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We demonstrate near-complete cancellation of the differential light shift of a two-photon magnetic-
field-insensitive microwave hyperfine (clock) transition in 87Rb atoms trapped in an optical lattice.
Up to 95(2)% of the differential light shift is cancelled while maintaining magnetic-field insensitivity.
This technique should have applications in quantum information and frequency metrology.

Optical trapping of atoms is an indispensable tool for
coherent quantum control of atomic spins. However, in
many cases inhomogeneous differential light shifts (DLS)
constitute a major limitation on spin-coherence times.
Recent work [1–4] has shown that in some cases the
detrimental DLS in ground-state hyperfine levels of al-
kali atoms can be compensated. This approach has been
used to increase spin coherence times [3, 4] and could
impact quantum memories and computation, as well as
atom-based metrology. In these demonstrations, the DLS
cancellation has been obtained at the expense of Zeeman
sensitivity to magnetic fields. In this paper, we experi-
mentally explore the possibility of obtaining simultaneous
DLS and magnetic field insensitivity. This idea has also
been investigated theoretically in a recent proposal [5],
which suggests that simultaneous cancellation of DLS
and Zeeman shifts is possible for certain spin transitions.

The shift δν of the transition frequency of an optically
trapped atomic sample from its free-space, field-free value
is determined by a combination of the electronic interac-
tion with light and the electronic and nuclear Zeeman
interaction with an external magnetic field, modified by
the hyperfine interaction that couples the electronic and
nuclear degrees of freedom. The resulting sensitivities
∂ν/∂B and ∂ν/∂I, are functions of the magnetic field
B = Be

B
, and the intensity I and polarization ~ε of the

trapping light. For ground state hyperfine transitions
of alkali metal atoms in the absence of light, ∂ν/∂B
is given by the Breit-Rabi formula [6]. At low field,
magnetic-field-insensitive transitions (∂ν/∂B = 0) occur
for the well known (single-photon) “clock” transitions
|F,mF = 0〉 ↔ |F ′,mF ′ = 0〉 at B = 0, as well as for
multiple-photon transitions |F,mF 〉 ↔ |F ′,mF ′ = −mF 〉
at certain non-zero “magic” B = Bm (see e.g. [7]). Here,
F denotes the atomic total angular momentum quantum
number, and mF its projection on the quantization axis.

In the presence of light, the energy shifts ∆U giv-
ing rise to ∂ν/∂I can be expressed as a sum of a scalar
(∆Us) and a vector (∆Uv) component [8]. ∆Us is rota-
tionally invariant, depending only on F and F ′. ∆Uv

depends on mF and mF ′ and to lowest order can be
formally expressed as a differential Zeeman shift pro-

duced by a light-induced effective magnetic field Beff ≡
(E0/2)2(αvF /µF )(i~ε∗×~ε) [9]. Here E0 and ~ε are the ampli-
tude and (complex) polarization unit vector of the elec-
tric field, such that (i~ε∗×~ε) represents the direction and
relative magnitude of the circular polarization, µF is the
magnetic moment and αvF is the (possibly B-dependent)
vector polarizability. In the limit where Beff � B, as is
the case in our current experiment, only the component
of Beff along B contributes to the shift, and

∂ν

∂I
∝ (αsF ′ − αsF ) +A (mF ′αvF ′ −mFα

v
F ), (1)

where αsF is the scalar component of the atomic polar-
izability, and A = (i~ε∗ × ~ε) · e

B
represents the degree of

circularity of the polarization projected along B.
For alkali ground state hyperfine transitions, there is

no “magic” condition where the scalar differential shift
(αsF ′ − αsF ) vanishes, implying there is no way to cancel
the shift with linearly polarized light [10], where A = 0.
The technique used in [2–4] requires using the vector light
shift on a magnetic-field-sensitive transition to cancel the
scalar DLS, requiring some component of circular polar-
ization such that A 6= 0.

It might appear impossible to use this technique to si-
multaneously cancel differential Zeeman and light shifts,
as canceling the latter requires a non-zero vector DLS.
Since the vector light shift acts as an effective magnetic
field Beff , we seemingly require a Zeeman sensitivity to
B. The key insight is that the vector light shift (to lowest
order) couples only to the electronic degree of freedom,
whereas the Zeeman interaction includes a contribution
from the nuclear magnetic moment. Therefore, the effec-
tive magnetic moments for the two interactions differ by
roughly the nuclear magnetic moment, so at B = Bm,
where the differential Zeeman shift cancels, the differen-
tial vector light shift does not vanish. The vector DLS
can still be used to counteract the scalar DLS.

We can derive approximate expressions for ∆Us and
∆Uv to determine if cancellation is possible. For alkali
atoms (with total angular momentum F and F ′ = F + 1
for the two hyperfine ground states), the Zeeman interac-

tion ĤZ = −(µBgJ Ĵ+µNgI Î) ·B, combined with the hy-
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perfine interaction ĤHF = AHFĴ · Î, leads to field insensi-
tive transitions at B = Bm for mF+1 = −mF . The light,
however, interacts only with the electron angular mo-
mentum: Ĥv = −µBgJ Ĵ ·Beff . This differs from the Zee-
man Hamiltonian ĤZ by the residual term µNgI Î ·Beff ,
where gI is the nuclear Landé factor. At B = Bm,
the vector DLS between states |F ′,−mF 〉 and |F,mF 〉
is ∆Uv = −2mF µNgIBeff [11]. In terms of the total
vector light shift Uv of an individual hyperfine level, the
differential vector light shift is ∆Uv ' −2gI

µN

µB
Uv. The

differential scalar shift relative to Uv can be estimated as
∆Us ' (3∆HF/∆F)Uv [2]. For 87Rb, −2gI

µN

µB
= 0.0020

and 3∆HF/∆F = 0.0029, indicating ∆Uv/∆Us is on the
order of unity, and cancellation is possible. A more de-
tailed calculation, including hyperfine corrections to the
electronic wavefunctions, is needed to accurately deter-
mine the degree of cancellation. An accurate calculation
for several alkali atoms shows that full cancellation for
two-photon transitions is not possible, but in 87Rb the
DLS sensitivity can still be decreased by a factor of 20 [5].

In the experiment described here, we study DLS of
the |F = 1,mF = −1〉 ↔ |F ′ = 2,mF ′ = +1〉 transition
of 87Rb (see Fig. 1(a)) near Bm=0.3228917(3) mT [7], by
performing high-precision microwave (µw) spectroscopy
of ultracold atoms trapped in an optical lattice. Mea-
suring the transition frequency as a function of light in-
tensity provides the sensitivity ∂ν/∂I. While it is gen-
erally relatively easy to measure the depth of an optical
lattice (see [12]), it is more difficult to accurately mea-
sure the total intensity of the light at the position of
the atoms. The main reason is the intensity imbalance
between the counter-propagating lattice beams due to
optical losses and beam area mismatch. To accurately
quantify the expected reduction of the DLS, we therefore
compare the two-photon µw transition with the single-
photon µw transition between the |F = 1,mF = 0〉 and
|F = 2,mF = 0〉 states. This transition, which is partic-
ularly important for its use in hyperfine atomic clocks,
has a zero vector light shift at B = 0.

Our atomic sample is produced by loading a 87Rb
Bose-Einstein condensate (BEC) into a 3D optical lattice.
We produce BECs containing typically 105 atoms, spin-
polarized in the |F = 1,mF = −1〉 state, with a duty cy-
cle of 60 s. The final stage of the evaporative cool-
ing is performed in a hybrid trap, created by a focused
dipole laser beam at 1550 nm and a quadrupole mag-
netic field slightly offset in the vertical direction ẑ with
respect to the center of the dipole beam, which provides
longitudinal confinement and also compensates gravity
(similar to [13]). Subsequently, the atoms are adiabat-
ically (∼200 ms) loaded into the optical lattice, with a
typical depth of about 30E

R
, undergoing the Mott insu-

lator transition [14]. The recoil energy ER = ~2k2/2m
Rb

,
where k = 2π/λ is the lattice wave vector, and m

Rb
is

the rubidium mass.
In order to avoid collisional shifts of the clock transi-
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FIG. 1. Schematic of the 87Rb µw transitions studied
here: (a) the two-photon transition |F = 1,mF = −1〉 ↔
|F ′ = 2,mF ′ = +1〉, used to demonstrate the DLS reduction
and (b) the |F = 1,mF = 0〉 ↔ |F ′ = 2,mF ′ = 0〉 clock tran-
sition, used for comparison. In this experiment, atoms are
trapped in an optical lattice formed at the intersection of four
laser beams (k1 to k4), obtained by a folded, retro-reflected
single laser beam (c). The lattice intensity pattern used
for DLS measurements is shown in (d), along with sections
through the unit cell for three different mF states, and was
experimentally optimized in order to maximize the amount of
circular polarization on the right (R) sites. In this experiment
atoms are trapped only in the R sites.

tion due to the state-dependent on-site interaction (which
are of the same order of magnitude as the DLS), it is im-
portant to prepare only singly-occupied sites. To deter-
mine the atom number distribution in our lattice, we per-
formed high-resolution two-photon spectroscopy of the
clock transition [15], which allows us to differentiate be-
tween sites with different occupancies. To control the
number of atoms in the BEC (before loading the lattice),
we apply a non-adiabatic µw frequency sweep, removing
a controlled fraction of the atoms by transferring them
into the untrapped state |F = 2,mF = −2〉. For our trap
parameters, we obtain single occupancy when the num-
ber of atoms in the BEC is less than 4× 104.

The setup of our optical lattice has been described in
detail elsewhere [16, 17]. It consists of a 2D lattice in
the horizontal (x̂− ŷ) plane and an independent, linearly
polarized vertical lattice (along ẑ), shifted in frequency
by ∼180 MHz. The 2D lattice is obtained from a single,
retro-reflected laser beam (Fig. 1(c)), and is adiabatically
transformed during the experiment from a standard λ/2-
period lattice with purely linear polarization (used dur-
ing the loading stage) into the double-well configuration
shown in Fig. 1(d) (used for spectroscopy), where the
right (R) sites have an adjustable circular polarization
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FIG. 2. DLS dependence on intensity, expressed as the lattice
depth in the corresponding λ/2 configuration. We observe a
significant reduction of the total DLS of the two-photon clock
transition (circles), compared to the single-photon clock tran-
sition (squares). The full lines represent linear fits to the data.
The vertical lattice was kept at a constant depth of 30 ER,
and the horizontal dashed line represents its (uncompensated)
DLS, determined from extrapolating the fits to zero intensity.
The statistical uncertainty of the data points is . 1 Hz.

component. B was aligned along the resulting Beff (ide-
ally in the x̂ − ŷ plane), minimizing the DLS sensitivity
on the R sites. Based on the technique used in [16], we
developed a procedure to trap atoms only in the R sites:
after loading the full lattice, we spectroscopically address
the atoms on the left (L) sites and transfer them to the
F = 2 manifold, before expelling them from the lattice
with a resonant 20 µs light pulse, which does not affect
the F = 1 atoms in R.

To measure the transition frequencies, we use the de-
tuned Ramsey method, consisting of two π/2 pulses, sep-
arated by a variable hold time τ , and with a typical de-
tuning close to 1 kHz. We probe the two-photon transi-
tion using µw and rf fields, each detuned by 90 kHz from
the intermediate |F = 2,mF = 0〉 state (see Fig. 1(a)),
resulting in a two-photon Rabi frequency of about 1 kHz.
The single photon transition (Fig. 1(b)) is driven using
a single µw field with a Rabi frequency of 9 kHz. After
the Ramsey interrogation, state detection is performed
by transferring the atoms between |F = 1,mF = −1〉 and
|F = 2,mF = 0〉 with a µw π-pulse, switching off the lat-
tice in ∼600 µs and absorption-imaging the cloud after
18 ms of time of flight and Stern-Gerlach separation.

Fig. 2 shows the DLS for both transitions as a func-
tion of the lattice intensity, expressed as the lattice depth
in the corresponding λ/2 configuration. For circularly-
polarized 2D lattice light at the R sites we observe a
significantly reduced sensitivity to the lattice intensity of
the two-photon transition at Bm, compared to the single-
photon transition near B = 0. The scalar DLS is the
same in both cases, and the ratio of the two- and single-
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FIG. 3. Ratio between the DLS sensitivities (∂ν/∂I)
for the |F = 1,mF = −1〉 ↔ |F ′ = 2,mF ′ = +1〉 and
|F = 1,mF = 0〉 ↔ |F ′ = 2,mF ′ = 0〉 transitions as a func-
tion of the lattice wavelength, showing a ‘nearly-magic’ be-
havior, with a minimum value of 4.5% at 806 nm. The mag-
netic field was kept at 0.323(3) mT, near the magic value for
the two-photon transition, whereas a small, 20 µT bias was
used for the single-photon transition. The full line represents
a calculation using the method presented in [5].

photon transition sensitivities quantifies the reduction of
the DLS.

The circularity of the lattice light along B was op-
timized by minimizing the intensity dependence of the
frequency. Based on an independent measurement of the
losses of our lattice beams, we estimate that the light has
a projected circularity A ' 0.99. Moreover, by reversing
the direction of B, we confirmed an increased DLS sen-
sitivity of the two-photon transition, as in this case the
scalar and vector components add together.

To preserve a well-defined quantization axis for the
|F = 2,mF = 0〉 ↔ |F ′ = 1,mF ′ = 0〉 transition, we
maintained a small (20 µT) magnetic field at which the
residual vector component of the DLS is calculated to
be less than 0.6 Hz. In a lattice the dependence of δν
on intensity is not strictly linear, due to a zero-point
energy offset [18], but we estimate that for our param-
eter range the deviation from linearity is smaller than
the measurement uncertainties. The zero-point energy
does contribute to a slight shift in the extracted slopes,
of < 4% compared to a traveling wave of corresponding
intensity, but this systematic shift does not contribute to
the ratio of the single- and two-photon slopes.

In Fig. 3 we show the dependence of the ∂ν/∂I ratio on
the lattice wavelength between 802 nm and 815 nm. We
observe a local minimum of the sensitivities ratio near
806 nm. This corresponds to a ∼95(2)% reduction of
the DLS, in good agreement with our theoretical calcu-
lations (Fig. 3). The range of wavelengths accessible for
this study was limited by two factors: at shorter wave-
lengths the measurement precision is limited by an en-
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FIG. 4. Sensitivity of the transition frequency to the lattice
laser intensity (∂ν/∂I), as a function of the bias magnetic
field, at λ = 806 nm. At B = 0.343(3) mT (i.e. 20 µT away
from the magic field) ∂ν/∂I = 0, and the transition becomes
insensitive, at first order, to fluctuations of the light intensity
- with a residual field sensitivity ∂ν/∂B of 1.7 Hz/µT.

hanced rate of photon scattering from the lattice beams,
while at longer wavelengths the DLS becomes compara-
ble to our measurement uncertainties.

We also investigated the possibility of achieving
∂ν/∂I = 0 by slightly shifting the magnetic field away
from Bm. By measuring the light shift sensitivity of the
two-photon transition as a function of the magnetic field
at λ = 806 nm, we observe the linear dependence shown
in Fig. 4. The DLS cancels completely at 0.343(3) mT
(∼20 µT away from Bm), in agreement with theory [5].
At this field, the residual magnetic field sensitivity is
∼1.7 Hz/µT, about two orders of magnitude larger than
what is typically used in atomic fountain clocks [19].

We used the detuned Ramsey method, presented
above, to compare the sensitivities of the two clock tran-
sitions to lattice inhomogeneities. We observed an in-
crease in the coherence time between the two levels of
the two-photon transition compared to the single-photon
transition. At τ=0 the Ramsey contrast is 98(2)%; at
τ=200 ms the single-photon contrast has decayed to zero,
whereas the two-photon contrast is 10%. This value
is likely limited by the inhomogeneous, uncompensated
DLS of the vertical lattice, which is needed in our setup
to support the atoms against gravity.

In summary, the experiments presented in this paper
demonstrate a scheme to significantly reduce the light
shift sensitivity of an atomic µw ground-state transition
while retaining insensitivity to magnetic field fluctua-
tions, using a subtle effect originating in the small differ-
ence between the total and electronic magnetic moments.
While simultaneous full cancellation of both differential
light and magnetic field shifts cannot be achieved for
87Rb, tuning experimental parameters between the dif-
ferential light and Zeeman shift insensitive points may

allow for minimizing the effect of the external field in-
homogeneities and fluctuations on the coherence time of
trapped atomic samples. The reduced sensitivity, demon-
strated here in a 3D lattice, would be even more effective
for applications using dipole traps and optical lattices in
1D and 2D geometries [3, 4, 20].

The experiments presented here confirm theoretical
calculations of DLS [5]. These calculations also predict
perfect DLS cancellation at the magnetic-field-insensitive
point for four-photon transitions in other alkali atoms
(85Rb and 133Cs). In these cases, cancellation may even
be possible in a 3D lattice geometry by introducing cir-
cular polarization components along all coordinates and
carefully chosing the external magnetic field orientation.

Ultimately, the reduced sensitivity to fluctuations
demonstrated here, and its potential extension to other
atoms outlined above, may have a range of applications
including frequency metrology [21], coherent light stor-
age [4], and extending the coherence time of quantum
memories for quantum information processing [22].
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