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THE ELLIPTIC CURVE IN THE S-DUALITY THEORY

AND EISENSTEIN SERIES FOR KAC-MOODY GROUPS

M. Kapranov

Abstract. We establish a relation between the generating functions appearing in
the S-duality conjecture of Vafa and Witten and geometric Eisenstein series for Kac-

Moody groups. For a pair consisting of a surface and a curve on it, we consider
a refined generating function (involving G-bundles with parabolic structures along

the curve) which depends on the elliptic as well as modular variables and prove

its functional equation with respect to the affine Weyl group, thus establishing the
elliptic behavior. When the curve is P

1, we calculate the Eisenstein-Kac-Moody series

explicitly and it turns out to be a certain deformation of the irreducible Kac-Moody

character, more precisely, an analog of the Hall- Littlewood polynomial for the affine
root system. We also get an explicit formula for the universal blowup function for

any simply connected structure group.

Introduction

(0.1) The goal of this paper is to develop a certain mathematical framework un-
derlying the S-duality conjecture of Vafa and Witten [VW]. Let us recall the formu-
lation. Let S be a smooth projective surface over C and G a semisimple algebraic
group. Denote by MG(S, n) the moduli space of semistable principal G-bundles on
S with the (second) Chern number equal to n and form the generating function of
their topological Euler characteristics:

(1) FG(q) =
∑

n

χ(MG(S, n))qn, q = e2πiτ .

Then, the conjecture says that up to simple factors, FG(q) is a modular form with
respect to a certain congruence subgroup in SL2(Z) and, moreover, relates the
image of FG under the transformation τ 7→ −(1/τ) with FGL , where GL is the
Langlands dual group. In fact, this formulation is correct only for surfaces which
are not of general type and has to be modified in general.

Important work [Go] [LQ1-2] [Y] has been done on the verification of this con-
jecture in various particular cases (mostly restricted to G = SL2 or PGL2). A
treatment of the general case has been prevented by the lack of some fundamen-
tal understanding of the problem. More precisely, underlying the whole theory
(and logically preceding any finer details of the transformation properties) is the
following immediate question.

http://arXiv.org/abs/math/0001005v2


2 M. KAPRANOV

Question 1. Is there a purely mathematical conceptual reason for FG to have
anything to do with modular functions at all? In other words, why should the
variable q in (1), which is just a formal variable in the generating function, be
thought of as parametrizing the elliptic curves Eq = C

∗/qZ?

Let D = {0 < |q| < 1} be the punctured unit disk and E → D be the family
of the curves Eq. Our first step is to introduce a new generating function which
depends on variables living on (a cover of) E and not just on D. Suppose S is
equipped with a smooth irreducible curve X . We consider pairs (P, π) where P is a
principal G-bundle as before and π is a parabolic structure in P |X , i.e., a reduction
of the structure group from G to B, the Borel subgroup. A B-bundle Q on X
has a vector of degrees deg(Q) belonging to L, the lattice of coweights of G. We
denote by MG(n, a) the moduli space of semistable parabolic G-bundles P on S
with c2(P ) = n and deg(P |X) = a. Here we must presume fixed the “polarization
parameters” [MY] neccesary to fix the meaning of semistability. We now form the
generating function

(2) EG(q, z) =
∑

n∈Z,a∈L

χ(MG(n, d))qnza, q ∈ D, z ∈ T∨.

Here T∨ = Spec(C[L]) is the “dual torus”. The product D × T∨ is a natural cover
of the relative abelian variety EL = E ⊗Z L, much as D × C∗ is a cover of E .

It is natural then to conjecture that in the cases when FG is expected to have
a modular behavior, EG should be, up to simple factors, a Jacobi form [EZ], i.e.,
exhibit both modular behavior in q and elliptic behavior in z.

(0.2) The first main result of this paper is the proof the elliptic behavior of the
function EG in a wide range of “relative situations” (allowing, for example, G to
be an arbitrary simply connected group). More precisely, we fix a G-bundle P ◦ on
S−X and consider the moduli space MG,P ◦(n, a) formed by triples (P, τ, π) where
(P, π) are as above and τ is an isomorphism of P |S−X with P ◦. When the self-
intersection index X2

S = −d is negative, we prove (Theorem 2.2.1) that this space
is a scheme of finite type over k without imposing any stability conditions. One
can form then the relative analogs of the functions FG and EG, which we denote
FG,P ◦(q) and EG,P ◦(q, z). When X = P

1 and d = 1, we have the blowup situation
considered in [LQ1-2].

Instead of the Euler characteristic, we work with any kind of “motivic measure”,
i.e., any invariant of algebraic varieties additive with respect to cutting and pasting,
such as, e.g., the number of points over the finite field. We prove (Theorem 3.4.4)
that after multiplying EG,P ◦(q, z) with a certain product over affine roots of G (an
analog of the Weyl-Kac denominator), we get a series which is a regular section of
the dth power of a natural theta-bundle Θ on EL. This bundle is well-known in
the theory of Kac-Moody groups: among its sections one finds characters of level
d integrable representations of the Kac-Moody group associated to the Langlands
dual group GL (note that T∨ is the maximal torus for GL).
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The second main result of the paper is a complete determination of the func-
tions EG,P ◦(q, z) and FG,P ◦(q) in the case when the curve X is P1. In this case, we
first show (Theorem 7.1.2) that the type of P ◦ on the punctured formal neighbor-
hood of X can be encoded by an antidominant coweight b of the Kac-Moody group
of G, or, if one prefers, an antidominant weight of the Kac-Moody group of GL.
Next we identify (Theorem 7.3.1) the function EG,P ◦(q, z) with the analog of the
Hall-Littlewood polynomial [Mac] corresponding to the affine root system of GL.
In other words, this function is a certain deformation of the character of the irre-
ducible representation of the Kac-Moody group with the highest weight (−b). The
parameter of deformation, denoted L, is interpreted as the “Tate motive” (the value
of our motivic invariant on the affine line). In particular, we get an explicit for-
mula for the universal blowup function for an arbitrary simply connected structure
group.

(0.3) The main idea behind our approach is that EG,P ◦ is an analog, for the
Kac-Moody groups, of the unramified Eisenstein series familiar in the Langlands’
program [Lan] and studied in detail for function fields by Harder [H2].

More precisely, if X is a curve over a finite field Fl and Q is a principal G-bundle
over X , then we have the associated flag fibration FQ on X with fiber G/B. A
section s of FQ has a natural degree lying in L, and all sections of given degree
a form a scheme of finite type Γa(Q). The Eisenstein series is just the generating
function

(3) EG,Q(z) =
∑

a∈L

#(Γa(Q)(Fl))z
a, z ∈ T∨.

This series is known to represent a rational function which satisfies a functional
equation for each element of W , the Weyl group. When we replace G by its Kac-
Moody group, we get, essentially, the series (2) and in fact Theorem 3.4.4 says that

it satisfies a functional equation for each element of Ŵ , the affine Weyl group. The

lattice L is a subgroup of Ŵ , so we get the elliptic behavior as a particular case.
Similarly, the explicit calculation of the functions EG,P ◦ and FG,P ◦ in Theorems

7.3.1 and 7.4.6 can be seen of the analogs, in the Kac-Moody situation of Langlands’
calculation of the constant term of the Eisenstein series [Lan].

The analogy between EG,P ◦ and the “classical” Eisenstein series EG,Q is nat-
urally understood in the context of Atiyah’s work on instantons in two and four
dimensions. [A].

(0.4) We can now formulate succinctly our proposed answer to Question 1: the
elliptic curve appearing in the theory of G-bundles on surfaces is the same curve as

appears in the theory of Kac-Moody groups. More precisely, Ĝ, the full Kac-Moody
group associated to G (i.e., the group whose Lie algebra is associated to the affine
Cartan matrix of G by the procedure of [Ka]) is not the loop group G((λ)), nor its
central extension, but the semidirect product of the central extension with the group

C∗
q of “rotations of the loop”. Accordinly the maximal torus is T̂ = C∗

c × T × C∗
q ,
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where C∗
c is the center. The quotient of the open part C∗

c×T×D by L ⊂ Ŵ is a C∗-
bundle over EL which corresponds to the theta-bundle, see [Lo]. So, for instance,

characters of Ĝ, being homogeneous in C
∗
c and Ŵ -invariant, are authomatically

sections of a power of the theta-bundle.

In our case, however, we have a similar situation but applied to the dual group

GL. Formally, the Langlands dual group to Ĝ should be ĜL, and the center of

Ĝ corresponds to the loop rotation subgroup of ĜL and vice versa. Now, the
concept of the second Chern class (for vector bundles) is known since S. Bloch [Bl]
to be intimately related to central extensions of matrix groups, and in our case this
relation descends to the central extension of G((λ)). More precisely, in our case
λ has the meaning of a local equation of X in S, and since we consider bundles
identified with P ◦ on S−X , the Chern class lives naturally in the cohomology with
support in X .

So the variable n in (1) corresponds naturally to C∗
c in Ĝ. On the other hand,

the self-intersection index (−d) of X in S in an invariant of the normal bundle of X

in S and so corresponds to C∗
q in Ĝ. When we pass to the Eisenstein series, we are

transferred to the dual group, so d behaves now as if it was the central charge of

a character of ĜL. In fact, out Theorem 7.3.1 identifies the Eisenstein series with
the L-deformation of a character of central charge d.

(0.5) Let us now describe the contents of the paper in more detail. In Section 1
we review the general concept of “motivic measures” (such as the Euler character-
istic) and of integration of such measures. Section 2 is devoted to the finiteness
theorem 2.2.1 for the moduli space MG,P ◦(n). This result can be seen as an analog
of the reduction theory developed by H. Garland [Ga] for loop groups over number
fields. Garland’s twist by e−tD, t > 0, corresponds to our condition that the self-
intersection index of the curve is negative. In Section 3 we formulate our results
about the structure of the generating function EG,P ◦(q, z). In Section 4 we give a
self-contained treatment of motivic Eisenstein series for finite-dimensional groups.
In Section 5 we give a treatment of the Kac-Moody group as a functor on the cat-
egory of smooth varieties. Our aim in this section was to make straightforward the
connection with the second Chern class which appears in the generating functions
(1) and (2). Next, in Section 6 we develop the formalism of Eisenstein series for
Kac-Moody groups and prove the results of Section 3. Finally, Section 7 is devoted
to explicit calculations of Eisenstein-Kac-Moody series. in the case X = P1. We
first establish a version of Grothendieck’s theorem [Gro] on G-bundles on P

1 in the
case when G is replaced by the sheaf G of Kac-Moody groups; as a result, we let
labelling of isomorphism classes of G-torsors by antidominant affine coweights of G.
Then, we calculate the Eisenstein series in terms of the affine analog of the Hall
polynomial and also give a “parahoric” version of this calculation which identifies
FG,P ◦ .

(0.6) This work was started during my stay in Max-Planck Institut für Mathematik
in 1996 and was reported at the Oberwolfach conference on conformal field theory
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in June 1996. In writing the present text, I was fortunate to be able to use remarks
and advice of several people. Thus, the idea of applying the method of torus actions,
used in Examples 2.4.2 and 3.1.2, I owe to H. Nakajima, who uses it in a similar
(but different) situation in the work in progress with K. Yoshioka. The purely
algebraic approach to the proof of functional equations for the Eisenstein series,
presented in n. 4.3, I learned from a seminar talk of V. Drinfeld. I am grateful
to A. Beilinson and V. Drinfeld for numerous remarks on the previous version and
to I. Cherednik and A. Kirillov, Jr. for discussions of Macdonald’s theory and its
affine generalization. The revised version was prepared during my visit to MSRI
in January-February 2000. The financial support by MPI and MSRI is hereby
gratefully acknowledged. The research on this paper was partly supported by the
NSF.

§1. Motivic measures and zeta functions.

We will use a version of the formalism of “motivic integration” from [DL].

(1.1) Motivic measures. Throughout this paper we fix a field k and denote by
Schk the category of schemes of finite type over k.

Let A a commutative ring. An A-valued motivic measure on Schk is a function
µ which associates to any scheme Z ∈ Schk an element µ(Z) ∈ A depending only
on the isomorphism class of Z such that the two conditions hold:

(1.1.1) If Y ⊂ Z is a closed subscheme, then µ(Z) = µ(Y ) + µ(Z − Y ).

(1.1.2) µ(Z1 × Z2) = µ(Z1) × µ(Z2).

Note that (1.1.1) implies that µ(Z) coincides with µ(Zred).

(1.1.3) Examples: (a) k = C, A = Z and µ(V ) = χc(V ) =
∑
i(−1)i dimHi

c(V,C)
is the topological Euler characteristic with compact supports.

(b) k = Fl, a finite field with l elements, A = Z, and µ(V ) = #V (Fl) is the number
of Fl-points.

(c) k = C, A = Z[l1/2] is the polynomial ring, and µ takes V to its Serre (or
virtual Hodge) polynomial SV (l) =

∑
(−1)ili/2χ(grWi (H•(X(C),C))). Here W is

the weight filtration and χ is the Euler characteristic of the graded vector space. If
V is smooth projective, then SV (l) =

∑
i(−1)ili/2 dim(Hi(V (C),C)) is the Poincaré

polynomial of V ; in fact SV is uniquely determined by this condition and the fact
that it is a motivic measure. Specializing at l = 1, we get SV (1) = χc(V (C)).

(d) There is the universal motivic measure µu whose target Au is the ring generated
by the symbols [Z], where Z is a quasi-projective variety, and which are subject to
the relations [Z] = [Y ] + [Z − Y ], for a closed Y ⊂ Z and [Z1] · [Z2] = [Z1 × Z2].
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We denote by L the value of µ at the affine line A1
k. Thus, in the Example

1.1.3(b) L = l is the number of the elements in Fl, and in (1.1.3)(c) L = l is the
square of the generator of the polynomial ring A = Z[l1/2].

(1.2) Motivic integration. By k̄ we denote a fixed separable closure of k. Fix an
A-valued motivic measure µ. Let Z be a scheme of finite type over k. If W ⊂ Z is a
closed subscheme (defined over k), we denote by 1W : Z(k̄) → A the characteristic
function of Z(k̄). More generally, by a constructible (A-valued) function on Z
we mean a function f : Z(k̄) → A which can be represented as a finite linear
combination of characteristic functions of closed subschemes f =

∑
i ai1Wi

. The
set of such functions will be denoted ConstA(Z). For f ∈ ConstA(Z) one defines
its integral (with respect to µ) as

(1.2.1)

∫

Z

f(z)dµ :=
∑

aiµ(Wi), if f =
∑

i

ai1Wi
.

It is standard to see that this definition is independent on the way of writing f as∑
ai1Wi

. Further, let ϕ : X → Y be a morphism of schemes and f ∈ ConstA(X).
Then the direct image (with respect to µ) of f is the function

(1.2.2) ϕ∗(f) =

∫

X/Y

f · dµ, y 7→

∫

ϕ−1(y)

f(x)dµ.

The following is straightforward.

(1.2.3) Proposition. Suppose that there is a finite stratification of Y by locally
closed subschemes Yα such that over each Yα the morphism ϕ is a (Zariski) locally
trivial fibration. Then for a constructible function f ∈ ConstA(X) the function
ϕ∗(f) is also constructible, and

∫

X

f(x)dµ =

∫

Y

ϕ∗(f)(y)dµ.

(1.3) Motivic zeta. Let X be a smooth algebraic variety over k. We denote by
X(n) the n-fold symmetric product of X . The motivic zeta-function of X (associ-
ated to µ) is the formal series

(1.3.1) ζµ(X, u) =

∞∑

n=0

µ(X(n))un ∈ A[[u]].

(1.3.2) Examples. (a) If k = Fl and µ is given by the number of Fl-points, then
we get the usual Hasse-Weil zeta-function of X .

(b) Consider the situation of Example 1.1.3(c) and assume that X is projective.
Then it is easy to see that

ζµ(X, u) =
∏

i

(1 − li/2u)(−1)i+1bi(X), bi(X) = dimHi(X,C).



S-DUALITY AND EISENSTEIN SERIES 7

This formula has the same shape as the Hasse-Weil zeta function in the Fl-case,
with all the eigenvalues of the Frobenius on Hi being replaced by li/2.

The following fact generalizes the well known properties of zeta functions of
curves over Fl.

(1.1.9) Theorem. Let X be a smooth projective irreducible curve of genus g.
Suppose that A is a field and L 6= 0. Suppose further that there exists a line bundle
on X of degree 1. Then:

(a) The series ζµ(X, u) represents a rational function. In fact, ΦX(u) = (1 −
u)(1 − Lu)ζµ(X, u) is a polynomial of degree 2g.

(b) The function ζµ(X, u) satisfies the functional equation

ζµ(X, 1/Lu) = L
1−gu2−2gζµ(X, u).

Proof: This is analogous to Artin’s classical proof for the Fl-case. Let Picn(X) be
the variety of line bundles of degree n on X and pn : X(n) → Picn(X) be the natural
projection. Clearly p−1

n (L) = P(H0(X,L)), so Proposition 2.1.6 is applicable and
yields

ζµ(X, u) =
∑

n∈Z

un
∫

L∈Picn(X)

Lh
0(L)−1

L − 1
dµL.

This means that

ζµ(X, 1/Lu) =
∑

n∈Z

unL
n

∫

L∈Pic−n(X)

Lh
0(L)−1

L − 1
dµL,

while

L
1−gu2−2gζµ(X, t) =

∑

n

un
∫

M∈Pic2g−2+n(X)

L
h0(M)−1

L − 1
L

1−gdµ.

Consider the isomorphism

σ : Pic−n(X) → Pic2g−2+n(X), L 7→ ωX ⊗ L∗.

By the Riemann-Roch theorem, for M = σ(L) we have h0(L)−h0(M) = −n+1−g
and thus

L
nLh

0(L)−1

L − 1
− L

1−g Lh
0(M)−1

L − 1
=

L1−g − Ln

L − 1
.

So the difference between the two sides of the putative functional equation, consid-
ered as a formal series in both positive and negative powers of u, is

1

L − 1

∑

n∈Z

µ(Picn(X))(L1−g − L
n)un.
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Since there exists a line bundle of degree 1 on X , the multiplication by the nth
tensor power of this bundle identifies Picn(X) with Pic0(X) and the above series
is equal to

µ(Pic0(X))

L − 1

(∑

n∈Z

L
1−gun −

∑

n∈Z

L
nun

)
= µ(Pic0(X))

(
L1−g

L − 1
δ(u) −

1

L − 1
δ(Lu)

)
,

where δ(u) =
∑
n∈Z

un is the Fourier series of the delta-function at 1. Now we
quote the following elementary algebraic fact, which implies our statement.

(1.3.4) Lemma. Let A be a field and g0(u) ∈ A((u)), g∞(u) ∈ A((u−1)) be two
formal Laurent series in powers of u, resp. u−1. Let D =

∑
niai be a positive

divisor on the affine line over A, with ai ∈ A, ni ≥ 0. Suppose that we have an
equality of formal series in positive and negative powers of t:

g0(u) − g∞(u) =
∑

i

ni∑

ν=1

ciνδ
(ν)(u/ai),

where δ(ν)(u) is the νth formal derivative of δ(u). Then there exists a rational
function g ∈ A(u) whose expansion at 0 is g0, at ∞ is g∞ and whose divisor of
poles is bounded by D.

(1.3.5) Remarks. (a) If we drop the assumption Pic1(X)(k) 6= ∅, then the above
arguments still show that ζµ(X, u) is rational and satisfies the same functional
equation, but it may have more poles. The poles will then lie at the points u
satisfying ud = 1 and Lud = 1, where d is such that Picd(X)(k) 6= ∅.

(b) It is natural to expect that the motivic zeta-functions of higher-dimensional
varieties are rational and satisfy similar functional equations.

§2. Relative moduli spaces of G-bundles.

(2.1) The second Chern class. For a smooth variety S over k we denote by
CHm(S) the Chow group of codimension m cycles on S modulo rational equiv-
alence. Thus CHm(S) = Hm(S,Km,S), where Km,S = Km(OS) is the sheaf of
Quillen K-functors [Q].

Let G be a split simple, simply connected algebraic group over k and GS be the
sheaf of G-valued regular functions on S. By the work of Steinberg, Moore and
Matsumoto [Ma2], as developed in [BD] [EKLV], we have a natural (in S) central
extension of sheaves of groups on S:

(2.1.1) 1 → K2,S → G̃S → GS → 1.
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This extension comes from a canonical element in H2(B•G,K2) which, in its turn,
is represented by a multiplicative K2,G-torsor Φ on G, defined uniquely up to
isomorphism of multiplicative torsors, see [BD]. In the sequel, we will assume Φ
fixed. This fixes (2.1.1) uniquely up to a unique isomorphism.

If P is a principalG-bundle over S, then (2.1.1) gives a class c2(P ) ∈ H2(S,K2,S) =

CH2(S) called the second Chern class of P . More precisely (see [Bl]), the sheaf P
of regular sections of P is a sheaf of GS-torsors and the (local) liftings of it to a

sheaf of G̃S-torsors form a K2,S-gerbe on S, and c2(P ) is the class corresponding
to this gerbe by Giraud’s theory [Gi].

We now describe the properties of c2 which we need. Let T be the maximal
torus in G and L = Hom(Gm, T ) be the lattice of coweights. Let also W be the
Weyl group of G and Ψ : L× L→ Z be the minimal W -invariant integral negative
definite scalar product on L. It is proportional to the Killing form, see [Ka], Ch.
6. The quadratic form Ψ(x, x) is even, so Ψ(x, x)/2 is the minimal W -invariant
quadratic form on L.

If V is a representation of G with dim(V ) = N , then it induces a homomorphism
T → GN

m of tori and at the level of 1-parameter subgroups, a homomorphism of
Abelian groups λV : L → Z

N . Let ϕ be the quadratic form on Z
N given by

ϕ(a1, ..., aN) =
∑
i<j aiaj amd λ∗V ϕ be the induced form on L. It is then an

integer multiple of the form Ψ(x, x)/2 and we denote by κV ∈ Z the coefficient
of proportionality: ϕ(λV (x)) = κV Ψ(x, x)/2. We also denote by PV the vector
bundle on S associated to P and the representation V .

(2.1.2) Proposition. (a) The usual Chern class c2(
V P ) is equal to κV c2(P ).

(b) Let Q be a principal T -bundle on S and c1(Q) ∈ H1(S,Q) = Pic(S)⊗Z L be
the class of Q. If P is the G-bundle obtained from Q, then

c2(P ) = (m⊗ Ψ)(c1(Q), c1(Q)),

where m : Pic(S) × Pic(S) → CH2(S) is the intersection product.

Proof: Both properties follow easily from the construction of the central extension
in [BD], because the form Ψ is used first to construct the central extension over the
torus. .

(2.2) The relative moduli space. Let now S be a smooth projective surface. We
have then the degree homomorphism deg : CH2(S) → Z. For a principal G-bundle
P on S we will abbreviate deg(c2(P )) to simply c2(P ) and call it the (second)
Chern number of P . Let X ⊂ S be a smooth irreducible curve. We denote X2

S the
self-intersection index of X in S and assume that X2

S < 0. We denote S◦ = S−X .
Let P ◦ be a principal G-bundle on S◦.

(2.2.1) Theorem. There exists a fine moduli space MG,P ◦(n) of pairs (P, τ) where
P is a principal G-bundle on S with c2(P ) = n and τ : P |S◦ → P ◦ is an isomor-
phism. This space is a scheme of finite type over k which is empty for n≪ 0.
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Proof: Let MG,P ◦(n) be the moduli functor on the category of k-schemes which
corresponds to our problem. Note that any (P, τ) as above has no nontrivial auto-
morphism. This means that MG,P ◦(n), coming as it does, from a stack, is in fact
a sheaf with respect to the flat topology.

(2.2.2) Proposition. The functor MG,P ◦(n) is represented by an ind-scheme
MG,P ◦(n) which is an inductive limit of quasiprojective schemes over k.

Proof: First consider the case G = SLr. We have then a rank r bundle V ◦ on S◦

with det(V ◦) ≃ OS◦ . Let j : S◦ → S be the embedding. Then pairs (P, τ) as in the
theorem are in bijection with locally free subsheaves V ⊂ j∗V

◦, det(V ◦) ≃ OS . let
us assume that there exists at least one such subsheaf, say V0 (otherwise MG,P ◦(n)
is the functor identically equal to the empty set and there is nothing to prove).
Let m ⊂ OS be the sheaf of ideals of X . Then any V as above is contained in
m−NV0 and contains mNV0 for some N ≫ 0. This means that MG,P ◦(n) is an
inductive limit, over N , of functors represented by locally closed subschemes in
Quot(m−NV0/m

NV0), and the case G = SLr is proved.
The case of arbitrary G is reduced to the above by taking a sufficient number of

representations V1, ..., VM of G and realizing MG,P ◦(n) as a closed sub-ind-scheme
in the product

∏
iMSLri

,P
◦
Vi

(κVi
n).

Let Y be the formal neighborhood of X in S and BunG(Y ), BunG(X) be the
moduli stacks of G-bundles on Y and X . We have then the restriction maps

(2.2.3) BunG,P ◦(n)
ϕ

−→ BunG(Y )
ψ

−→ BunG(X).

Here we regard BunG,P ◦(n) as a trivial stack (a sheaf of sets).

(2.2.4) Proposition. For any principal G-bundle Q on X the stack ψ−1(Q) is
bounded (i.e., dominated by a k-scheme of finite type).

Proof: Let X(d) = Spec(OS/m
d+1) be the dth infinitesimal neighborhood of X in

S. Given an extensionQ(d) ofQ toX(d), all its further extensions toX(d+1), if exist,
form a homogeneous space over H1(X, ad(Q)⊗(md+1/md+2)). But md+1/md+2 =
(N∗

X/S)⊗(d+1) and since X2
S = deg(NX/S) < 0, for large d the cohomology in

question vanishes. Thus all the extensions of Q to a bundle on Y are determined
by their restrictions to X(d) for some d, and the latter form a bounded family.

(2.2.5) Proposition. For any principal F -bundle P̂ on Y , the stack ϕ−1(P̂ ) is
bounded.

Proof: Let Y ◦ = Y ∩S◦ be the punctured formal neighborhood ofX in S. Supposing

ϕ−1(P̂ ) 6= ∅ (otherwise there is nothing to prove), there is a G-bundle P on S

whose restriction to Y is isomorphic to P̂ and whose restriction to S◦ is isomorphic

to P ◦. Any other object of ϕ−1(P̂ ) is then obtained by gluing P̂ and P̂ ◦ over
Y ◦ in a different way. This new gluing function is an element of Aut(P |Y ◦). If

g, g′ ∈ Aut(P |Y ◦) are such that g′ = gh with h ∈ Aut(P̂ ), then the gluings by g
and g′ give the same object (element) of MG,P ◦(n). Thus it is enough to prove the
following.
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(2.2.6) Proposition. Let P be any principal G-bundle on S. Then the quotient
Aut(P |Y ◦)/Aut(P |Y ) is bounded.

Proof: We first consider the case G = SLr, so P is given by a rank r bundle V on
S. As X2

S < 0, the curve X can be blown down to a (possibly singular) point p on
a new surface S′. Let σ : S → S′ be the projection. Because σ−1 identifies S′−{p}
with S◦ = S −X , we have the embeddings j : S◦ → S and j′ = σj : S◦ → S′. Let
Y ′ be the formal neighborhood of p in S′ and σ̂ : Y → Y ′ be the projection. Let
also Y ′◦ = Y ′ − {p} be the punctured formal neighborhood. Denote m ⊂ OS and
m̂ ⊂ OY the sheaves of ideals corresponding to X . The morphism σ is projective,
in fact

S = Proj

(⊕

d≥0

σ∗(m
d)

)

and the relative sheaf O(1) on the projective spectrum is identified with m. The
same is true for σ̂. Now, let us aply the relative version of Serre’s theorem (about
the equivalence of the categories of coherent sheaves and graded modules) to the

coherent sheaf V̂ = V |Y on Y . We conclude that for d≫ 0 we have

HomY (V̂ , V̂ ) = HomY ′

(
σ̂∗(V̂ (d)), σ̂∗(V̂ (d))

)
,

where V̂ (d) = V̂ ⊗O(d) = mdV̂ . Hence Aut(V̂ ) = Aut(σ̂∗V̂ (d)). Since Aut(V̂ ) =

Aut(V̂ (d)), we can replace V̂ by V̂ (d) and assume that Aut(V̂ ) = Aut(σ̂∗(V̂ )). On
the other hand,

Aut(V̂ |Y ◦) = Aut((σ̂∗V̂ )|Y ′◦) ⊂ Aut((j′∗j
′∗σ∗V )|Y ′).

Since j′ is an embedding of the complement of a point into a surface, j′∗j
′∗σ∗V is

a coherent sheaf on S′ which contains the (torsion-free) sheaf σ∗V and coincides
with it outside p. We have therefore an exact sequence

(2.2.7) 0 → σ̂∗V̂ → (j′∗j
′∗σ∗V )|Y ′ → F → 0,

where F is a coherent sheaf supported at p. It follows that the quotient of the
automorphism group of the middle sheaf by the automorphism group of the left
sheaf is bounded. Thus Proposition 2.2.6 is proved for G = SLr. The case of
general G is deduced from this by applying the above reasoning to vector bundles
associated to sufficiently many representations of G.

(2.3) End of the proof of Theorem 2.2.1. because of Propositions 2.2.4 and
2.2.5, we are reduced to the following fact.

(2.3.1) Proposition. The image of MG,P ◦(n) under the map ψϕ in (2.2.3) is
bounded.

Proof: As before, we start with the case G = SLr, so we work with rank r bundles
V on S with det(V ) ≃ O, c2(V ) = n equipped with an identification V |S◦ → V ◦
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where V ◦ is some fixed bundle on S◦. We will use the notation introduced in
the proof of Proposition 2.2.6, in particular, we will use the global analog of the
sequence (2.2.7), which we write in the form

(2.3.2) 0 → σ∗V → j′∗V
◦ → F → 0

with F supported at p ∈ S′. We choose an embedding f : S′ → PN and apply the
Grothendieck-Riemann-Roch theorem to V and to fσ : S → PN . From (2.3.2) we
infer that

chN (f∗σ∗V ) = c− l(F),

where l(F) = dim H0(F) is the length of the 0-dimensional sheaf F and c is a
constant depending only on V ◦ but not on V . The only higher direct image to take
into account is R1(fσ)∗V = f∗R

1σ∗V . The sheaf R1σ∗V is again supported at p
and we have

chN (f∗R
1σ∗V ) = l(R1σ∗V ).

As c1(V ) = 0, c2(V ) = n are fixed, the GRR theorem implies part (a) of the
following fact.

(2.3.3) Lemma. (a) For V ∈ MSLr,V ◦(n) the sum l(F) + l(R1σ∗V ) is equal to
some fixed constant c = c(V ◦, n). In particular, l(R1σ∗V ) is bounded.

(b) Further, for n≪ 0 we have c(V ◦, n) < 0 which implies that MSLr,V ◦(n) = ∅.

Part (b) is true because the dependence of c(V ◦, n) on n comes out to be affine
linear with a positive coefficient in the linear part.

Now, since R1σ∗V is supported at p = σ(X), we have

(2.3.4) H0(R1σ∗V ) = H1(Y, V |Y ),

where Y is, as before, the formal neighborhood of X in S. In fact, one can replace
in (2.3.4) Y by the infinitesimal neighborhoodX(d) for sufficiently large d. Consider
the spectral sequence corresponding to the filtration of V |Y (or V |X(d)) by powers of
m. Its quotients are V |X⊗(N∗

X/S)⊗i, i ≥ 0. By analyzing the spectral sequence, we

find that the component H1(X, V |X) of the E1-term consists of permanent cycles,
by dimension reasons. So dim H1(X, V |X) ≤ l(R1σ∗V ) ≤ c(V ◦, n) bounded. As
V |X has c1 = 0, we find, by Kleiman’s criterion [Kl] that all possible V |X for
V ∈MSLr,V ◦(n) form a bounded family.

This finishes the proof for G = SLr. The case of arbitrary G is reduced to this
one by considering associated vector bundles and applying the following fact which
is an easy consequence of the reduction theory of Harder [H1]

(2.3.5) Lemma. A family of principal G-bundles on a curve is bounded if and
only if for any representation of G the corresponding family of vector bundles is
bounded.

(2.4) The generating function. We now fix a ring A and an A-valued motivic
measure µ on Schk, as in §1. To the data of S,X,G and P ◦ we can, in virtue of
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Theorem 2.2.1, associate the generating function

(2.4.1) F (q) = FG,P ◦(q) =
∑

n∈Z

µ(MG,P ◦(n))qn ∈ A((q)).

(2.4.2) Example. Let k = C, A = Z and µ be given by the Euler characteristic,
as in Example 1.1.3(a). Assume that P ◦ is trivial. Then we have a G-action on
MG,P ◦(n) given by g(P, τ) = (P, g ◦ τ). Let us consider the induced T -action
and find the fixed locus MG,P ◦(n)T . By definition, it consists of (P, τ) which are
isomorphic (as bundles with trivialization) to (P, t ◦ τ) for any t ∈ T . Since the
moduli problem associated to MG,P ◦(n) has trivial automorphism groups, we find
that MG,P ◦(n)T consists of (P, τ) which come from T -bundles on S trivialized
on S◦. In the identification BunT (S) = Pic(S) ⊗Z L, bundles trivial on S◦ form
a subgroup m ⊗ L where m is, as before, the (invertible) sheaf of ideals of X .
We will denote such bundles by m ⊗ a, a ∈ L. The trivialization of m ⊗ a over
S◦ is unique, up to isomorphism in our sense, and the second Chern number of
the associated G-bundle is, by Proposition 2.1.2(b), equal to (−d)Ψ(a, a), where
d = −X2

S. Therefore

χ(MG,P ◦(n)) = χ(MG,P ◦(n)T ) = #{a ∈ L : −dΨ(a, a) = m},

and hence

FG,P ◦(q) =
∑

a∈L

q−dΨ(a,a)/2 = θL(qd)

is the theta-function (or, rather the theta-zero-value) of the lattice L with the
positive definite quadratic form (−Ψ(x, x)/2).

§3. The refined generating function and its elliptic behavior.

(3.1) The relative moduli space of parabolic bundles. We keep the notation
of §2. A T -bundle U on X has a degree deg(U) ∈ L which is the image of the
class of U in BunT (X) = Pic(X) ⊗ L under deg′⊗ Id, where deg′ : Pic(X) → Z is
the usual degree of line bundles. Let B be a fixed Borel subgroup in G containing
T . As B/[B,B] ≃ T , a B-bundle R gives a T -bundle, whose degree will also be
denoted deg(R) ∈ L. We set d = −X2

S . By our assumptions, d > 0. Let L+ ⊂ L
be the semigroup spanned by the positive coroots. For a principal G-bundle Q on
X and a ∈ L let Γa(Q) be the scheme of all B-structures in Q of degree a. The
following result is due to G. Harder [H2].
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(3.1.1) Proposition. Γa(Q) is a quasiprojective scheme over k. There is a0inL
such that Γq(Q) = ∅ unless a ∈ a0 + L+.

Together with Theorem 2.2.1 this implies the following.

(3.1.2) Corollary. For any a ∈ L, n ∈ Z there exists a k-scheme MG,P ◦(n, a) of
finite type, which is a fine moduli space of triples (P, τ, π) where:

• P is a G-bundle on S with c2(P ) = n;
• τ : P |S◦ → P ◦ is an isomorphism;
• π is a B-structure in P |X of degree a.

We now form the generating function

(3.1.3) EG,P ◦(q, z, v) =
∑

n∈Z, a∈L

µ(MG,P ◦(n, a))qnzavd.

Here µ is a fixed A-valued motivic measure on Schk and z is a formal variable
running in the “dual torus” T∨ = Spec Z[L] whose lattice of characters is L. The
variable v (in which EG,P ◦ is homogeneous of degree d) is added for convenience of
future formulations.

(3.1.4) Example. Consider the situation of Example 2.4.2. As before, we have
a G-action on MG,P ◦(n, a). The set of T -fixed points consists of one element, the
G-bundle corresponding to m ⊗ a, if Ψ(a, a) = n, and is empty otherwise. This
implies that

EG,P ◦(q, z, v) =
∑

a∈L

q−dΨ(a,a)/2zavd = θL(qd, z)vd,

where θL(q, z) is now the full theta-function, depending on the elliptic variables as
well as on the modular one.

(3.2) The affine root system. We denote by L∨ = Hom(L,Z) the weight lattice
of G and by ∆sim ⊂ ∆+ ⊂ ∆ ⊂ L∨ the sets of simple, resp. positive, resp. all roots
of G. Let ρ ∈ L∨ is the half-sum of the positive roots. Let L∨

aff = Z ⊕ L∨ ⊕ Z be
the lattice of affine weights and

∆̂ = {(0, α, n), α ∈ ∆, n ∈ Z} ⊂ L∨
aff ,

∆̂+ = ({0} × ∆+ × {0}) ∪ ({0} × ∆ × Z≥0)

be the system of affine roots of G, resp. positive affine roots. The set of simple
affine roots will be denoted by

∆̂sim = ({0} × ∆sim × {0}) ∪ {(0,−θ, 1,

where θ ∈ ∆+ is the maximal root. We denote ρ̂ = (0, ρ, h∨) ∈ L∨
aff , where h∨ is

the dual Coxeter number of G, see [Ka].
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As G is assumed simply connected, its coweight lattice L coincides with the
coroot lattice. For any α ∈ ∆ let α∨ ∈ L be the corresponding coroot and ρ∨ =
(1/2)

∑
α∈∆+

α ∈ (1/2)L. We set Laff = Z⊕L⊕Z. This is the lattice dual to L∨
aff .

Denote by ∆̂∨ ⊂ Laff the system of affine coroots. Again, we use the notation α∨

to denote the affine coroot corresponding to α ∈ ∆̂. Thus, if α = (0, β, n) with
β ∈ ∆ and n ∈ Z, then α∨ = (n, β∨, 0). We also write ρ̂∨ = (h, ρ∨, 0), where h is
the Coxeter number of G.

(3.3) The abelian variety EL. We now recall the standard appearance of elliptic
curves in the Kac-Moody theory, see [Lo].

Let Ŵ = W ⋉L be the affine Weyl group of G. It is generated by the reflections

sα, α ∈ ∆̂sim. This group acts on Laff = Z ⊕ L⊕ Z by

w ◦ (n, a,m) = (n, w(a), m), w ∈W,

(3.3.1) b ◦ (n, a,m) =

(
n+ Ψ(a, b) +

1

2
Ψ(b, b)m, a+mb,m

)
, b ∈ L,

see [PS]. Note that this action preserves the subgroup Z⊕L ⊂ Laff given by m = 0.

Accordingly, we have the Ŵ -action on T∨
aff = Gm × T∨ × Gm = Spec Z[Laff ]. We

will denote a typical point of T∨
aff by t = (q, z, v), where q, v ∈ Gm and z ∈ T∨.

because the sugroup {m = 0} is preserved by Ŵ , we have a Ŵ -action on the
torus Gm × T∨ = Spec Z[Z ⊕ L] with coordinates q, z, so that the projection

T∨
aff → Gm × T∨ given by (q, z, v) 7→ (q, z), is Ŵ -equivariant. In other words, T∨

aff

is a Ŵ -equivariant Gm-bundle on Gm × T∨. We denote by θ the corresponding

Ŵ -equivariant line bundle on Gm × T∨ (so sections of θ are functions f(q, z, v)
homogeneous in v of degree 1).

Assume now that the ring A where our motivic measure µ takes values, is a field.
Then A((q)) is a complete discrete valued field. Let E be the Tate elliptic curve
over A((q)). Thus Ean, the rigid analytic A((q))-space corresponding to E , is the
quotient Ean = G

an
m,A((q))/q

Z. Consider also the abelian variety EL over A((q)) such

that

(3.3.2) Ean
L = T∨,an

A((q))/q
Ψ(L).

Here we regard Ψ as a homomorphism L → L∨ and view L∨ as the lattice of 1-
parameter subgroups in T∨, so qλ, λ ∈ L∨, is the value at q of the 1-parameter
subgroup λ. Note that T∨

A((q)) can be viewed as a completion of (Gm × T∨)A, with

q being the coordinate in Gm. The action of L ⊂ Ŵ on T∨
A((q)) coming, via this

identification, from the action on Gm × T∨ induced by (3.3.1), is the same as the
one used in (3.3.2). In particular, W acts on EL and

(3.3.3) (EL/W )an = T∨,an
A((q))/Ŵ .
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The Ŵ -equivariant line bundle θ on Gm×T∨ gives a W -equivariant line bundle on

EL, which we denote by Θ. Similarly, 1-cocycles of Ŵ with coefficients in A[T∨
aff ]∗,

the group of invertible regular functions, give rise to line bundles on EL/W and
hence to W -equivariant line bundles on EL. We will need the following two cocycles:

(3.3.4) The cocycle w 7→ (−1)l(w), where l(w) is the length of w. This cocycle is

trivial on L ⊂ L̂.

(3.3.5) The cocycle

w 7→ tw(ρ̂∨)−ρ̂∨ =
∏

α∈∆̂+∩w−1(∆̂−)

tα
∨

, t = (q, z, v) ∈ T∨
aff .

As 2ρ̂∨ ∈ Laff , the square of this cocycle is a coboundary. We denote by L the line
bundle on EL corresponding to this cocycle. Thus L⊗2 ≃ O.

(3.4) The functional equation. We now proceed to formulate the first main
result of this paper. We write ζ(u) for ζµ(X, u), the motivic zeta function of X and
assume from now on that Pic1(X)(k) 6= ∅. This condition, added for simplicity of
formulations, always holds when k is algebraically closed or finite. Thus Φ(u) =
ΦX(u), the numerator of ζ(u), is a polynomial if degree 2g with constant term 1.
As before, we denote d = −X2

S and assume d > 0. We also assume that A is a field
and L 6= 0.

(3.4.1) Theorem. The series EG,P ◦(t) = EG,P ◦(q, z, v) converges to a meromor-
phic function on (T∨×Gm)anA((q)) (homogeneous of degree d in the variable v) which

satisfies, for any w ∈ Ŵ , the functional equation

EG,P ◦(t) = Λw(t)EG,P ◦(Lρ̂−w(ρ̂)t),

where

Λw(t) = L
l(w)(1−g)

∏

α∈∆̂+∩w−1(∆̂−)

ζ(Ltα
∨

)

ζ(tα∨)
.

Further, the singularities of EG,P ◦(t) are contained among the singularities of the
rational functions Λw(t).

It is convenient to reformulate this theorem as follows. Let

(3.4.2) D(t) =
∏

α∈∆̂+

(1 − L
2tα

∨

)Φ(tα
∨

).

As with the Weyl-Kac denominator [Ka], it is clear that D(t) is an analytic function
on T∨,an

A((q)) (it does not depend on v), a kind of theta-function. Then set

(3.4.3) NG,P ◦(t) = EG,P ◦(t)D(t)

and call NG,P ◦(t) the numerator of EG,P ◦ . Taking into account the functional
equation for ζ(u) together with the fact that D(t) dominates all the poles of all the
Λw(t), we can reformulate Theorem 3.4.1 as follows.
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(3.4.4) Theorem. The series NG,P ◦(t) is well-defined and represents an analytic

function on T∨,an
A((q)) which, for any w ∈ Ŵ , satisfies the functional equation

NG,P ◦(t) = (−1)l(w)
(
(Lρ̂t)w(ρ̂∨)−ρ̂∨

)1+2g
NG,P ◦(Lρ̂−w(ρ̂)w(t)).

In other words, up to a shift and a multiplication by a monomial, NG,P ◦ is a
regular section of the line bundle L ⊗ Θ⊗d on EL, which is antisymmetric with

respect to the Ŵ -action on this equivariant bundle.
This identifies NG,P ◦ (and therefore EG,P ◦) as an element of a finite-dimensional

A((q))-vector space depending only on G and d.
The proofs of Theorems 3.4.1 and 3.4.4 will be given in §6.

§4. Motivic Eisenstein series for G.

We first summarize the classical theory of unramified geometric Eisenstein series
[H2] putting it into the motivic framework. In this section G will be assumed to be
any split reductive group over k such that [G,G] is simply connected. The notations
pertaining to the root system remain the same.

(4.1) Rationality and functional equation. Let Q be a principal G-bundle on
X . The motivic Eisenstein series associated to Q, is the generating function

(4.1.1) EG,Q(z) =
∑

a∈L

µ(Γa(Q))za, z ∈ T∨,

where Γa(Q) is the scheme of B-structures on Q of degree a, see (3.1) for this and
other notations.

(4.1.2) Theorem. (a) The series EG,Q(z) represents a rational function on T∨
A .

(b) This rational function satisfies, for any w ∈W , the functional equation

EG,Q(z) = Mw(z)EG,Q(Lρw(L−ρz)),

where

Mw(z) = L
l(w)(1−g)

∏

α∈∆+
w(α)∈∆−

ζ(Lzα
∨

)

ζ(zα∨)
.

Further, the singularities of EG,Q(z) are contained among the singularities of the
rational functions Mw(t), w ∈W .

Let us give an equivalent formulation in terms of the “numerator”

(4.1.3) NG,Q(z) = EG,Q(z) ·
∏

α∈∆+

(1 − L
2zα

∨

)Φ(zα
∨

).
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(4.1.4) Theorem. The series NG,Q(z) is a Laurent polynomial which satisfies,
for any w ∈W , the functional equation

NG,Q(z) = (−1)l(w)
(
(Lρz)w(ρ∨)−ρ∨

)1+2g
NG,Q(Lρ−w(ρ)w(z)).

The equivalence of (4.1.2) and (4.1.4) is a formal consequence of the functional
equation for ζ(u) and is left to the reader.

(4.2) Proof for G = GL2. Assume G = GL2. Thus Q comes from a rank 2 vector
bundle V on X . In this case L = Z2 and a B-structure on Q of degree a = (a1, a2)
is the same as a rank 1 subbundle M ⊂ V with deg(M) = a1 and deg(V/M) =
a2. Thus Γa(Q) parametrizes such subbundles. Recall that a subbundle is just a
coherent subsheaf which is locally a direct summand. Any proper coherent subsheaf
M ⊂ V (subbundle or not) is automatically locally free of rank 1, so deg(M) is
defined. Further, V/M is a direct sum (V/M)lf ⊕ (V/M)tors of a locally free sheaf
of rank 1 and a torsion sheaf. We define

deg(V/M) = deg((V/M)lf) + dim H0((V/M)tors).

Let Γa1,a2
(Q) be the scheme parametrizing subsheaves M ⊂ V with deg(M) = a1

and deg(V/M) = a2. This is just a component of the Quot scheme of V .
As L = Z2, we have T∨ = G2

m and write EG,Q(z) as EG,Q(z1, z2).

(4.2.1) Proposition. (cf. [Lau].) The generating function

Ẽ(z1, z2) =
∑

a1,a2∈Z

µ(Γa1,a2
(Q))za1

1 za2
2

is equal to ζ(z2/z1)EG,Q(z1, z2).

Proof: Any rank 1 subsheaf M ⊂ V can be uniquely written in the form the form
M = M(−D) where M is a rank 1 subbundle and D is a positive divisor on X .
This implies the statement.

In view of the functional equation for ζ(u), Theorem 4.1.2 for the GL2-bundle
Q is equivalent to the following statement.

(4.2.2) Proposition. The series Ẽ(z1, z2) represents a rational function with only
poles being simple poles along the lines z1 = z2 and z1 = L2z2. It satisfies the
functional equation

Ẽ(z1, z2) = (Lz1/z2)
2−2gẼ(Lz2,L

−1z1).

Proof: We will use Lemma 1.3.4 and prove that the difference of the two sides of
the proposed equality, considered as a formal series in zi, z

−1
i , is a sum of two delta

functions. Consider the projection

pa1,a2
: Γa1,a2

(Q) → Pica1
(X),
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which takes M ⊂ V into the isomorphism class of M in the Picard group. If a1 +
a2 = deg(V ) (otherwise Γa1,a2

(Q) = ∅), then the fiber p−1
a1,a2

(M) is the projective

space P(Hom(M, V )). Thus the coefficient at za1
1 za2

2 , a1 +a2 = deg(V ) in Ẽ(z1, z2)
is ∫

M∈Pica1
(X)

Ldim Hom(M,V ) − 1

L − 1
dµM,

while the coefficient at the same monomial in (Lz1/z2)
2−2gẼ(Lz2,L

−1z1) is

∫

M′∈Pica2+2−2g(X)

L
a2−a1+2−2gLdim Hom(M′,V ) − 1

L − 1
dµM′ .

Consider the isomorphism

σ : Pica1
(X) → Pica2+2−2g(X), M → M∗ ⊗ Λ2V ⊗ ω∗

X ,

where ωX is the sheaf of 1-forms. Since for a rank 2 bundle we have V ∗ ≃ V ⊗
(Λ2V )∗, we find from the Riemann-Roch theorem that

dim Hom(M, V ) − dim Hom(M′, V ) = a2 − a1 + 2 − 2g,

whenever M′ = σ(M). This means that the difference of the coefficients at za1
1 za2

2

in the two sides of (4.2.2) is

∫

M∈Pica1
(X)

La2−a1+2−2g − 1

L − 1
dµM = µ(Pica1

(X)) ·
La2−a1+2−2g − 1

L − 1
.

Our assumption that Pic1(X)(k) 6= ∅ implies that µ(Pica1
(X)) = µ(Pic0(X)) and

we find that the difference between the two series in (4.2.2) is

µ(Pic0(X))

L − 1

∑

a1+a2=deg(V )

(La2−a1+2−2g − 1)za1
1 za2

2 =

=
µ(Pic0(X))

L − 1

(
z
deg(V )
2 L

deg(V )+2−2gδ

(
z1

L2z2

)
− z

deg(V )
2 δ

(
z1
z2

))
.

This proves our claim.

(4.2.3) Corollary. Theorems 4.1.2 and 4.1.4 hold whenever G has semisimple
rank 1.

(4.3) The general case. We now deduce Theorems 4.1.2 and 4.1.4 for general G
from the case of semisimple rank 1, following an approach which the author learned
from V. Drinfeld (this approach is also implicit in [BG]).
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Note that unlike the functional equation (4.1.2) for EG,Q(z) which is to be under-
stood in the sense of analytic continuation (summing a series to a rational function
and expanding in a different region), the equation (4.1.4) for NG,Q(z) is supposed
to hold at the level of monomials (provided we know that NG,Q is indeed a Lau-
rent polynomial). Conversely, suppose we know that the series NG,Q(z) defined
by (4.1.3) satisfies the equations (4.1.4) at the level of monomials. Then we can
deduce that NG,Q(z) is actually a Laurent polynomial. Indeed, the support of NG,Q
lies in some translation of L+ ⊂ L, the cone of dominant coweights of [G,G]. The
equations (4.1.4), if they hold at the level of monomials, would then imply that the
support of NG,Q(z) lies in the intersection, over all w ∈W , of some translations of
w(L+). But any such intersection is finite.

Further, the group W being generated by simple reflections, we are reduced to
the following fact.

(4.3.1) Lemma. Let α ∈ ∆sim. Then the series NG,Q(z) defined by (4.1.3), sat-
isfies the equation (4.1.4) with w = sα, at the level of monomials.

Proof: Let Pα be the parabolic subgroup in G defined by one negative root (−α)
and Mα ⊂ Pα be the Levi subgroup. So Mα has semisimple rank 1, its maximal
torus is T , its Borel subgroup is Bα = B ∩ Mα and the Weyl group is {1, sα}.
Let P ab

α = Pα/[Pα, Pα] and Lα = Hom(Gm, P
ab
α ), so we have a homomorphism

λ : L→ Lα. Since Mα is isomorphic to the quotient of Pα by its unipotent radical,
we have a projection ϕ : Pα → Mα. A Bα-bundle on X has degree lying in L and
a Pα-bundle has degree lying in Lα.

Now, a B-structure of degree a on a G-bundle Q gives, in particular, a Pα-
structure of degree λ(α). Conversely, suppose that π is a Pα-structure on Q and
let (Q, π) be the corresponding Pα-bundle. Then a B-structure on Q refining π is

the same as a Bα-structure on the Mα-bundle ϕ∗(Q, π). Let ΓPα

b (Q), b ∈ Lα, be
the scheme of Pα-structures on Q of degree b. We conclude that

EG,Q(z) =
∑

b∈Lα

∫

π∈ΓPα
b

(Q)

EMα,ϕ∗(Q,π)(z)dµπ,

the equality being understood at the level of each coefficient. Therefore

NG,Q(z) =

( ∏

β∈∆+−{α}

(1 − L
2zβ

∨

)Φ(zβ
∨

)

) ∑

b∈Lα

∫

π∈ΓPα
b

(Q)

NMα,ϕ∗(Q,π)(z)dµπ.

Since NMα,ϕ∗(Q,π)(z) is a Laurent polynomial, it satisfies the functional equation
(4.1.4) with w = sα at the level of monomials. As ∆+ − {α} is permuted by
sα, we finally conclude that NG,Q(z) satisfies (4.1.4) with w = sα at the level of
monomials. Lemma is proved.
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§5. The Kac-Moody sheaf and c2.

Let G((λ)) be the loop group of G. This is an ind-scheme over k such that for
any commutative k-algebra R we have

G((λ))(R) = G
(
R((λ))

)
.

If R is a field, Garland [Ga] has constructed a central extension of G((λ))(R) by
R∗ which is an algebraic version of the minimal central extension of the loop group
of a compact Lie group [PS]. We need the more general case when R is replaced by
the structure sheaf of a smooth algebraic variety over k. In this section we describe
the corresponding central extension in such a way as to make clear its relation to
the second Chern class for G-bundles.

Garland’s extension is induced from Matsumoto’s extension of G
(
R((λ))

)
by

K2

(
R((λ))

)
by the tame symbol map K2

(
R((λ))

)
→ R∗. Similarly to this, we

use the sheaf-theoretic extension of G by K2 constructed by Brylinski and Deligne
[BD].

(5.1) Generalities.

(5.1.1) Sheaves on the category of smooth varieties. Let Sm be the category
of smooth algebraic varieties over k. We consider it as a Grothendieck site with
respect to the Zariski topology. Every scheme, or ind-scheme Z gives rise to a
functor (sheaf) on Sm represented by Z, which we will denote Z. If X is a smooth
variety, then the sheaf on the Zariski topology of X formed by Z-valued functions,
will be denoted by ZX . The sheaf A1, represented by the affine line, will be denoted
by O.

Let F be a sheaf of sets on Sm. A vector bundle on F is, by definition, a
locally free sheaf of O-modules on F . Thus, when F = Z, a vector bundle V
on F is a system of data associating to any morphism f : X → Z, where X is

a smooth variety, a vector bundle Vf on X and to any pair of morphisms X ′ g
→

X
f
→ Z (with X,X ′ being smooth varieties), an isomorphism g∗Vf → Vfg. These

isomorphisms are required to satisfy the obvious compatibility conditions for any

triple of morphisms X ′′ g
′

→ X ′ g
→ X

f
→ Z with X,X ′, X ′′ being smooth varieties.

Thus, if Z is a smooth variety, then a vector bundle on Z is the same as a vector
bundle on Z in the usual sense. The same holds if Z is an ind-scheme which is an
inductive limit of smooth varieties.

(5.1.2) A-groupoids. Let A be an Abelian group and A-Tors be the category of
A-torsors. This is a symmetric monoidal category with respect to the operation ⊗
of tensor product of torsors. We call an A-groupoid a small category C enriched in
A-Tors, i.e., a set Ob C together with a collection of torsors HomC(x, y), x, y ∈ Ob C
and composition morphisms

HomC(y, z) ⊗ HomC(x, y) → HomC(x, z)
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satisfying the usual axioms.

Let S be a Grothendieck site, and A a sheaf of Abelian groups on S. By glob-
alizing the above definition to the topos of sheaves on S, we get the concept of a
sheaf of A-groupoids. Such a sheaf C consists of a sheaf of sets Ob(C) on S together
with, for any two local sections x, y ∈ Ob(C)(U), a sheaf HomC(x, y) of A|U -torsors
and composition morphisms for any three local sections satisfying the usual axioms
and compatible with the restrictions.

(5.1.2.1) Example. Let Z be an ind-scheme. We will call sheaves of O∗-groupoids
on Sm with the sheaf of objects Z groupoid line bundles on Z. If Z is a smooth
variety (or an inductive limit of such), then a groupoid line bundle on Z is just
a line bundle on Z × Z in the usual sense, equipped with a kind of multiplicative
structure.

(5.1.2.2) Proposition. Let B′ ⊂ B be sheaves of groups on S. Then the category
of central extensions of B by A trivial on B′, is equivalent to the category of B-
equivariant sheaves of A-groupoids with the sheaf of objects B/B′.

Proof: Obvious when S = {pt}. The general case reduces to this.

(5.1.3) A-gerbes. Let S,A be as before. An A-gerbe is (cf. [Bre] [Bry] [Gi]) a
stack R of (not necessarily small) categories on S in which each sheaf HomR(x, y),
x, y ∈ Ob(R(U)), is made into a sheaf of A|U -torsors in a way compatible with
restrictions and compositions. A trivial example is the stack A-Tors. Any sheaf C
of A-groupoids can be embedded into an A-gerbe, namely Fun◦

A(C,A-Tors), the
stack of contravariant functors C → A-Tors which preserve the torsor structure on
Hom-sheaves We will call such functors simply A-functors. The following is a basic
fact of Giraud’s theory.

(5.1.3.1) Proposition. (a) Equivalence classes of A-gerbes form a set, naturally
identified with H2(S,A). We denote by γ(R) ∈ H2(S,A) the class of an A-gerbe
R. The equality γ(R) = 0 is equivalent to R(S) 6= ∅.

(b) If R,R′ are two A-gerbes, then so is Fun(R,R′) and γ(Fun(R,R′)) =
γ(R′) − γ(R).

We also need some additional properties of this correspondence.

(5.1.3.2) Proposition. Let S be a topological space, X ⊂ S a closed subspace,
S◦ = S −X. Then:

(a) Equivalence classes of pairs (R, x), where R is an A-gerbe and x ∈ Ob(R(S◦)),
form a set naturally identified with H2

X(S,A). We denote by γ(R, x) ∈ H2
X(S,A)

the class of (R, x). Its image in H2(S,A) is γ(R).

(b) Assume that the local cohomology sheaves Hi
X(S,A) vanish for i 6= 1 (so

H2
X(S,A) = H1(X,H1

X(S,A))). Then the 2-category formed by the (R, x) as in
(a), has trivial 2-morphisms, i.e., reduces to a usual category and this category is
equivalent to the category of H1

X(S,A)-torsors. We will denote γ(R, x) the torsor
corresponding to (R, x).
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Proof: Part (a) being a generality, we restrict ourselves to giving the construction
of γ(R, x) in (b). As H2

X(S,A) = 0, the object x is, locally on on X , extendable to
an object defined on a neighborhood of X . Let j : S◦ →֒ S be the embedding, so

H1
X(S,A) = (j∗j

∗A)/A

is the sheaf of “principal parts” of sections of A on S◦. If U ⊂ X is a small open

set and Ũ ⊂ S is a small open neighborhood of U , then x|Ũ−U admits a lifting onto

Ũ , i.e., there is y ∈ R(Ũ) such that Hom(y|Ũ−U , x|Ũ−U ) 6= ∅. Then, this Hom is

an A(Ũ − U)-torsor. The torsor

Hom
(
y|Ũ−U , x|Ũ−U

)/
A(Ũ)

over A(Ũ − U)/A(U) is independent, up to a canonical isomorhism, on the choice
of y and this is, by definition, γ(R, x)(U). The rest is left to the reader.

(5.2) The affine Grassmannian. Let G[[λ]] be the group of Taylor loops in G.
This is a group scheme (of infinite type) over k. The affine Grassmannian of G is

the ind-scheme Ĝr = G((λ))/G[[λ]]. In fact, for every commutative k-algebra R we
have

Ĝr(R) = G
(
R((λ))

)
/G

(
R[[λ]]

)
.

Further, it is known that Ĝr is an inductive limit of projective algebraic varieties
(the closures of the affine Schubert cells). Our aim in this section is to construct a
central extension of sheaves of groups on Sm

(5.2.1) 1 → O∗ → G′ → G((λ)) → 1

trivial on G[[λ]]. By (5.2.1-2), this is the same as to construct a G((λ))-equivariant

groupoid line bundle C on Ĝr, i.e., to construct, for any smooth variety X and any

morphisms f, f ′ : X → Ĝr, a line bundle C(f, f ′) and for any three morphisms

f, f ′, f ′′ : X → Ĝr, a canonical identification C(f, f ′) ⊗ C(f ′, f ′′) → C(f, f ′′) sat-
isfying the associativity and compatible with inverse images. We start by recalling

a geometric description of morphisms into Ĝr.

For a scheme X let X [[λ]] = S×Spf(k[[λ]]). We will consider it as a ringed space
(X,OX [[λ]]). Let X((λ)) be the ringed space (X,OX((λ))). Then, the following is
an easy consequence of the definitions.

(5.2.2) Proposition. (a) Morphisms X → Ĝr are in bijection with isomorphism
classes of pairs (P, τ), where P is a principal G-bundle on X [[λ]] and τ is a trivi-
alization of P over X((λ)).
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(5.2.3) Definition. Let X be a k-scheme. We call a ribbon on X a formal scheme
Y whose underlying ordinary scheme is X and which is locally isomorphic to X [[λ]].
An isomorphism of ribbons is an isomorphism of formal schemes identical on X.

The set of isomorphism classes of ribbons onX is identified withH1(X,Aut(X [[λ]])),
where Aut(X [[λ]]) is the sheaf of groups on X formed by (local) automorphisms of
the formal scheme X [[λ]] identical on X .

For a ribbon Y we denote Y ◦ = Y −X . This is a ringed space with the underlying
space X and the structure sheaf locally isomorphic to OX((λ)).

Let now S be a smooth algebraic variety and X ⊂ S a smooth hypersurface. We
have then a particular ribbon Y on X , namely the formal neighborhood of X in S.
The following is a consequence of the descent lemma of Beauville-Laszlo [BL].

(5.2.4) Proposition. Let P ◦ be a principal G-bundle on S◦ = S −X. Then the
following sets are in natural bijection:

(i) Isomorphism classes of pairs (P, τ), where P os a G-bundle on S and τ :
P |S◦ → P ◦ is an isomorphism.

(ii) Isomorphism classes of pairs (P̂ , τ̂), where P̂ is a G-bundle on Y and τ̂ :

P̂ |Y ◦ → P ◦|Y ◦ is an isomorphism.

(5.3) The relative c2-bundle. Let S be a smooth algebraic variety and X ⊂ S be
a smooth hypersurface. Recall (2.1) that we have fixed a multiplicative K2-torsor
Φ on G and this gives rise to a particular central extension (2.1.1) of GS by K2,S.
For a principal G-bundle P on S let Lift(P ) be the K2,S-gerbe of liftings of the

GS-torsor P to a G̃S-torsor, so γ(Lift(P )) = c2(P ).
Let now P, P ′ be two G-bundles on S and φ : P |S◦ → P ′|S◦ be an isomorphism.

Then φ gives an object of the K2,S-gerbe Fun(Lift(P ),Lift(P ′)), defined over S◦.
Further, the Brown-Gersten-Quillen resolution of K2,S (see [Q]) implies that

(5.3.1) H1
X(S,K2) = O∗

X , Hi
X(S,K2) = 0, i 6= 1.

Therefore, Proposition 5.1.3.2(b) implies the following.

(5.3.2) Proposition. To every P, P ′, φ as above, there is naturally associated a
line bundle C(P, P ′, φ) on X.The image of the class of C(P, P ′, φ) in Pic(X) under
the direct image homomorphism Pic(X) → CH2(S) is equal to c2(P

′) − c2(P ).

Given three G-bundles P, P ′, P ′′ on S and isomorphisms P |S◦

φ
→ P ′|S◦

φ′

→ P ′′|S◦ ,
there is a natural isomorphism

C(P ′, P ′′, φ′) ⊗ C(P, P ′, φ) → C(P, P ′′, φ′φ),

and these isomorphisms are associative for any four G-bundles on S with compatible
identifications over S◦.

(5.3.3) Example. To a coherent sheaf F on S supported on (some infinitesimal
neighborhood of) X , there is naturally associated the determinantal line bundle
detX(F) on X which is uniquely characterized by the two properties:
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(a) Multiplicativity in short exact sequences of coherent sheaves on S.

(b) If F is a vector bundle on X of rank r, then detX(F) = Λr(F).

Given a vector bundle V on S and a locally free subsheaf V ′ ⊂ V coinciding with
V over S◦, we set detX(V : V ′) = detX(V/V ′). By multiplicativity one extends
the construction of detX(V : V ′) to the case when V, V ′ are two arbitrary vector
bundles on S identified over S◦. If now V, V ′ have trivial determinant, so give
rise to SLr-bundles P, P ′ on S and to an identification φ : P |S◦ → P ′|S◦ , then
C(P, P ′, φ) = detX(V : V ′). This statement (which can be viewed as a kind of
Riemann-Roch theorem) follows at once from Quillen’s description of the boundary
map on K2 in terms of “lattices” [Gra]. Indeed, it is this boundary map which
gives the identification H1

X(S,K2) ≃ O∗
X .

Further, let Y be any ribbon on a smooth algebraic variety X . The Gersten
conjecture for equicharacteristic regular local rings recently proved by Panin [Pa],
implies that we have, similarly to (5.3.1):

(5.3.4) H1
X(Y,K2) = O∗

X , Hi
X(Y,K2) = 0, i 6= 1,

where Y is considered as a scheme Spec(OY ). Because of this, we can generalize the
above construction of the relative c2-bundle C(P, P ′, φ) to the case when P, P ′ are
G-bundles over Y and φ is their identification over Y ◦. Moreover, this construction
is compatible with the earlier one in the case when Y is the formal neighborhood
of X in S and P, P ′ come from G-bundles on S.

(5.3.5) Definition. Let P ◦ be a G-bundle on Y ◦. The c2-groupoid C2(P
◦) is the

sheaf of O∗
X-groupoids on X defined as follows. An object of C2(P

◦) over an open
U ⊂ X is a pair (P, τ) where P is a G-bundle on YU and τ : P |Y ◦

U
→ P ◦|Y ◦

U
is

an isomorphism, while HomC2(P ◦)((P, τ), (P
′, τ ′)) is the O∗

U -torsor corresponding

to the line bundle C(P, P ′, τ ′τ−1).

Take now Y = X [[λ]], so Y ◦ = X((λ)) and let P ◦ be the trivial G-bundle on

Y ◦. In this case an object of C2(P
◦) is the same a morphism X → Ĝr. We obtain

therefore the construction of a line bundle C(f, f ′) on X for any two morphisms

f, f ′ : X → Ĝr. The next statement is now obvious.

(5.3.6) Proposition. The line bundles C(f, f ′) give rise to a groupoid line bundle

C on the sheaf of sets Ĝr × Ĝr on Sm. This groupoid line bundle is equivariant
with respect to the sheaf of groups G((λ)). In particular, we get a central extension

G′ of G((λ)) by Gm in the category of sheaves on Sm.

(5.3.7) Remark. It is natural to expect that the central extension G′ can be
constructed as an group ind-scheme, not just as a sheaf on the category of smooth
varieties. For this, we need to construct C as a groupoid line bundle on the ind-

sheme Ĝr× Ĝr (i.e., to construct C(f, f ′) for any two morphisms of any scheme X

into Ĝr. This does not automatically follow from the above construction because

the Schubert varieties forming a direct system representing Ĝr, are singular. Our
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construction uses the Gersten resolution and therefore is not directly applicable to
the singular case. It is probably possible to push the construction by using the
approach of Kumar and Mathieu [Ku] [Ma1] (in particular, the disingularizations
of the Schubert varieties). However, it is beside the main purpose of the present
paper, where it is enough to consider the sheaves of G′-valued functions on smooth
varieties X (in fact, we really need only the case of smooth curves).

(5.3.8) Definition. Let Y be a ribbon on a smooth algebraic variety X and P ◦

be a principal G-bundle on Y ◦. A c2-theory on P ◦ is an object if the category
FunO∗

X
(C2(P

◦),O∗
X-Tors), i.e., a rule C which to any local extension P of P ◦ to a

G-bundle on YU , U ⊂ X, associates a line bundle C(P ) on U and to any two such
extensions P, P ′ an isomorphism C(P )⊗C(P, P ′) → C(P ′) in a way satisfying the
associativity and compatible with the restrictions.

(5.4) The full Kac-Moody group. Consider the algebraic group Gm acting
on Spf(k[[λ]]) by the “rotation of the loop” λ 7→ zλ, z ∈ Gm. Because of the
naturality of the central extension (2.1.1) and of the c2-bundles, we have a natural

action of Gm on G′. We define Ĝ = G′
⋊ Gm. We regard Ĝ as the functor on Sm

represented by the full Kac-Moody group. In particular, the maximal torus in Ĝ
is Taff = Gm × T × Gm where the first Gm is the center and the second one is the
group of rotations of the loop. Accordingly, the affine root system as introduced in

(3.2) is just the root system of Ĝ, i.e., the system of weights of Taff in the adjoint

representation of Ĝ. Similarly, the action of Ŵ on Laff as given in (3.3.1) comes from

the action on Taff of the normalized of Taff in Ĝ. Let I = {g(λ) ∈ G[[λ]] : g(0) ∈ B}

be the Iwahori subgroup in G((λ)) and let B̂ = Gm × I ⋊ Gm ⊂ Ĝ. Then positive

affine roots are the weights on the Lie algebra of B̂.
More generally, let a smooth algebraic variety X be fixed. We have then an

action of the sheaf of groups Aut(X [[λ]]) on G′
X by group automorphisms and we

define GX = G′
X ⋊ Aut(X [[λ]]). We also define BX to be the semidirect product

Gm × IX ⋊ Aut(X [[λ]]).

(5.4.1) Proposition. Let X be a smooth algebraic variety. Then:
(a) The category of sheaves of GX-torsors is equivalent to the category of triples

(Y, P ◦, C) where Y is a ribbon on X, P ◦ is a G-bundle on Y ◦ and C is a C2-theory
on P ◦.

(b) The category of sheaves of ĜX-torsors is equivalent to the category of triples
(N,P ◦, C) where N is a line bundle on X, P ◦ a G-bundle on the punctured formal
neighborhood of X in N and C is a c2-theory on P ◦.

Proof: This is a more or less straightforward consequence of the definitions. Thus,
in (a), a GX -torsor gives an Aut(X [[λ]])-torsor via the homomorphism GX →
Aut(X [[λ]]), and an Aut(X [[λ]])-torsor is the same as a ribbon, say, Y . Lifting
an Aut(X [[λ]])-torsor corresponding to Y to a torsor over G((λ))

X
⋊ Aut(X [[λ]])

amounts to giving a G-bundle P ◦ on Y ◦. Further lifting of a torsor over G((λ))
X

⋊

Aut(X [[λ]]) to a torsor over GX amounts to fixing a c2-theory in P ◦ because the
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central extension is defined, in the first place, in terms of the relative c2-bundles.
We leave the details to the reader. The next proposition is equally straightforward.

(5.4.2) Proposition. Let Q be a GX-torsor corresponding to the data (Y, P ◦, C) as
in (5.4.1)(a). Then, BX-structures in Q are naturally identified with isomorphism
classes of triples (P, τ, π) where P is a G-bundle on Y , while τ : P |Y ◦ → P ◦ is an
isomorphism and π is a B-structure in P |X .

Note that we have a homomorphism of sheaves of groups

(5.4.3) Aut(X [[t]]) → O∗
X

which takes an automorphism g of X [[λ]] identical onX , into the invertible function
given by the action of the differential of g on the normal bundle of X in X [[λ]].
Therefore we get a homorphism BX → T aff,X ; in particular, a BX -torsor T has a
degree deg(T ) lying in Laff = Z⊕L⊕Z which is the group of 1-parameter subgroups
in Taff . The above proposition is now easily complemented as follows.

(5.4.4) Proposition. Let T be a BX-torsor and (P, τ, π) be the data corresponding
to T by Proposition 5.4.2. Then

deg(T ) =

(
c2(P ), deg(P |X , π), X2

Y

)
.

§6. Motivic Eisenstein series for Ĝ.

(6.1) The Eisenstein series. We now assume that X is a smooth projective
curve, as in §2-4. Let Y be a ribbon on X and P ◦ be a principal G-bundle on Y ◦.
Fix a c2-theory C on P ◦. If P is an extension of P ◦ to the whole of Y , we will write
c2(P ) = deg C(P ) ∈ Z. We denote by Q the GX -torsor corresponding to (Y, P ◦, C)
by Proposition 5.4.1.

(6.1.1) Theorem. Suppose that X2
Y , the self-intersection index of X in Y , is

negative. Then for each n ∈ Z there exists a scheme Γn(Q) which is a fine moduli
space for extensions P of P ◦ to a G-bundle on Y with c2(P ) = n. The scheme
Γn(Q) is empty for n≪ 0.

Proof: This is obtained by the same arguments as in Theorem 2.2.1, except that
we should use Chern classes with values in local cohomology and the Grothendieck-
Riemann-Roch theorem for such classes. We leave the details to the reader.
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(6.1.2) Corollary. For each n ∈ Z and a ∈ L there exists a scheme Γn,a(Q) of
finite type, which is a fine moduli space for triples (P, τ, π) where (P, τ) are as in
Theorem 6.1.1 and π is a B-structure in P |X of degree a.

The motivic Eisenstein series corresponding to Y, Ĝ and P is then defined to be

(6.1.3) EG,Q(q, z, v) =
∑

n∈Z,a∈L

µ(Γn,a(Q))qnzavd, d = −X2
Y .

As before, we will write t ∈ T∨
aff for (q, z, v).

(6.1.4) Proposition. Let S be a smooth projective surface, X ⊂ S be a smooth
curve, P ◦ be a G-bundle on S −X and Y be the formal neighborhood of X in S.
Fix some c2-theory C in P ◦|Y ◦ and let Q be the corresponding GX-torsor. Then
the generating function EG,P ◦(q, z, v) from (3.1.1) differs from EG,Q(q, z, v) by a
factor of qm for some m.

Proof: By Proposition 5.2.4, there is a bijection between extensions of P ◦ to a
bundle on S and extensions of P ◦|Y ◦ to a bundle on Y . So unless both EG,P ◦ and
EĜ,P are both identically zero, there exists an extension P of P ◦ to a bundle on S.

Then, P gives rise to a canonical c2-theory normalized so that its value on P |Y is
OX and thus to a GX -torsor Q′.

It follows that EG,Q′(q, z, v) = q−c2(P )EG,P ◦(q, z, v), where c2(P ) is the usual
second Chern class of P on S. Further, EG,Q(q, z, v) and EG,Q′(q, z, v) differ by a
factor of a power of q, since the concepts of c2 ∈ Z for G-bundles on Y defined by
Q and Q′, differ by a constant, namely, by deg C(P ). Proposition is proved.

In view of the above proposition, Theorems 3.4.1 and 3.4.4 would follow from
the next fact.

(6.1.5) Theorem. For any Y with X2
Y = −d < 0, any G and any GX-torsor Q

as above, the motivic Eisenstein series EG,Q(q, z, v) satisfies the properties claimed
in Theorems 3.4.1 and 3.4.4.

(6.2) Proof of Theorem 6.1.5. Let D(t) be as in (3.4.2) and NG,Q(t) =
EG,Q(t)D(t), t = (q, z, v). Note that

(6.2.1) EG,Q(q, z, v) = vd
∑

n

qn
∫

P∈Γn(Q)

EG,P |X(z)dµP ,

we find that for any n the coefficient at qnvd in EG,Q is a series in z whose support
(a subset in L) lies is some translation of the cone of dominant coweights. This
implies that NG,Q(t) is well-defined as formal series. Further, the desired functional

equation for NG,Q(t) in the case w ∈ W ⊂ Ŵ follows from (6.2.1) and Theorem
4.1.4. So it is enough to consider the case w = sα0

, where α0 is the new simple
affine root. This is parallel to the proof of Lemma 4.3.1 except that we have to deal
with parahoric subgroups in G((λ)) instead of parabolic subgroups in G.
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Let Π0 ⊂ G((λ)) be the parahoric subgroup corresponding to the negative affine
root (−α0) and Π′

X ⊂ G′
X be the preimage of Π0,X ⊂ G((λ))

X
. Set further

P = Π′
X · Aut(X [[λ]]) ⊂ GX .

Let M0 ⊂ Π0 be the standard Levi subgroup. We have then the projection
φ0 : Π0 → M0. Let M ′

X ⊂ G′
X be the preimage of M0,X and MX = M ′

X · O∗
X ,

where O∗
X is regarded as the subgroup in Aut(X [[λ]]) formed by the automorphisms

λ 7→ f(x) · λ, f(x) ∈ O∗
X . The projection φ0 together with the homomorphism

(5.4.3) induce a homomorphism φ : P →MX .
Note that the sheaf of groups MX is in fact formed by regular functions with

values in a reductive algebraic group M over k, of semisimple rank 1, with maximal
torus Taff , root system {±α0} and Weyl group {1, sα0

}. Let B′ ⊂ M be the
standard Borel subgroup, so B′

X = MX ∩ BX .

(6.2.2) Lemma. let Q be a GX-torsor. Then, defining a BX-structure in Q is
equivalent to, first, defining a P-structure, say, ̟ and then, defining a B′

X-structure
in the MX-torsor φ∗(Q, ̟).

Proof: Follows from the equalities

P = MX · BX , B′
X = MX ∩ BX .

Let L′
aff = Hom(Gm,M

ab), so that we have a homomorphism Laff → L′
aff with

kernel isomorphic to Z. To finish the proof of the functional equation of NG,Q(t) for
w = sα0

in the manner exactly identical to the proof of Lemma 4.3.1, it is enough
to establish the next proposition.

(6.2.3) Proposition. Let b′ ∈ L
′
. Then there exists a scheme ΓP

b′(Q) of finite
type over k, parametrizing P-structures in Q of degree b′.

Proof: Let w ∈ Ŵ be an element taking α0 to a simple non-affine root α ∈ ∆sim

and f ∈ G((λ)) be a representative of w. Then the conjugation with f takes Π0

into the parahoric subgroup Πα corresponding to (−α). More precisely,

Πα =
{
g(λ) ∈ G[[λ]]

∣∣g(0) ∈ Pα)
}
,

where Pα ⊂ G is the parabolic subgroup corresponding to (−α), see the proof of
Lemma 4.3.1 from which we borrow other notations as well. Let Pα be the sheaf of
groups on X constructed from Πα int he same was as P was constructed from Π0:
we first lift Πα,X to G′

X and then multiply with Aut(X [[λ]]). Degrees of Pα-torsors
lie therefore in Lαaff := Z⊕Lα⊕Z. Since P- and Pα-structures in Q are in bijection
(via conjugation with f), it is enough to show that for any b′′ = (n, b,−d) ∈ Lαaff ,

there exists a scheme of finite type ΓPα

b′′ (Q) parametrizing Pα-structures in Q of

degree b′′. But this is trivial: ΓPα

b′′ (Q) is fibered over the scheme MG,P ◦(n) with

the fiber over (P, τ) being the scheme ΓPα

G,P |X
of Pα-structures in P |X of degree b.

This finishes the proof of Theorem 6.1.5 and thus of Theorems 4.1.2 and 4.1.4.
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§7. Explicit calculations for X = P1.

In this section we assume that X = P1. Our aim is to classify all GX -torsors
whose associated ribbons have negative self-intersection index and, for each such
torsor, to find the corresponding Eisenstein series completely. Our method can be
seen as a version of Langlands’ calculation of the constant term of the Eisenstein
series, but applied to the case of Kac-Moody groups and to the framework of motivic
measures.

(7.1) Grothendieck’s theorem for GX-torsors. Recall that we have the fol-
lowing homomorphisms of sheaves of groups on X = P1:

(7.1.1) T aff,X →֒ GX → Aut(X [[λ]])
(5.4.3)
−→ O∗

X .

If Q is a GX -torsor and (Y, P ◦, C) are the data corresponding to Q by Proposition
5.4.2, then the image of the class of Q under the map H1(X,GX) → H1(X,O∗

X) is
the class of the normal bundle NX/Y . We will say that Q is of negative index, if

NX/Y has negative degree, so NX/Y = O(−d), d > 0. Since X = P1, isomorphism
classes of Taff -bundles onX are in bijection with Laff = Hom(Gm, Taff). For a ∈ Laff

be denote by O∗(a) the corresponding Taff -bundle on X . By O∗(a)G we will mean
the GX -torsor induced from O∗(a) by the first homomorphism in (7.1.1).

The following fact can be seen as an analog of the theorem of Grothendieck [Gro]
for Kac-Moody groups.

(7.1.2) Theorem. Suppose k is algebraically closed. A GX-torsor Q whose index
is negative, has the form O∗(b)G, where b ∈ Laff is an antidominant coweight, which
is uniquely defined by Q.

Proof: Let (Y, P ◦, C) be the the data corresponding to Q by Proposition (5.4.2).
We start by identifying Y .

(7.1.3) Lemma. Any ribbon Y on X = P1 such that X2
Y is negative has a linear

structure, i.e., is isomorphic to the formal neighborhood of X in the total space of
some line bundle N on X (which is identified with NX/Y ).

Proof: An automorphism of X [[λ]] is the same as an algebra automorphism of
OX [[λ]] which is continuous in the λ-adic topology and is identical on OX . Such an
automorphism is uniquely determined by its values on OX and λ which have the
form

(7.1.4) a 7→ a+
∞∑

i=1

Di(a)λ
i, λ→ λ+

∞∑

i=1

biλi,

whereDi : OX → OX are morphisms of sheaves of vector spaces and bi are functions
such that b1 is invertible.
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The only constraint on these data is that the first correspondence in (7.1.4)
defines an algebra homomorphism OX → OX [[λ]]. This gives a set of Leibniz-
type conditions on the Di which are sometimes expressed by saying that (Di)
forms a higher derivation of OX , see [Ma3], §27. In particular, D1 is a derivation
(vector field) in the usual sense. Further, if D1 = ... = Di−1 = 0, then Di is a
section of a line bundle on X , namely the ith tensor power of the tangent bundle
TP1 = O(2). For i ≥ 1, j ≥ 2 let F ij be the sheaf of subgroup in Ker(φ) defined
by D1, ..., Di−1 = 0, b2, ..., bj−1 = 0. This is a decreasing filtration by normal

subgroups with the quotients being Abelian and, more precisely, grijF = O(2i). Now,
Aut(X [[λ]]) is a semidirect product of O∗

X and Ker(φ). The action of O∗
X on the

line bundle grijF induced by the conjugation is via the homomorphism O∗
X → O∗

X

given by raising to the (i + j)th power. Our lemma says that the preimage in
H1(X,Aut(X [[λ]])) of the class of O(−d) in H1(X,O∗) consists of one element, if
d > 0. To see this, we use the filtration of Aut(X [[λ]]) formed by Gij = F ij ⋊ O∗

X

and find that possible liftings from Aut(X [[λ]]/Gij to Aut(X [[λ]])/Gi+1,jGi,j+1

form a homogeneous space over H1(X, 2i+ d(i+ j)) = 0. QED.

We denote by Yd the formal neighborhood of X in the total space of the line
bundle O(−d). Thus we have a projection pd : Y ◦

d → X . Note that we have an
isomorphism of line bundles p∗dO(d) → OY ◦

d
on Y ◦

d .

(7.1.5) Lemma. The Picard group of Y ◦
d is identified with Z/d and consists of

line bundles p∗dO(i), where i is taken modulo d.

Proof: Consider first the case d = 1. Then we have the blow-down morphism
σ : Y1 → D where D = Spec k[[x, y]] is the 2-dimensional formal disk. Let D◦ =
D − {0} be the punctured formal disk and j : D◦ →֒ D the embedding. Since σ
is an isomorphism outside X , we find that a line bundle on Y ◦

1 is the same as a
line bundle on D◦. But we have the following fact which expresses the well known
property that a reflexive sheaf on a smooth surface is a vector bundle.

(7.1.6) Lemma. If V ◦ is any vector bundle on D◦, then j∗V
∗ is a vector bundle

on D. In particular (since any vector bundle on D is trivial), V ◦ is trivial.

Thus the case d = 1 is clear. If d is arbitrary, consider the morphism of the
total space of O(−1) to the total space of O(−d) = O(−1)⊗d given at each fiber
by v 7→ v ⊗ ... ⊗ v (d times). Let φ be the induced morphism Y ◦

1 → Y ◦
d . This is

a Galois covering with the Galois group being the group scheme µd of dth roots
of unity. If L is a line bundle on Y ◦

d , then φ∗L is trivial, so L can be defined, by
descent, by defining a µd-action in the trivial bundle on Y ◦

1 . By doing so, we get
exactly the bundles p∗dO(i). QED

To finish the proof of Theorem 7.1.2 it is enough to establish the following fact.

(7.1.7) Proposition. Let d > 0. Then the following sets are naturally identified:
(i) Isomorphism classes of G-bundles on Y ◦

d .
(ii) Conjugacy classes of homomorphisms µd → G.
(iii) Dominant affine coweights of G of the form (0, a, d) ∈ Laff = Z ⊕ L⊕ Z.
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(7.1.8) Remark. Note that the definition of the set (iii) can be phrased in a more
suggestive form: as the set of isomorphism classes of level d irreducible projective
representations of the loop group GL((λ)) where GL is the Langlands dual group
of G. Later in this section we will interpret the Eisenstein-Kac-Moody series cor-
responding to Yd and a G-bundle P ◦ on Y ◦

d as a deformation of the character of
the representation corresponding, by the above, to P ◦. A natural problem is then
to construct the representation itself in some algebro-geometric terms. Note the
similarity of our situation with the framework of Nakajima [N]: the weight of an
irreducible representations is in both cases encoded in the topological type of a
bundle on some open part of a variety (neighborhood of the infinity on an ALE
space in Nakajima’s case, the complement of X in Yd in our situation).

Proof of (7.1.7): If d = 1, all three sets consist of one element, so the statement
is true. If d > 1, we consider the morphism φd : Y ◦

1 → Y ◦
d introduced in the proof

of Lemma 7.1.5. Let P ◦ be a G-bundle on Y ◦
d Then φ∗dP

◦ is trivial, as can be
seen by applying Lemma 7.1.6 to any vector bundle on Y ◦

d associated to P ◦ and
a representation of G. Thus P ◦ is obtained, by descent, by defining a µd-action
in the trivial G-bundle on Y ◦

1 . Isomorphism classes of such descent data form
exactly the set (ii). Further, any homomorphism µd → G is factored through T .
(See [W] for representation theory of µd in finite characteristic which is the same
as representation theory of Z/d in characteristic 0.) This shows that P ◦ has a
T -structure. The identification of conjugacy classes (with respect to G or W ) of
such T -structures, or, what is the same, of the set (ii), with (iii), is straightforward
(compare with Kac’s classification of automorphisms of finite order of a semisimple
Lie algebra [Ka]).

(7.2) The affine Hall polynomials. Let A be a field and l ∈ A be a nonzero

element. We introduce the twisted Ŵ -action on T∨
aff,A given by

(7.2.1) w ∗ t = l−ρ̂w(lρ̂ · t),

so that, for example, for α ∈ ∆̂sim we have sα ∗ t = l−αsα(t). Set

(7.2.2) K(t; l) =
∏

α∈∆̂+

1 − ltα
∨

1 − tα∨
.

We consider this as a power series in t = (q, z, v) ∈ T∨
aff = Gm × T∨ × Gm. As

in (3.3), we can consider K as a function on (T∨ × Gm)A((q)) and as such, it is a
meromorphic function.

For an antidominant b ∈ Laff we define the affine Hall polynomial to be

(7.2.3) Pb(t; l) =
∑

w∈Ŵ

w ∗ (tbK(t)), t ∈ Taff .

This definition is entirely similar to the definition of Hall polynomials for reductive
groups as given by Macdonald [Mac]. Unlike the finite-dimensional theory, Pb(t, l)
is not a polynomial in t any more; however, the following fact holds.
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(7.2.4) Proposition. (a) Pb(t; l) is an analytic function on the rigid analytic space
(T∨ × Gm)anA((q)).

(b) Pb(t; 1) is the monomial symmetric function (the result of averaging of tb

over Ŵ ).
(c) If k = C, then Pb(t; 0) = χ−b(t

−1) where χb is the character of the irreducible
representation of the Kac-Moody Lie algebra (associated to GL) with highest weight
(−b).

Proof: (a) follows because the denominator of K(t; l) is a Ŵ -antisymmetric func-
tion. Part (b) is obvious, which (c) is just the Weyl-Kac character formula.

(7.2.5) Remark. As shown by Macdonald, see [Mac], any finite root system gives
rise to a 2-parameter family of polynomials on the maximal torus invariant with
respect to the Weyl group. These include, as special cases, Hall polynomials and
Jack polynomials. The extension of the full 2-variable Macdonald theory to affine
root systems has not yet been developed. The affine analogs of Jack polynomials
have been studied by Etingof and Kirillov [EK].

For future reference we will need the following fact.

(7.2.6) Proposition. We have the equality

Pb(t; l) = K(t; l)
∑

w∈Ŵ

ll(w)
(
l−ρ̂w(lρ̂t)

)b ∏

α∈∆̂+∩w−1(∆̂−)

1 − tα
∨

1 − l2tα∨
.

Proof: Let us, for simplicity, drop l from the notation for Pb and K. What we need

to show is that for any w ∈ Ŵ the wth summand in the right hand side of the
proposed equality is equal to K(t)−1w ∗ (tbK(t)). We will work out here the case

w = sα, α ∈ ∆̂sim, the general case being similar. In this case we claim that

l
1 − tα

∨

1 − l2tα∨
=
sα ∗ κ(t)

κ(t)
, κ(t) =

1 − ltα
∨

1 − tα∨
.

But this is elementary: by using the equality 〈α, α∨〉 = 2, we see that

sα ∗ κ(t) =
1 − l(l−αsαt)

α∨

1 − (l−αsαt)α
∨

=
1 − l−1t−α

∨

1 − l−2t−α∨
=

=
tα

∨

− l−1

tα∨ − l−2
=

1 − ltα
∨

l−1(1 − l2tα∨)
.

(7.3) The identification of the Eisenstein series. Let Q be a GX -torsor
of negative index of the form O∗(b)G, where b ∈ Laff is an antidominant affine
coweight. When k is algebraically closed, any torsor is of this form, by Theorem
7.1.2. We assume fixed a field A and an A-valued motivic measure µ on Schk; in
particular, L = µ(A1). The second main result of this paper is the following.
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(7.3.1) Theorem. The Eisenstein series EG,Q(t) associated to Q, is equal to
K(t; L)−1Pb(t; L).

Proof: By our assumptions, b = (m, a,−d) ∈ Laff = Z ⊕ L ⊕ Z, with d > 0. In
other words, in the data (Y, P ◦, C) corresponding to Q by Proposition 5.4.1(a), the
ribbon Y is Yd, the formal neighbohrood of X = P1 in the total space of O(−d).

Thus, by (5.4.1)(b), the torsor Q comes from a ĜX -torsor which we denote Q. Let

F̂ = G((λ))/I be the affine flag variety of G. It follows that we have a fibration F̂

over X with fibers isomorphic to F̂ and B-structures in Q are just sections of this
fibration.

Recall (affine Bruhat decomposition) that for any field k, any two k-points (f, f ′)

on F̂ have a uniquely defined relative position δ(f, f ′) ∈ Ŵ . Given f , we define the
affine Schubert cell Uw(f) to consist of f ′ with δ(f, f ′) = w. This is an algebraic
variety over k, isomorphic to the affine space of dimension l(w).

Take k = k(X), the field of rational functions onX . The fibration F̂ is trivial over
k, because the bundle P ◦ on Y ◦

d is trivial over the punctured formal neighborhood of
A1 in Yd. As Q comes from a Taff-bundle on X , it comes equipped with a canonical

B-structure π0 which we regard as a distinguished section of F̂ . Recall that the
Eisenstein series associated to Q is

EG,Q(t) =
∑

a∈Laff

µ(Γa(Q))ta,

where Γa(Q) is the scheme of B-structures in Q of degree a. Consider the stratifi-
cation

Γa(Q) =
∐

w∈Ŵ

Γwa (Q),

where Γa(Q) consists of those B-structures in Q which, being regarded as sections

of F̂ are, over the generic point of X (i.e., over k), in relative position w with π0.
Then we have

EG,Q(t) =
∑

w∈Ŵ

Ew(t), Ew(t) :=
∑

a

µ(Γwa (Q))ta.

We proceed to find each Ew(t) separately.

Consider a point x ∈ X and let F̂x be the fiber of F̂ over x. It contains a
distinguished point π0,x, the value of π0 at x. Therefore we have the Schubert cell

Uw(π0,x) ⊂ F̂x.

(7.3.2) Lemma. The Bruhat decomposition gives a canonical identification of al-
gebraic varieties

Uw(π0,x) −→
⊕

α∈∆̂+∩w−1(∆̂−)

OP 1(−〈α, b〉)x,

where OP 1(−〈α, b〉)x is the fiber at x of the line bundle OP 1(−〈α, b〉).

Proof: An exercise in Bruhat decomposition. Left to the reader.
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(7.3.3) Corollary. We have an identification of sets
∐

a∈Laff

Γwa (Q) −→
∏

α∈∆̂+∩w−1(∆̂−)

Γrat(X,O(−〈α, b〉)),

where Γrat denotes the space of rational sections of a line bundle.

The next statement can be seen as a geometric analog of the Gindikin-Karpelevic
formula which is the the crucial ingredient in evaluation of the constant term of the
Eisenstein series [Lan].

(7.3.4) Proposition. Let fα, α ∈ ∆̂+∩w
−1(∆̂−), be rational sections of OP 1(−〈α, b〉)

and let Dα be the divisor of poles of fα. Then the degree of the B-structure corre-
sponding to the system (fα) by Corollary 7.3.3, is equal to

w(b) +
∑

α∈∆̂+∩w−1(∆̂−)

deg(Dα) · α∨.

Proof: This can be viewed as a statement about two arbitrary sections π, π′ of F̂ in
a generic relative position w: it expresses how their degrees are related if we use the
identification of the Schubert cell Uw(π) given by the Bruhat decomposition. Take a

reduced decomposition w = sα1
...sαl

, l = l(w), αi ∈ ∆̂sim and choose intermediate

sections π = π0, π1, ..., πl = π′ of F̂ so that generically δ(πi, πi+1) = sαi
(this is

possible because the fibration is rationally trivial). We find that it is enough to prove
the required statement only for (πi, πi+1) for each i. In other words, Proposition
7.3.4 in full generality follows from the particular case of simple reflection w = sα
which we now assume. This case, however, reduces to the case of two sections of a
flag fibration corresponding to the group GL2.

In other words, we need to consider a rank 2 vector bundle V = O(b1) ⊕O(b2)
on X = P1, and two sections rank 1 subbundles in V , namely V0 = O(d1) and V1

generically transversal to O(d1). The identification of Corollary 7.3.3 in this case
means simply that V1 is the graph of a rational morphism φ : O(d2) → O(d1) and
the required particular case of Proposition 7.3.4 is:

(7.3.5) Lemma. If D is the divisor of poles of φ, then the subbundle V1 corre-
sponding to the graph of φ has degree d2 − deg(D).

Proof: We consider the projection V1 → O(d2). This is a morphism of line bundles
with the divisor of zeroes being exactly D, whence the statement.

(7.3.6) Definition. If L is a line bundle on X and D′ ≤ D are positive di-

visors on X, then we denote by ΓD
′

(X,L(D)) the open subvariety in the affine
space Γ(X,L(D)) formed by those sections whose divisor of poles (in the sense of
meromorphic sections of L) is equal to D′. We introduce the following generating
function

ψL(u) =
∑

n≥0

∫

D∈X(n)

µ(ΓD(X,L((D)))ud ∈ A[[u]].

The geometric Gindikin-Karpelevic formula implies at once:
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(7.3.7) Corollary. We have the equality

Ew(t) = zw(b)
∏

α∈∆̂+∩w−1(∆̂−)

ψO(−〈b,α〉)(t
α∨

).

In order to finish the proof of Theorem 7.3.1 it is enough, by the above corollary
and Proposition 7.2.6, to establish the following fact.

(7.3.8) Proposition. If L = OP1(m), m ≥ 0, then

ψL(u) = L
m+1 ζ(Lu)

ζ(u)
, where ζ(u) =

1

(1 − u)(1 − Lu)

is the motivic zeta-function of P1.

Indeed, we apply (7.3.8) to m = −〈b, α〉 (which is nonnegative since b is an-
tidominant) and notice that

ζ(Lu)

ζ(u)
=

1 − u

1 − L2u
,

and that Proposition 7.2.6 identifies Pb(k; L) with the sum of products of factors
of exactly this kind.

Proof of (7.3.8): Note that Γ(X,L(D)) =
⋃
D′≤D ΓD

′

(X,L(D)). Now let us write

ζ(u)ψL(u) =

( ∑

n′≥0

un
′

∫

D′∈X(n′)

dµ

)( ∑

n′′≥0

∫

D′′∈X(n′′)

µ(ΓD
′′

(X,L(D′′)))dµ

)

=
∑

n≥0

un
∫

D∈X(n)

µ(Γ(X,L(D)))dµ.

Because X = P1 and L = O(m) with m ≥ 0, we find that dim(Γ(X,L(D))) =
m+ n+ 1, so the above sum is equal to

∑

n≥0

unµ(X(n))Lm+n+1 = L
m+1ζ(Lu).

This finishes the proof of Theorem 7.3.1.

(7.4) The parahoric Eisenstein series and the universal blowup functions.
We start with general definitions which make sense for any smooth projective curve
X . Let Q be a GX -torsor and (Y, P ◦, C) be the data corresponding to Q by Propo-
sition 5.4.1(a). The parahoric Eisenstein series associated to Q is the generating
function

(7.4.1) FG,Q(q) =
∑

n∈Z

µ(Γa(Q))qn,

where Γa(Q) is the scheme from Theorem 6.1.1. This is a ribbon analog of the
generating function FG,P ◦(q) from (2.4.1). In fact, we have the following analog of
Proposition 6.1.4, which is proved in the same way.
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(7.4.2) Proposition. Let S be a smooth projective surface, X ⊂ S be a smooth
curve, P ◦ be a G-bundle on S −X and Y be the formal neighborhood of X in S.
Fix some c2-theory C in P ◦|Y ◦ and let Q be the corresponding GX-torsor. Then
the generating function FG,P ◦(q) differs from FG,Q(q) by a factor of qm for some
m.

The function FG,Q(q) is related to the Eisenstein series EG,Q((q, z, v) in the same
way as the parahoric subgroup G[[λ]] ⊂ G((λ)) is related to the Iwahori subgroup I.
More precisely, considering the sheaf of subgroups KX = O∗

X×G[[λ]]
X

⋊Aut(X [[λ]])

in GX , we find that the schemes Γn(Q) parametrize KX -structures in Q. The inter-
est to this particular version of the Eisenstein series is explained by the following
fact.

(7.4.3) Proposition. Let X = P1 and Q be the GX-torsor corresponding, by
Theorem 7.1.2, to the antidominant coweight (0, 0,−1). Then Then FG,Q(q) is the
universal blowup function for the S-duality theory with the gauge group G.

Let us first explain the meaning of the proposition, cf. [LQ1-2]. Consider a
smooth projective surface S′, a point p ∈ S′ and the blow-up σ : S → S′ with the
exceptional divisor X = σ−1(p). Let H be an ample divisor on S′ and MH

G (S′, n)
be the moduli space of H-semistable G-bundles on S′ with c2 = n. For i ∈ Z

consider the divisor Hi = iσ∗H −X on S. Then it is known that Hi is ample for
i≫ 0 and further, for any given n the spaces MHi

G (S, n) are identified. This space

is denoted by MH∞

G (S, n). The statement of Proposition 7.4.3 is, more precisely,
that

(7.4.4)
∑

n

µ(MH∞

G (S, n))qn = FG,Q(q) ·
∑

n

µ(MH
G (S′, n))qn.

Proof of (7.4.3-4): The data (Y, P ◦, C) corresponding to our choice of Q by Propo-
sition 5.4.1(a), are as follows: Y = Y1 is the formal neighborhood of X = P1 in the
total space of O(−1). The G-bundle P ◦ on Y ◦ is trivial, and C is the c2-theory on
P ◦ normalized so that its value on the trivial G-bundle on Y is OX .

On the other hand, identifying X with the exceptional fiber σ−1(p) ⊂ S, we
identify the formal neighborhood of X in S with Y = Y1. If P is any G-bundle on
S, then its restriction to Y ◦ is trivial by Proposition 7.1.7. Thus P is glued from
a G-bundle P ′ on S′ and a bundle P ′′ on Y via an identification (trivialization)

τ : P ′′|Y ◦ → σ−1(P ′)|Y ◦ . Recalling the definition of Γn(Q), we find thatMH∞

G (S, n)
is a union of strata Σi,j , i+j = n, such that Σij is a (Zariski locally trivial) fibration
over MH

G (S, j) with fiber Γi(Q). On the level of generating functions this gives the
equality (7.4.4).

We now proceed to give an explicit formula for FG,Q(q) when X = P1 and Q
corresponds to an arbitraty antidominant weight b ∈ Laff . For a ∈ L we denote

(7.4.5) ∆̂(a) =
{
(n, α ∈ Z × ∆

∣∣ 1 ≤ n ≤ 〈α, a〉
}

and set λ(a) = |∆̂(a)|.
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(7.4.6) Theorem. If X = P1 and Q corresponds to b = (m, f,−d) ∈ Z ⊕ L ⊕ Z,
then

FG,Q(q) =
∑

a∈L

qΨ(a,f)−dΨ(a,a)/2
∏

(n,α)∈∆̂(a)

L
−〈f,α〉+mn+1 1 − qn

1 − L2qn
.

In particular, the universal blowup function (m = f = 0, d = 1) is equal to

∑

a∈L

q−Ψ(a,a)/2
L
λ(a)

∏

(n,α)∈∆̂(a)

1 − qn

1 − L2qn
.

In the case when µ is given by the Euler characteristic we have L = 1 and the
last formula specializes to the theta-zero-value of Example 2.4.2.

Proof: This is proved by the same method as Theorem 7.3.1 except that we use the
decomposition of the affine Grassmannian and not the affine flag variety, into Schu-
bert cells. So we just indicate the main steps. Along with the affine flag fibration

F̂ → X we have a fibration Ĝr → X with fibers isomorphic to Ĝr. The section π0 of

F̂ defines the decomposition of the fiber of Ĝr over any x ∈ X , into Schubert cells.

These cells are labelled by Ŵ/W = L; the cell corresponding to a ∈ L is identi-
fied, similarly to Lemma 7.3.2, with the fiber at x of

⊕
(n,α)∈∆̂(a) O(−〈f, α〉+mn)x.

More precisely, we need to consider the roots entering the root decomposition of the
nilpotent radical of the parahoric subalgebra g[[λ]], and these are (n, α) such that
n ≥ 1 and α ∈ ∆. Then we need to consider those of such roots which are taken
into negative affine roots by a considered as an element of Ŵ . These form precisely

the set ∆̂(a). The parahoric analog of the geometric Gindikin-Karpelevic formula
(7.3.4) says that the degree (i.e., the second Chern class) of the KX-structure corre-

sponding to a family (f(n,α)), (α, n) ∈ ∆̂(a), of rational sections of O(−〈f, α〉+mn)
is equal to

(a ◦ b)1 +
∑

(n,α)

deg(D(n,α)) · n,

where (a ◦ b)1 is the first component (lying in Z) of the result of action of a ∈ Ŵ
on b = (m, f,−d) ∈ Laff and D(n,α) is the divisor of poles of f(n,α). Recalling the
rule (3.3.1) describing the a-action on Laff , we establish the theorem.

(7.4.7) Remark. In this paper we always consider the generating functions for
the motivic invariants of the uncompactified moduli spaces. Accordingly, in the
case G = SL2 our blowup function differs slightly from the function obtained in
[LQ1-2] where the Uhlenbeck and Gieseker compactifications are used.
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