorokhod
[Sko65], and since then a number of further solutions have been established, we
refer the reader to [Ob l04] for details.

Of particular interest here are the solutions by Perkins [Per86] and the ‘tilted-
Jacka’ construction ([Jac88, Cox04, Cox08]). The Perkins embedding is defined
in terms of the functions

γ+
µ (x) = sup

{

y < B0 :

∫

(0,y)∪(x,∞)

(w − x) µ(dw) ≥ 0

}

x > B0 (18)

γ−
µ (y) = inf

{

x > B0 :

∫

(0,y)∪(x,∞)

(w − y) µ(dw) ≤ 0

}

y < B0. (19)

The Jacka embedding is defined in terms of the functions Ψµ(x),Θµ(x), where:

Ψµ(K) =
1

µ
(

[K,∞)
)

∫

[K,∞)

xµ(dx), Θµ(K) =
1

µ
(

(−∞, K]
)

∫

(−∞,K]

xµ(dx),

(20)
when (respectively) µ([K,∞)) and µ((−∞, K]) are strictly positive, and ∞ and
−∞ respectively when these sets have zero measure. The Perkins embedding is
the stopping time

τP := inf
{

t : Bt /∈
(

γ+
µ (Bt), γ

−
µ (Bt)

)}

. (21)

On the other hand, we define the ‘tilted-Jacka’ stopping time as follows. The

3In some parts of the literature, the latter assumption is not included in the definition of
the problem, or an alternative property is used (see [CH06]). For the purposes of this article,
we will assume that all solutions have this UI property.
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‘tilt’ is to choose4 K ∈ (0,∞), and set

τ1 := inf {t ≥ 0 : Bt 6∈ (Θµ(K), Ψµ(K))} (22)

τΨ = inf
{

t ≥ τ1 : Ψµ(Bt) ≤ Bt

}

τΘ = inf {t ≥ τ1 : Θµ(Bt) ≥ Bt} .

Then the ‘tilted-Jacka’ stopping time is defined by:

τJ (K) := τΨ1{τ1=Ψµ(K)} + τΘ1{τ1=Θµ(K)} (23)

These embeddings are of particular interest due to their optimality properties.
Specifically, given any other stopping time τ which is a solution to (SEP ), then
we have the inequalities:

P
(

Bτ > b
)

≤ P
(

BτP
> b

)

and P
(

Bτ < b
)

≤ P
(

BτP
< b

)

. (24)

The embedding therefore ‘minimises the law of the maximum, and maximises
the law of the minimum.’

The ‘tilted-Jacka’ embedding works the other way round. Fix K ∈ (0,∞).
Then if b > Ψµ(K) and b < Θµ(K), for all solutions τ to (SEP ), we have:

P (Bτ > b) ≥ P

(

BτJ (K) > b
)

and P
(

Bτ < b
)

≥ P
(

BτJ (K) < b
)

.

Remark 4.1. The importance of the role of K can now be seen if we choose
a function f(x) such that f(x) is increasing for x > B0 and decreasing for
x < B0. Since Θµ(K) and Ψµ(K) are both increasing, we can find a value
of K such that (assuming suitable continuity) f(Θµ(K)) = f(Ψµ(K)). Then
the ‘tilted-Jacka’ construction, with K chosen such that f(Θµ(K)) = f(Ψµ(K))
maximises P(supt≤τ f(Bt) ≥ z) over solutions of (SEP ) (see [Cox04] for details).
We note that the construction of [Jac88] (where only a specific choice of K
is considered) maximises P(supt≤τ |Bt| ≥ z). Of particular interest for our

purposes will be the case where f(x) = 1{x 6∈(b,b)}, where b < B0 < b. In this

case5, we can find K either such that f(Θµ(K)) = f(Ψµ(K)) = 0, or such that
f(Θµ(K)) = f(Ψµ(K)) = 1. In general this choice of K will not be unique and
we may take any suitable K. In fact, we may classify which case we belong
to: if6 Θ−1

µ (b) ≥ Ψ−1
µ (b) we can take K ∈ (Ψ−1

µ (b), Θ−1
µ (b)) (or equal to Θ−1

µ (b)
in the case where there is equality) which has f(Θµ(K)) = f(Ψµ(K)) = 1.
Alternatively, if Θ−1

µ (b) < Ψ−1
µ (b), then taking K ∈ (Θ−1

µ (b), Ψ−1
µ (b)) gives

f(Θµ(K)) = f(Ψµ(K)) = 0. For such a choice of K, we will call the resulting
stopping time the tilted-Jacka embedding for the barriers b, b.

4In [Jac88], where there is no ‘tilt’, K is chosen such that (B0 −Θµ(K)) = (Ψµ(K)−B0).
5At least if we assume the absence of atoms from the measure µ. If the measure contains

atoms, we need to be slightly more careful about some definitions, but the statement remains
true. We refer the reader to [CH06] for details. (The proof of Theorem 14 therein is easily
adapted to the centered case.)

6When there exists an interval to which µ assigns no mass, the inverse may not be uniquely
defined. In which case, the argument remains true if we take Θ−1

µ (z) = sup{w ∈ R : Θµ(w) ≤

z} and Ψ−1
µ (z) = inf{w ∈ R : Ψµ(w) ≥ z}, i.e. we take Θ−1

µ left-continuous and Ψ−1
µ

right-continuous. In case µ has atoms at the end of the support, writing µ(x) = µ([x,∞)):
1 = µ(a) > µ(a+) or µ(b) > µ(b+) = 0 this becomes slightly more complex as then we put
Θ−1

µ (a) = Θ−1
µ (a+) and Ψ−1

µ (b) = Ψ−1
µ (b−) respectively.

12



Lemma 4.2. For any b < B0 < b and any stopping time τ , which is a solution
to the Skorokhod embedding problem (SEP ) for µ, we have

P
(

Bτ > b and Bτ < b
)

≤ P
(

BτP
> b and BτP

< b
)

, (25)

where τP is the Perkins solution (21).

Proof. We consider three possibilities:

(i) First observe that we always have

P
(

Bτ > b, Bτ < b
)

≤ P
(

Bτ ∈ (b, b)
)

= µ
(

(b, b)
)

.

From the definition (21) of τP it follows that

P
(

BτP
> b, BτP

< b
)

= µ
(

(b, b)
)

,

when b ≤ γ−
µ (b) and γ+

µ (b) ≤ b or when b > γ−
µ (b) and γ+

µ (b) > b. The

latter corresponds to µ((b, b)) = 1 in which case a UI embedding always
remains within (b, b), i.e. P

(

Bτ > b, Bτ < b
)

= 1 = µ((b, b)).

(ii) Suppose b > γ−
µ (b) and γ+

µ (b) ≤ b. We then have, using (24) and (21),

P
(

Bτ > b, Bτ < b
)

≤ P
(

Bτ > b
)

≤ P
(

BτP
> b

)

= P
(

BτP
> b, BτP

< b
)

.

(iii) Suppose b ≤ γ−
µ (b) and γ+

µ (b) > b. We then have, using (24) and (21),

P
(

Bτ > b, Bτ < b
)

≤ P
(

Bτ < b
)

≤ P
(

BτP
< b

)

= P
(

BτP
> b, BτP

< b
)

.

Lemma 4.3. For any b < B0 < b and any stopping time τ , which is a solution
to the Skorokhod embedding problem (SEP ) for µ, we have

P
(

Bτ > b and Bτ < b
)

≥ P
(

BτJ(K) > b and BτJ (K) < b
)

, (26)

where τJ (K) is the tilted-Jacka embedding (23) for barriers b, b.

Proof. As noted in Remark 4.1, the tilted-Jacka embedding with f(x) = 1{x 6∈(b,b)}

corresponds to a choice of K such that f(Θµ(K)) = f(Ψµ(K)). Suppose that
both these terms are one. Then Θµ(K) < b and Ψµ(K) > b. In particular, since
Bτ1

∈ {Θµ(K), Ψµ(K)}, we must have P
(

BτJ (K) > b and BτJ (K) < b
)

= 0, and
the conclusion trivially follows.

Suppose instead that f(Θµ(K)) = f(Ψµ(K)) = 0. Then Θµ(K) ≥ b and
Ψµ(K) ≤ b. From the definition of τJ(K), paths will never cross K after τ1, so
we have

P
(

BτJ (K) > b and BτJ (K) < b
)

= 1 − P(BτJ (K) ≤ b) − P(BτJ (K) ≥ b)

= 1 − P(BτJ (K) ≤ Θ−1
µ (b)) − P(BτJ (K) ≥ Ψ−1

µ (b)),

where the second equality follows from the definitions of τΨ and τΘ. Finally,
we note that the latter expressions are exactly the maximal probabilities or the
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Azéma-Yor and reverse Azéma-Yor embeddings (see [AY79] and [Ob l04]) so that
for any solution τ to (SEP) for µ, we have

P(Bτ ≥ b) ≤ P(BτJ (K) ≥ Ψ−1
µ (b))

P(Bτ ≤ b) ≤ P(BτJ (K) ≤ Θ−1
µ (b)).

Putting these together, we conclude:

P
(

Bτ > b and Bτ < b
)

≥ 1 − P(Bτ ≥ b) − P(Bτ ≤ b)

≥ 1 − P(BτJ(K) ≤ Θ−1
µ (b)) − P(BτJ(K) ≥ Ψ−1

µ (b))

≥ P
(

BτJ (K) > b and BτJ (K) < b
)

.

4.2 Prices and hedges for the double no-touch option when

K = R+

We now have all the tools we need to compute the bounds in (17) and prove
they are the best possible bounds. We begin by considering the case where call
options are traded at all strikes: K = R+.

Theorem 4.4. Let 0 < b < S0 < b and recall that (St) has continuous paths in
P. Suppose P admits no WFLVR on XD defined via (1), (10) and (16). Then
the following are equivalent:
(i) P admits no WFLVR on XD ∪ {1ST <b, ST >b},
(ii) there exists a (P ,XD ∪ {1ST <b, ST >b})-market model,

(iii)(17) holds,
(iv) we have, with µ defined via (9),

P1ST <b, S
T

>b ≤ min

{

D(b) − D(b), D(b) +
C(γ−

µ (b)) − P (b)

γ−
µ (b) − b

, 1 − D(b) +
P (γ+

µ (b)) − C(b)

b − γ+
µ (b)

}

,

(27)
where γ±

µ are given in (18)–(19), and

P1ST <b, ST >b ≥
[

1 −
C(Ψ−1

µ (b))

b − Ψ−1
µ (b)

−
P (θ−1

µ (b))

θ−1
µ (b) − b

]

∨ 0 = µ
(

(

θ−1
µ (b), Ψ−1

µ (b)
)

)

∨ 0,

(28)
where θµ, Ψµ are given by (20).

Furthermore, the upper bound in (27) is attained for the market model St :=
BτP∧ t

T−t
, where (Bt) is a standard Brownian motion, B0 = S0, and τP is

Perkins’ stopping time (21) embedding law µ, where µ is defined by (9). The
lower bound in (28) is attained for the market model St := BτJ (K)∧ t

T−t
, where

(Bt) is a standard Brownian motion, B0 = S0, and τJ (K) is the tilted-Jacka
stopping time (23) embedding law µ for barriers b, b.

Remark 4.5. Note that the terms on the RHS of (27) correspond respectively to

PH
I
, PH

II
(γ−

µ (b)) and PH
III

(γ+
µ (b)). From the proof, we will be able to say

precisely which term is the smallest: the second term is the smallest if b > γ−
µ (b)
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and γ+
µ (b) ≤ b, the third term is the smallest if b ≤ γ−

µ (b) and γ+
µ (b) > b and

otherwise the first term is the smallest.
The lower bound (28) is non-zero if and only if θ−1

µ (b) < Ψ−1
µ (b) and is then

equal to PHII(θ−1
µ (b), Ψ−1

µ (b)).
It follows from the definitions of γ±

µ (see [Per86]) that we have

C(γ−
µ (b)) − P (b)

γ−
µ (b) − b

= inf
K>S0

C(K) − P (b)

K − b

P (γ+
µ (b)) − C(b)

b − γ+
µ (b)

= inf
K<S0

P (K) − C(b)

b − K
.

(29)

Using this and the remarks on when respective terms in (27) are the smallest,
we can rewrite the minimum on the RHS of (27) as

min

{

D(b) − D(b), D(b) + inf
K∈(S0,b)

C(K) − P (b)

K − b
, 1 − D(b) + inf

K∈(b,S0)

P (K) − C(b)

b − K

}

.

(30)

Remark 4.6. We want to investigate briefly what happens if the assumptions on
continuity of paths are relaxed, namely if the bounds (27) and (28), or equiv-
alently (17), are still consequences of no model-free arbitrage. If we consider
the upper barrier (27), the assumption that St is continuous may be relaxed
slightly: we only require that the price does not jump across either barrier, but
otherwise jumps may be introduced. We can also consider the general problem
without any assumption of continuity, however this becomes fairly simple: the
upper bound is now simply µ((b, b)), which corresponds to the price process
(St)0≤t≤T which is constant for t ∈ [0, T ), so St = S0, but has ST ∼ µ.
Unlike the upper bound, the continuity or otherwise of the process will make
little7 difference to the lower bound. Clearly, the lower bound is still attained
by the same construction, however, we can also show that a similar subhedge to
(15) still holds. In fact, the only alteration that is needed in the discontinuous
case concerns the forward purchase. We construct the same initial hedge, but
suppose now the asset jumps across the upper barrier, to a level z say. Then we
may still buy 1/(b−K2) forward units, but the value of this forward at maturity
is now: (ST − z)/(b−K2). So the difference between this portfolio at maturity
and the payoff given in (15) is just

ST − z

b − K2

− ST − b

b − K2

=
b − z

b − K2

which is negative, and therefore the strategy is still a subhedge. Consequently,
the same lower bound is valid.

Proof. If P admits no WFLVR on XD ∪ {1ST <b, S
T

>b} then it also admits no

model-free arbitrage and (i) implies (iii) with Lemma 3.1. As observed above,

the three terms on the RHS of (27) are respectively PH
I
, PH

II
(γ−

µ (b)) and

PH
III

(γ+
µ (b)), and the two terms on the RHS of (28) are PHII(θ−1

µ (b), Ψ−1
µ (b))

7One has to pay some attention to avoid measure-theoretic problems as some (minimal)
assumption on the process and the filtration are required to guarantee that the first entry
time into [0, b] is a stopping time.
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and PHI = 0. Thus clearly (iii) implies (iv).
Let µ be defined via (9), (Bt) a Brownian motion defined on a filtered prob-
ability space and τP , τJ respectively Perkins’ (21) and (tilted) Jacka’s (23)
stopping times embedding µ for barriers b, b. Since P admits no WFLVR on
XD, Proposition 2.5 implies that both SP

t := BτP∧ t
T−t

and SJ
t := BτJ∧ t

T−t
are

market models matching P on XD. It follows from the proof of Lemma 4.2 that
E1

S
P

T <b, SP
T

>b
is equal to the RHS of (27). Likewise, it follows from the proof of

Lemma 4.3 that E1
S

J

T <b, SJ
T

>b
is equal to the RHS of (28). Enlarge the filtration

of (Bt) initially with an independent random variable U , uniform on [0, 1], let
τλ = τP1{U≤λ} +τJ1{U>λ} and Sλ

t := Bτλ∧
t

T−t
. Then (Sλ

t ) is a (P ,XD)-market

model and E1
S

λ

T <b, Sλ
T

>b
takes all values between the bounds in (27)-(28) as λ

varies between 0 and 1. We conclude that (iv) implies (ii). Obviously we have
(ii) implies (i).

4.3 Pricing and hedging when K is finite

In practice, the assumption that call prices are known for every strike is unrealis-
tic, so we consider now the case when K is finite. The only assumption we make,
which is satisfied in most market conditions, is that there are enough strikes to
separate the barriers. Specifically, we shall make the following assumption:

(A) K = {K0, K1, . . . , KN}, 0 = K0 < K1 < . . . < KN , and the barriers b and
b satisfy: b > K2, there are at least 2 traded strikes between b and b, and
b < KN−1, with S0 > C(K1) > C(KN−1) > 0.

It is more convenient to consider the lower and the upper bounds on the price
of the double no-touch option independently. The upper bound involves dig-
ital calls and when these are not traded in the market the results are some-
what technical to formulate. We start with the lower bound which is relatively
straightforward.

Theorem 4.7. Recall X defined via (1) and (16). Suppose (A) holds and P
admits no WA on X ∪ {1ST <b, ST >b}. Then

P1ST <b, ST >b ≥ max
i≤j:b≤Ki≤Kj≤b

[

1 − C(Kj)

b − Kj

− P (Ki)

Ki − b

]

∨ 0 . (31)

The bound is tight — there exists a (P ,X )-market model, under which the above
price is attained.

Proof. The bound is just a rewriting of the lower bound in (17) in which we
omitted PHI = 0. It remains to construct a market model under which the
bound is attained.

Recall that C(K0) = C(0) = S0 and choose KN+1 such that

KN+1 ≥ max

{

KN + C(KN )
KN − KN−1

C(KN−1) − C(KN )
, b + 1

}

,

and set C(KN+1) = 0. This extension of call prices preserves the no WA
property and by Proposition 2.4 we may extend C to a function on R+ satisfying
(7)–(8). In fact, we may take C to be linear in the intervals (Ki, Ki+1) for i ≤ N ,
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and setting C(K) = 0 for K ≥ KN+1. To C we associate a measure µ by (9)
which has the representation

µ =

N+1
∑

i=0

(C′
+(Ki) − C′

−(Ki))δKi

where we take C′
−(0) = 1. Note that by (A) the barriers b, b are not at the

end of the support of µ. For the definition of Θµ and Ψµ it follows that their
inverses (which we took left- and right- continuous respectively) take values in
K. The theorem now follows from Theorem 4.4 using the equivalence of (iii)
and (iv). Note that (28) gives precisely the traded strikes Ki, Kj for which the
maximum in the RHS of (31) is attained.

We now consider the upper bound. There are several issues that will make
this case more complicated than the previous. Wheras in the lower bound, we
are purchasing only call/put options at strikes between b and b, in the upper
bound, we need to consider how to infer the price of a digital option at b or
b, and consider the possibility that there are no options traded exactly at the
strikes b and b. Secondly, the upper bound will prove to be much more sensitive
to the discontinuity in the payoff of the double no-touch. This is because, when
there are only finitely many strikes, the measure µ – the market model law of
ST – is not specified and in order to maximise E1ST <b, ST >b, one wants to have

as many paths as possible finishing as near to b and b within the constraints
imposed by the calls; to do this, we want to put atoms of mass ‘just to the right
of b’, and ‘just to the left of b’. For this reason, in the final case we consider, for
some specifications of the prices, the upper bound cannot always be attained
under a suitable model, but rather, in general can only be arbitrarily closely
approximated. These issues would not arise if we were to consider modified
double no-touch option with payoff 1ST ≤b, ST ≥b.

We begin by considering the simpler case where there are calls and digital
calls traded with strikes b and b:

Theorem 4.8. Recall XD defined via (1), (10) and (16). Suppose (A) holds,
b, b ∈ K and P admits no weak arbitrage on XD and no model-free arbitrage on
XD ∪ {1ST <b, ST >b}. Then the price of the double no-touch option is less than

or equal to

min

{

D(b) − D(b), D(b) + inf
K∈K∩(S0,b]

C(K) − P (b)

K − b
, (1 − D(b)) + inf

K∈K∩[b,S0)

P (K) − C(b)

b − K

}

.

(32)
Further, there exists a sequence of market-models for (P ,XD) which approximate
the upper bound, and if P attains the upper bound, then either there exists a
weak arbitrage on XD∪{1ST <b, ST >b}, or there exists a (P ,XD∪{1ST <b, ST >b})-

market model.

Proof. That (32) is an upper bound is a direct consequence of Lemma 3.1 and
the three terms correspond to the three terms on the RHS of the upper bound
in (17). Since there is no WA, by Lemma A.1, we can extend C to a piecewise
linear function on R+ which satisfies (7)–(8) and (11). More precisely, let i, j
be such that Ki < b < Ki+1 and Kj < b < Kj+1. Then we can take C
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piecewise linear with kinks for K ∈ K ∪ {K, K}, where Ki < K < b and
Kj < K < b can be chosen arbitrary close to the barriers. Note also that, using
(11), we have then C(K) = C(b) + D(b)(b − K), with a similar expression for
C(K). Consider the associated market model of Theorem 4.4 which achieves
the upper bound (27). We now argue that we can choose K, K so that (32)
approximates (27) arbitrarily closely. Since C is piecewise linear we have that
(27), which can be expressed as (30), is equal to (32) but with K replaced
by K ∪ {K, K} and we just have to investigate whether the addition of two
strikes changes anything. We investigate K, the case of K is similar. Note
that we can make f(K) := (C(K) − P (b))/(K − b) as close to f(b) as we
want by choosing K sufficiently close to b. Hence if the minimum in (32) is
strictly smaller than D(b) + f(b) then the addition of K does not affect the
minimum, and we note further that in such a case, we may construct a market
model (assuming similar behaviour at K) using values of K, K sufficiently close
to b, b respectively. Otherwise, suppose the minimum in (32) is achieved by
D(b) − D(b) = D(b) + f(b). Then we have

f(K) =
C(b) + D(b)(b − K) − P (b)

K − b
=

C(b) − P (b)

K − b
− f(b)

b − K

K − b
= f(b),

and hence the minimum in (30) is also attained by the first term and is equal
to (32). Again, the extension of C allows us to construct a suitable market
model. Finally, consider the case where f(b) < −D(b), and the second term at
b is indeed the value of (32). Then taking a sequence of models as described
above, with K, K converging to b, b respectively, we get a suitable approximating
sequence. We finally show that in this case, if P prices double no-touch at (32)
then there is a weak arbitrage: suppose P is a model with P(Hb < T, ST ∈
(b, b)) > 0. Then we can purchase the superhedge H

II
(b) and sell the double

no-touch for zero initial net cash flow, but with a positive probability of a
positive reward (and no chance of a loss). For all other models P, we purchase
a portfolio which is short 1

b−b
puts at b, long 1

b−b
calls at b, and long the digital

call at b; if the process hits b, we sell forward 1
b−b

units of the underlying. This

has negative setup cost, since f(b) < −D(b), and zero probability of a loss as
now P(Hb < T, ST ∈ (b, b)) = 0.

The general case, where we do not assume that calls trade at the barriers,
nor that there are suitable digital options, is slightly more complex. The key
point to understanding this case is to consider models (or extensions of C(·) to
the whole of R+) which might maximise each of the individual terms (at b or
b) in (32), and which agree with the call prices. Observe for example that at b
it is optimal to minimise the call price C(b), and also maximise D(b) (at least
for the first two terms in (32)). If we convert this to a statement about the call
prices C(·) the aim becomes: minimise C(b), and maximise −C′

+(b). It is easy
to see that choosing the smallest value of C(b) which maintains the convexity we
also maximise −C′

−(b). However this does not quite work for −C′
+(b), although

we will ‘almost’ be able to use it. It turns out (see Lemma A.1) that even the
non-attainable lower bound, corresponding to taking −C′

−(b) = −C′
+(b), is still

consistent with no model-free arbitrage, but it is not consistent with no weak
arbitrage. However, we will be able to find a sequence of models under which
the prices do converge to the optimal set of values.
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We now consider the bounds in more detail. Suppose i is such that Ki ≤
b ≤ Ki+1. By convexity, the value of C(b) must lie above the line pass-
ing through {(Ki−1, C(Ki−1)), (Ki, C(Ki))}, and also the line passing through
{(Ki+1, C(Ki+1)), (Ki+2, C(Ki+2))}. So to minimise C(b) we let it be:

C(b) = max

{

C(Ki) +
C(Ki) − C(Ki−1)

Ki − Ki−1
(b − Ki), C(Ki+1) +

C(Ki+1) − C(Ki+2)

Ki+2 − Ki+1
(Ki+1 − b)

}

(33)
and we set the corresponding ‘optimal’ digital call price:

D(b) = −C(b) − C(Ki)

b − Ki

. (34)

The prices for the third term in (32) are derived in a similar manner: if
we suppose j ≥ i + 2 (by assumption (A)) is such that Kj ≤ b ≤ Kj+1, the
resulting prices at b are:

C(b) = max

{

C(Kj) +
C(Kj) − C(Kj−1)

Kj − Kj−1
(b − Kj), C(Kj+1) +

C(Kj+1) − C(Kj+2)

Kj+2 − Kj+1
(Kj+1 − b)

}

(35)
and

D(b) = −C(Kj+1) − C(b)

Kj+1 − b
. (36)

We note that assumption (A) is necessary here to ensure that the extended
prices are free of arbitrage. Otherwise, we would not in general be able to add
assets to the initial market in a way that is consistent with (7).

Theorem 4.9. Recall X , XD defined via (1), (10) and (16). Suppose (A)
holds, b, b /∈ K, and P admits no weak arbitrage on X . Define the values of
C(·) and D(·) at b, b respectively via (33)–(36). Then if P admits no model-free
arbitrage on XD ∪{1ST <b, ST >b}, the price of the double no-touch option is less

than or equal to

{

D(b) − D(b), D(b) + inf
K∈K∩(S0,∞)

C(K) − P (b)

K − b
, (1 − D(b)) + inf

K∈K∩[0,S0)

P (K) − C(b)

b − K

}

.

(37)
Further, there exists a sequence of (P ,X )-market models which approximate the
upper bound. Finally, if P attains the upper bound, and when extended via
(33)–(36) admits no WA on XD ∪ {1ST <b, ST >b} for K∪ {b, b} then there exists

a (P ,XD ∪ {1ST <b, ST >b})-market model.

We defer the proof to Appendix A. Note that exact conditions determining
whether the no WA property is met are given in Lemma A.1. As will be clear
from the proof, we could take K ∈ K ∩ (S0, Kj+1] and K ∈ K ∩ [Ki, S0) in
the second and third terms in (37) respectively. However, unlike in previous
theorems, we need to include strikes Ki and Kj+1 as we don’t have the barriers
as traded strikes.

This result is our final theorem concerning the structure of the option prices
in this setting. We want to stress the fairly pleasing structure that all our
results exhibit: we are able to exactly specify prices at which the options may
trade without exhibiting model-free arbitrage. Moreover, we are able to specify
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the cases where there exist market models for a given set of prices. In general,
the two sets are exclusive, and with the possible exception of a boundary case,
constitute all prices. On the boundary, if there is no model, we are able to show
the existence of an arbitrage of a weaker form than the model-free arbitrage.

5 Applications

We turn now to possible applications of our results and present some numerical
simulations. We keep the discussion here rather brief and refer the reader to
our paper on double touch options [CO08] for more details on implementation
and application of robust hedging arguments.

The first natural application is for pricing. Namely, seeing call prices in the
market, we can instantly deduce robust price bounds on the double no-touch
options using Theorems 4.7 and 4.8. However, typically these bounds are too
wide to be of any practical use. This will be the case for example in foreign
exchange markets, where double no-touch options are liquid and bid-aks spreads
are very small. In fact in major currency pairs, these options are so liquid that
the price is given by the market — i.e. should be treated as an input to the
model, see Carr and Crosby [CC08].

The second application is for robust hedging — and this is where we believe
our techniques can be competitive. Standard delta/vega hedging techniques for
double no-touch options face several difficulties, such as:

• model risk – model mis-specification can result in incorrect hedges,

• transaction costs – these can run high as vega hedging is expensive,

• discrete monitoring – in practice hedges can only be updated discretely
and the more often they are updated the larger the transaction costs,

• gamma exposure – when the option is close to the barrier close to maturity
the delta is growing rapidly, in practice the trader then stops delta-hedging
and takes a view on the market.

Our robust hedges provide a simple alternative which avoids all of the above-
listed problems. Specifically, say a trader sells a double no-touch option struck
at (b, b) for a fair premium p. She can then set up one of our super-hedges

H
i
(K), for i = I, II, III for a premium PH

i
(K) which will be typically larger

then p. The superhedge then requires just that she monitors if the barriers are
crossed and if so that she buys or sells appropriate amounts of forwards. Then
at maturity T her portfolio (hedging error) is

X = H
i
(K) − 1ST <b, ST >b ≥ 0 − PH

i
(K) + p,

which has zero expectation and is bounded below by p − PH
i
(K). Depending

on the risk aversion and gravity of problems related to delta/vega-hedging listed
above, this may be an appealing way of hedging the double no-touch option.
We give a simple example. Consider the following Heston model (based on the
parameter estimates for USD/JPY given in [CW07]):

{

dSt =
√

vtStdW 1
t , S0 = S0, v0 = σ0

dvt = κ(θ − vt)dt + ξ
√

vtdW 2
t , d〈W 1, W 2〉t = ρdt,

(38)
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with parameters

S0 = 2.006, σ0 = 0.025, κ = 0.559, θ = 0.02, ξ = 0.26 and ρ = 0.076, (39)

and a double no-touch option with 6 month maturity struck at b = 1.95,
b = 2.05. The numerically evaluated fair price of this option in this model

is p = 0.3496. The cheapest of our superhedges is H
I
, which was just a digital

option paying 1 when 1.9364 < ST < 2.0636 (the closest strikes available to
the barriers). The most expensive subhedge was HI which consisted in doing
nothing. We compare outcomes of two hedging approaches of a short position
in a double no-touch option: standard delta/vega hedging but using BS deltas
(with at-the-money implied volatility) and the robust approach outlined above.
We assume proportional transaction costs of 1% when trading in calls or puts
and 0.02% when trading in the underlying. The delta/vega hedge is rebalanced
daily and we stop hedging when the deltas are too large, more precisely we stop
hedging when the transaction costs associated with re-balancing the hedge are
above 0.02. The distribution of hedging errors from both strategies over 10000
Monte Carlo runs is given in Figure 5. The advantage of a X being bounded
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Figure 3: Cumulative distributions of hedging errors of a short position in a
double no-touch option using delta/vega hedging and robust hedging.

below is clearly visible. The average transaction costs were 0.32 and 0.13 for
delta/vega and robust hedges respectively which shifted the average hedging er-
rors for the delta/vega hedging to the left. In consequence, an exponential utility
trader would prefer our robust hedge with utility −0.2755 against −0.4327 from
delta/vega hedging errors.

Naturally, there are a number of ways of improving on the standard delta/vega
hedge, as well as other robust hedging approaches — see the discussion in
[CO08]. More involved numerical analysis would be necessary to judge whether
our strategies can still outperform, and in what sense, these improved hedging
strategies. In light of the above results, this seems like an interesting practical
issue to pursue. Finally, we note that hedging a single barrier option in any way
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is impractical due to transaction and operational costs and in practise banks
hedge huge portfolios of barrier options rather than a single option. An adapta-
tion of our techniques would be thus required before they could be implemented
in real markets.

A Weak Arbitrage

In this appendix we are interested in the possible extensions of the pricing
operator from an arbitrage-free set of call prices C(Ki), 0 = K0 < K1 < . . . <
KN to include a call C(b) and a digital call option D(b) where b ∈ (Ki, Ki+1),
and a call C(b) and a digital call D(b), where b ∈ (Kj , Kj+1) for j ≥ i + 2.

To avoid simple arbitrages if we add in a call option with strike at x ∈
(Kl, Kl+1), we need C(x) to satisfy:

C(x) ≤ C(Kl) + (x − Kl)
C(Kl+1) − C(Kl)

Kl+1 − Kl

(40)

C(x) ≥ C(Kl) + (x − Kl)
C(Kl) − C(Kl−1)

Kl − Kl−1
(41)

C(x) ≥ C(Kl+1) − (Kl+1 − x)
C(Kl+2) − C(Kl+1)

Kl+2 − Kl+1
(42)

so we require these bounds to hold with (x, l) = (b, i) and (x, l) = (b, j). Some
further simple arbitrages imply D(x) and D(x) satisfy

C(x) − C(Kl+1)

Kl+1 − x
≤ D(x) ≤ D(x) ≤ C(Kl) − C(x)

x − Kl

. (43)

Depending on x, one of the lower bounds (41) or (42) may be redundant. Specifi-
cally, there exists b∗ ∈ (Ki, Ki+1) such that the right-hand sides agree for x = b∗,
(41) is larger for x < b∗, and (42) is larger for x > b∗, and there is a similar point
b∗ ∈ (Kj , Kj+1) at which the corresponding versions of (41) and (42) agree.

We now prove a result which connects the traded prices of these options, the
existence of both model-free arbitrages and weak arbitrages, and the existence
of a model which agrees with a given pricing operator:

Lemma A.1. Recall X given via (1) and (16). Suppose K is finite b, b 6∈ K,
(A) holds, and P admits no WA on X . Let XD = X∪{(ST −b)+,1{ST >b}, (ST −
b)+,1{ST≥b}}. Then if C(b), D(b), C(b), D(b) satisfy (40)–(43), there exists an
extension of P to XD with

P1{ST >b} = D(b), P(ST−b)+ = C(b), P1{ST ≥b} = D(b), P(ST−b)+ = C(b)

such that P admits no model-free arbitrage. Conversely, if any of (40)–(43)
fail, then there exists a model-free arbitrage.

Moreover, if there is no model-free arbitrage, there is a weak-arbitrage if and
only if either b ≥ b∗,

C(b) = C(Ki+1)−(Ki+1−b)
C(Ki+2) − C(Ki+1)

Ki+2 − Ki+1
and

C(b) − C(Ki+1)

Ki+1 − b
< D(b) ≤ C(Ki) − C(b)

b − Ki

,

(44)
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or b ≤ b∗,

C(b) = C(Kj)+(b−Kj)
C(Kj) − C(Kj−1)

Kj − Kj−1
and

C(b) − C(Kj+1)

Kj+1 − b
≤ D(b) <

C(Kj) − C(b)

b − Kj

.

(45)
Finally, if there is no weak arbitrage, then there exists a (P ,XD)-market model.
Furthermore, we can take the model such that C(·) is piecewise linear and has
kinks only at K1 < . . . < Ki < b < K < Ki+1 < . . . < Kj < K < b < Kj+1 <
. . . < KN , where K, K are additional strikes which can be chosen arbitrary close
to the barriers b and b respectively.

Proof. The existence of a model-free arbitrage if any of (40)–(43) do not hold
is straightforward, and can generally be read off from the inequality — e.g. if
(42) fails at b, the arbitrage is to buy the call with strike C(b), sell a call with

strike Ki+1 and buy Ki+1−b

Ki+2−Ki+1
units of the call with strike Ki+2, and sell the

same number of calls with strike Ki+1.
So suppose (40)–(43) hold and extend P to XD with prices as given in the

statement of the lemma. Assume that neither of (44) or (45) hold. Then it
is easy to check that we can find a piecewise linear extension of the function
C(·) which passes through each of the specified call prices and satisfies (7)–(8)
and (11). Further, C(·) may be taken as in the statement of the Lemma, with
K, K arbitrary close to the barriers b, b respectively. Proposition 2.5 then grants
existence of a (P ,XD)-market model. In particular there is no weak arbitrage
and hence no model-free arbitrage.

It remains to argue that if either of (44) or (45) hold then there is a weak-
arbitrage, but no model-free arbitrage.

We first rule out a model-free arbitrage. Since, by Proposition 2.4, P on
X ∪{(ST − b)+, (ST − b)+} admits no WA we must only show that the addition
of the digital options does not introduce an arbitrage. Consider initially the case
where we add simply a digital option at b. Recalling (6), it is therefore sufficient
to show that there does not exist an H ∈ Lin(X ∪{(ST − b)+, (ST − b)+}), such
that either

1{ST >b} + H ≥ 0, and PH < −D(b) (46)

or

−1{ST >b} + H ≥ 0, and PH < D(b). (47)

However, any possible choice of H must be the combination of a sum of call
options and forward options. Since only finitely many terms may be included, we
necessarily have H as a continuous function in ST : more precisely, for (St) ∈ P,
and any ε, δ0, there exist paths (S′

t) ∈ P such that S′
T ∈ (ST − δ, ST ) and

|H((St)) − H((S′
t))| < ε. Clearly, we may also replace the first conclusion with

S′
T ∈ (ST , ST + δ).

So suppose (47) holds, and H((St)) < 1 for some (St) ∈ P with ST = b, then
by the continuity property there exist (S′

t) ∈ P such that S′
T > b and H((S′

t)) <
1, contradicting (47). Hence, we can conclude that if an arbitrage exists for
1{ST >b}, the same portfolio H is an arbitrage for 1{ST≥b} if P1{ST ≥b} = D(b).
However, it is possible to construct an admissible curve C(·) such that C(·)
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matches the given prices at the Ki’s and b, and has

−C′
−(b) = −D(b) ∈

(

C(b) − C(Ki+1)

Ki+1 − b
,
C(Ki) − C(b)

b − Ki

]

,

and hence by arguments of Proposition 2.5, there exists a model under which
the calls and the digital option 1{ST ≥b} are fairly priced, and so there cannot be
an arbitrage. More generally, if we wish to consider adding both digital options,
a similar argument will work, the only aspect we need to be careful about is
that we can find a suitable extension to the call price function, however this is
guaranteed by assumption (A).

Finally, we construct a weak arbitrage if either of (44) or (45) hold. Suppose
(44) holds. Let P be a model, then

(i) if P(ST ∈ (b, Ki+1)) = 0 we sell short the digital option, buy 1
Ki+1−b

units

of the call with strike b, and sell the same number of units of the call
with strike Ki+1. By (44) we receive cash initially, but the final payoff is
strictly negative only for ST ∈ (b, Ki+1),

(ii) else P(ST ∈ (b, Ki+1)) > 0 and we purchase 1
Ki+1−b

units of the call with

strike b, sell 1
Ki+1−b

+ 1
Ki+2−Ki+1

units of the call with strike Ki+1 and buy
1

Ki+2−Ki+1
units of the call with strike Ki+2. By (44) this costs nothing

initially, has non-negative payoff which is further strictly positive payoff
in (b, Ki+1).

A similar argument gives weak arbitrage when (45) holds.

Corollary A.2. Suppose P on XD does not admit a model-free arbitrage. Then
for all ε > 0, there exists a pricing operator Pε on XD such that |PX−PεX | < ε
for all X ∈ XD, and such that a (Pε,XD)-market model exists.

Proof. Given the prices of the call and digital options, we can perturb these
prices by some small δ > 0 to get prices which satisfy the no-weak-arbitrage
conditions of Lemma A.1: more precisely, if say (44) holds, by taking C̃(b) =
C(b) + δ, and perhaps (if needed to preserve (43)) also D̃(b) = D(b) + δ

Ki+1−b
,

and if necessary, performing a similar operation at b. The corresponding pricing
operator then satisfies the stated conditions.

Proof of Theorem 4.9. Note that we can’t apply directly Lemma 3.1 to deduce
(37) as we do not have prices of digital calls. Instead, we will devise superhedges

of H
I
, H

II
(K) and H

III
(K) which only use traded options. Recall that i, j are

such that Ki < b < Ki+1 and Kj < b < Kj+1. Consider the following payoffs,
presented in Figure 4,

X1 =
(ST − Ki−1)+ − (ST − Ki)

+

Ki − Ki−1
,

X2 =
1

b − Ki

(

(ST − Ki)
+ − Ki+2 − b

Ki+2 − Ki+1
(ST − Ki+1)+ +

Ki+1 − b

Ki+2 − Ki+1
(ST − Ki+2)+

)

,

(48)
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Ki−1Ki Ki+1Ki+2b

(a) Type 1 digital call superhedge X1.

Ki−1Ki Ki+1Ki+2b

(b) Type 2 digital call superhedge X2.

Figure 4: The two possible superhedges X1, X2 of a digital call when calls and
digital calls are not traded at the strike.

which both superhedge the digital call 1{ST >b}. Recall that C(·), D(·) at b, b are
now defined via (33)–(36). Direct computation shows that if in (33) we have

C(b) = C(Ki) +
C(Ki) − C(Ki−1)

Ki − Ki−1
(b − Ki),

and (34) holds then

P(X1) =
C(Ki−1) − C(Ki)

Ki − Ki−1
= D(b).

Likewise, if C(b) is equal to the other term in (35), using (34) we deduce that

P(X2) = D(b). Using similar ideas we construct superhedges H
II

1 (K), i = 1, 2

of H
II

(K) which only use traded options. They are graphically presented in
Figure 5. Further, just as above, it follows easily that

min
{

PH
II

1 (K),PH
II

2 (K)
}

= D(b) +
C(K) − P (b)

K − b
, K ∈ K ∩ (b,∞).

In a similar manner we construct superhedges H
III

i (K), i = 1, 2, of H
III

(K)
which only use traded options and such that

min
{

PH
III

1 (K),PH
III

2 (K)
}

= (1 − D(b)) +
P (K) − C(b)

K − b
, K ∈ K ∩ (b,∞).

Finally we consider H
I
, i.e. we need to construct a superhedge for 1{b<ST <b}.

This can be done using a combination of the techniques used above for super-

hedging the digital calls. We end up with H
I

i , i = 1, 2, 3, 4 and again

min
{

PH
I

i : i = 1, 2, 3, 4
}

= D(b) − D(b).

Under no model-free arbitrage on XD ∪ {1ST <b, S
T

>b} the price of the double

no-touch has to be less than or equal to the prices of all the superhedges given
above, which is less than or equal to the value in (37) (the former takes its
minimum over a smaller range of strikes).

It remains to see that (37) is tight. Note that it follows from Theorem
4.8 that (32) remains unchanged if we extend the range of strikes considered
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Ki−1Ki Ki+1Ki+2 Kb

(a) Type 1 double no-touch superhedge.

Ki−1Ki Ki+1Ki+2 Kb

(b) Type 2 double no-touch superhedge.

Figure 5: Two possible superhedges H
II

1 (K), H
II

2 (K) of the double no-touch
when calls and digitals at the barrier are not traded.

therein to K ∈ K ∩ (S0,∞) and K ∈ K ∩ [0, S0) in the second and third terms
respectively, which we assume from now on.
Let us write X̃ = X (K ∪ {b, b}) for the set defined via (1) and (16) but with
K ∪ {b, b} instead of K. Note that by Lemma A.1, P extended to X̃D via (33)–
(36) admits no model-free arbitrage on X̃D and we also know exactly when it
admits a WA. Suppose that the minimum in (32) does not occur in the second
term for K = b nor at the third term for K = b. Then (37) is equal to (32). If P
admits no WA on X̃D then the statements of the theorem follow directly from
Theorem 4.8. If P admits a WA then, by Corollary A.2, we can ǫ-perturb P to
P̃ and have no WA on X̃D and further, taking ǫ small enough, the minimum in
(32) for prices P and P̃ occur at the same term and can be arbitrary close. The
existence of a suitable sequence of (P ,X ) market models which approximate
(37) follows as it suffices to take the (P̃ , X̃D)-market models which achieve the
upper bound (32).

It remains to consider the case when the (strict) minimum in (32), for prices
P , occurs either at the second term for K = b or at the third term for K = b. We
consider the former, the latter is analogous. We now have a difference between
(37) and (32), namely

D(b) +
C(b) − P (b)

b − b

is strictly smaller than the upper bound in (37). Consider a new value of the
call at b, C∗(b), and the corresponding digital call price

D
∗
(b) =

C∗(b) − C(Kj+1)

Kj+1 − b
. (49)

Then as we increase C∗(b) from the value of C(b) given by (35) (which is the

smallest value consistent with no arbitrage), we note that D
∗
(b) increases, and

in (32) (applied to the new set of prices), we see that the first and third terms
decrease (continuously), while the second term increases (continuously). We
will show that we can choose C∗(b) in such a way that (32) and (37) coincide.
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Namely, we take

C∗(b) = min

{

C(Kj+1) − C(Kj+1) − P (b)

Kj+1 − b
(Kj+1 − b), C(Kj) + (b − Kj)

C(Kj) − P (b)

Kj − b

}

(50)
and let P∗ denote the pricing operator extended from X to X̃D via (50), (49)
and (33)–(34)). We will show that

(i) P∗ admits no model-free arbitrage on X̃D,

(ii) the infimum in the second term in (32), for prices P∗, is still attained at
b, and this agrees now with the minimum for (37):

inf
K∈K∩(S0,∞)

C(K) − P (b)

K − b
=

C∗(b) − P (b)

b − b
; (51)

(iii) the second term in (32) is still the smallest:

C∗(b) − P (b)

b − b
≤ −D

∗
(b) ≤ −D(b) (52)

D(b) ≤ 1 + inf
K∈K∩[b,b)∪{b}

P (K) − C∗(b)

b − K
. (53)

If all these conditions hold, and in (i) there is no weak arbitrage, then (32) for
P∗ and (37) are equal and applying Theorem 4.8 we get a (P ,X )-market model
which achieves the upper bound in (37). If there is a weak arbitrage in (i) we
first use Corollary A.2 and obtain a sequence of models which approximate (37).
The proof is then complete. So we turn to proving the above statements. For
(i), we simply need to show that C∗(b) satisfies (40)–(42), i.e.

C(b) ≤ C∗(b) ≤ Kj+1 − b

Kj+1 − Kj

C(Kj) +
b − Kj

Kj+1 − Kj

C(Kj+1).

The first inequality follows from the bounds:

C(b) − P (b)

b − b
∈

[

C(b) − C(Kj)

b − Kj

,
C(Kj+1) − C(b)

Kj+1 − b

]

(54)

which in turn follow from the optimality of b in (32), and the convexity of the
prices C(·). The upper bound can be checked by taking a suitable weighted
average of the terms in (50), where the weights are chosen so that the P (b)
term drops out. To show (ii), we note that, by definition of C∗(b), we have

C∗(b) − P (b)

b − b
= min

{

C(Kj) − P (b)

Kj − b
,
C(Kj+1) − P (b)

Kj+1 − b

}

and (51) follows from convexity of C and the fact that minimum in the second
term of (32) for prices P , was attained at b. For (iii), (52) follows from the

definition of D
∗
(b) and (51), whose value is negative. To deduce (53), we note

the following: suppose (53) fails, so that (rearranging)

1 − D(b) < sup
K∈K∩[b,b)∪{b}

C∗(b) − P (K)

b − K
. (55)
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In particular, taking K = b on the RHS we deduce

C∗(b) − P (b)

b − b
> 1 − D(b).

which combined with (52) yields 1 − D(b) < −D
∗
(b) which is clearly a contra-

diction as the first term is non-negative and the second non-positive.

B On the joint law of the maximum and mini-

mum of a UI martingale

Let (Mt : t ≤ ∞) be a uniformly integrable continuous martingale starting at a
deterministic value M0 ∈ R and write µ for its terminal law, µ ∼ M∞, where we
assume M is non trivial, i.e. µ 6= δM0

. We denote by −∞ ≤ aµ < bµ ≤ ∞ the
bounds of the support of µ, i.e. [aµ, bµ] is the smallest interval with µ([aµ, bµ]) =
1. In this final appendix, we include some remarks on the joint law of the
maximum and minimum of uniformly integrable martingales, namely we study
the function p(b, b) := P

(

M∞ > b and M∞ < b
)

for b ≤ M0 ≤ b. Naturally,
this is closely related what we have done so far: (Mt) can be interpreted (at
least for aµ ≥ 0) as a market model M u

T−u
= Su, u ≤ T , with maturity T call

prices given via (9), and p(b, b) is then the price of a double no-touch option.

Proposition B.1. We have the following properties:

(i) p(M0, b) = p(b, M0) = 0,

(ii) p(b, b) = 1 on [−∞, aµ) × (bµ,∞],

(iii) p is non-increasing in b ∈ (aµ, M0) and non-decreasing in b ∈ (M0, bµ),

(iv) for aµ ≤ b < M0 < b ≤ ∞ we have

P
(

BτJ
> b and BτJ

< b
)

≤ p(b, b) ≤ P
(

BτP
> b and BτP

< b
)

, (56)

where (Bt) is a standard Brownian motion with B0 = M0, τP is the
Perkins stopping time (21) embedding µ and τJ is the Jacka stopping time
(23), for barriers (b, b), embedding µ.

The first three assertions of the proposition are clear. Assertion (iv) is a
reformulation of Lemmas 4.2 and 4.3. It suffices to note that (Bt∧τJ

), (Bt∧τP
),

(Mt) are all UI martingales starting at M0 and with the same terminal law µ
for t = ∞.

We think of p(·, ·) as a surface defined over the quarter-plane [−∞, M0] ×
[M0,∞]. Proposition B.1 describes boundary values of the surface, monotonicity
properties and gives an upper and a lower bound on the surface. However we
note that there is a substantial difference between the bounds linked to the fact
that τP does not depend on (b, b) while τJ does. In consequence, the upper
bound is attainable: there is a martingale (Mt), namely Mt = (Bt∧τP

), for
which p is equal to the upper bound for all (b, b). In contrast a martingale
(Mt) for which p would be equal to the lower bound does not exist. For the
martingale Mt = (Bt∧τJ

), where τJ is defined for some pair (b, b), p will attain
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the lower bound in some neighbourhood of (b, b) which will be strictly contained
in (aµ, M0) × (M0, bµ).

We end this appendix with a result which provides some further insight into
the structure of the bounds discussed above. In particular, we can show some
finer properties of the function p(b, b) and its upper and lower bounds.

Theorem B.2. The function p(b, b) is càglàd in b and càdlàg in b. Moreover, if
p is discontinuous at (b, b), then µ must have an atom at one of b or b. Further:

(i) if there is a discontinuity at (b, b) of the form:

lim
wn↓b

p(b, wn) > p(b, b)

then the function g defined by

g(u) = lim
wn↓b

p(u, wn) − p(u, b), u ≤ b

is non-increasing.

(ii) if there is a discontinuity at (b, b) of the form:

lim
un↑b

p(un, b) > p(b, b)

then the function h defined by

h(w) = lim
un↑b

p(un, w) − p(b, w), w ≥ b

is non-decreasing.

And, at any discontinuity, we will be in at least one of the above cases.
Finally, we note that the lower bound (corresponding to the tilted-Jacka con-

struction) is continuous in (aµ, M0)× (M0, bµ), and continuous at the boundary
(b = bµ and b = aµ) unless there is an atom of µ at either bµ or aµ, while the
upper bound (which corresponds to the Perkins construction) has a discontinuity
corresponding to every atom of µ

Before we prove the above result, we note the following useful result, which
is a simple consequence of the martingale property:

Proposition B.3. Suppose that (Mt)t≥0 is a UI martingale with M∞ ∼ µ.
Then P(M∞ = b) > 0 implies µ({b}) ≥ P(M∞ = b) and

{M∞ = b} = {Mt = b, ∀t ≥ Hb} ⊆ {M∞ = b} a.s..

Proof of Theorem B.2. We begin by noting that by definition of p(b, b), we nec-
essarily have the claimed continuity/limiting properties. Further,

lim inf
(un,wn)→(u,w)

p(un, wn) ≥ P(M∞ > b and M∞ < b)

and
lim sup

(un,wn)→(u,w)

p(un, wn) ≤ P(M∞ ≥ b and M∞ ≤ b).
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It follows that the function p is continuous at (b, b) if P(M∞ = b) = P(M∞ =
b) = 0. By Proposition B.3, this is true when µ({b, b}) = 0.

Note that we can now see that at a discontinuity of p, we must be in at least
one of the cases (i) or (ii). This is because discontinuity at (b, b) is equivalent
to

P(M∞ ≥ b and M∞ ≤ b) > P(M∞ > b and M∞ < b),

from which we can deduce that at least one of the events

{M∞ > b and M∞ = b}, {M∞ = b and M∞ < b}, {M∞ = b and M∞ = b}
is assigned positive mass. However, by Proposition B.3 the final event implies
both M∞ = b and M∞ = b which is impossible. Consequently, at least one of
the first two events must be assigned positive mass, and these are precisely the
cases (i) and (ii).

Consider now case (i). We can rewrite the statement as: if g(b) > 0, then
g(u) is decreasing for u < b. Note however that

g(u) = P(M∞ > u and M∞ ≤ b) − P(M∞ > u and M∞ < b)

= P(M∞ > u and M∞ = b)

which is clearly non-increasing in u. In fact, provided that g(b) < P(M∞ = b),
it follows from e.g. [Rog93, Theorem 4.1] that g is strictly decreasing for b >
u > sup{u ≥ −∞ : g(u) = P(M∞ = b)}. A similar proof holds in case (ii).

We now consider the lower bounds corresponding to the tilted-Jacka con-
struction. We wish to show that

P(M∞ ≥ b and M∞ ≤ b) = P(M∞ > b and M∞ < b),

for any (b, b) except those excluded in the statement of the theorem. We note
that it is sufficient to show that P(M∞ = b) = P(M∞ = b) = 0, and by
Proposition B.3 it is only possible to have an atom in the law of the maximum
or the minimum if the process stops at the maximum with positive probability;
we note however that the stopping time τJ , due to the definition of Ψµ and Θµ

precludes such behaviour except at the points aµ, bµ.
Considering now the Perkins construction, we note from (21) and the fact

that the function γ+
µ is decreasing, that we will stop at b only if γ+

µ (M t) = b

and Mt = M t = b. It follows from (18) that there is a range of values (b∗, b
∗
) for

which γ+
µ (b) = b, and consequently, we must have h(b) = P(M∞ = b, M∞ < b)

increasing in b as b goes from b∗ to b
∗
, with h(b∗) = P(M∞ = b, M∞ < b∗) = 0

and h(b
∗
) = P(M∞ = b, M∞ < b

∗
) = µ({b}).8 Similar results for the function

g also follow.

Rogers [Rog93] and Vallois [Val93] described all possible joint laws of (M∞, M∞).
This naturally also gives possible joint laws of (M∞, M∞). It would be interest-
ing and natural to try to describe possible joint laws of the triple (M∞, M∞, M∞).

Acknowledgement. We are grateful to John Crosby whose comments en-
hanced our understanding of FX markets and practicalities of double no-touch
options and who also provided us with some numerical data from his own work.

8In fact, as above, it follows from e.g. [Rog93, Theorem 2.2] that the maximum must have
a strictly positive density with respect to Lebesgue measure, and therefore that the function
h is strictly increasing between the points b∗ and b

∗
.
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In Séminaire de Probabilités XL, volume 1899 of Lecture Notes in
Math., pages 463–481. Springer, Berlin, 2007.

[CHO08] A. M. G. Cox, D. G. Hobson, and J. Ob lój. Pathwise inequalities
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[Mij08] A. Mijatović. Local time and the pricing of time-dependent barrier
options. To Appear, Finance Stoch., 2008.
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