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Abstract

We initiate a study of infinite tensor products of projective unitary

representations of a discrete group G. Special attention is given to regu-

lar representations twisted by 2-cocycles and to projective representations

associated with CCR-representations of bilinear maps. Detailed computa-

tions are presented in the case where G is a finitely generated free abelian

group. We also discuss an extension problem about product type actions

of G, where the projective representation theory of G plays a central role.
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1 Introduction

The theory of infinite tensor products of Hilbert spaces started with the semi-
nal paper by von Neumann [17]. Later on, Guichardet [11, 12] approached this
matter from a slightly different point of view and developed a unified framework
for treating several related concepts involving operators, algebras and function-
als. The notion of infinite tensor product has been mainly used in this form in
operator algebras and quantum field theory over the last three decades (see
e. g. [10] for a recent overview).

The existence of some infinite tensor product of representations of a group
has been established and used in some recent works. For example, it was shown
in [1] that a locally compact group is σ-compact and amenable if and only if
there exists an infinite tensor power of its regular representation. Such an in-
finite tensor power construction was then a useful tool for studying covariance
of certain (induced) product-type representations of generalized Cuntz algebras
with respect to natural product-type actions. This circle of ideas has been gen-
eralized and thoroughly investigated in [4]. In another direction, the infinite
tensor product of certain unitary representations of some group of diffeomor-
phisms was shown to exist under suitable assumptions in [13].

In this paper we initiate a study of infinite tensor products of projective
unitary representations of a discrete group. It is in fact not obvious that such
infinite tensor products exist at all. Indeed it is quite easy to realize that it
is impossible to form the infinite tensor power of a single projective unitary
representation unless the associated 2-cocycle vanishes. Besides its intrinsic in-
terest, this new generality has the potential advantage to allow for extensions
of the analysis given in [1, 4] to a broader class of product-type actions on the
0th-degree part of extended Cuntz algebras. It is also relevant when studying
extensions of product-type actions from the algebraic to the von Neumann al-
gebra level. Finally it provides a way to represent faithfully on infinite tensor
product spaces some familiar C*-algebras like non-commutative tori. To avoid
technicalities, we stick to the case of a discrete group, although it could be of
interest in the future to consider a locally compact (or even just a topologi-
cal) group and strongly continuous projective unitary representations of such a
group.

The paper is organized as follows. Section 2 is devoted to some prelim-
inaries on projective unitary representations, product sequences of 2-cocycles
and infinite tensor products. Section 3 contains our main existence results for
infinite tensor products of projective unitary representations. We especially
display some sufficient conditions for countable amenable groups in the case of
projective regular representations and in the case of projective representations
associated with CCR-representations of bilinear maps. To illustrate our work we
specialize in section 4 to the case of finitely generated free abelian groups. The
final section deals with infinite tensor products of actions of a discrete group
G on von Neumann algebras. We concentrate our attention to the existence
problem of such product actions in the case of unitarily implemented actions.
One of our result exhibits an obstruction for extending some algebraic tensor
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power action of G to the weak closure that lies in the second cohomology group
H2(G,T). In another result, the obstruction lies in the non-amenability of G.

2 Preliminaries

Throughout this note G denotes a non-trivial discrete group, with neutral ele-
ment e.

A 2-cocycle (or multiplier) on G with values in the circle group T is a map
u : G×G→ T such that

u(x, y)u(xy, z) = u(y, z)u(x, yz) (x, y, z ∈ G),

see e.g. [5, Chapter IV]. We will consider only normalized 2-cocycles, satisfying

u(x, e) = u(e, x) = 1 (x ∈ G).

The set of all such 2-cocycles, which is denoted by Z2(G,T), becomes an abelian
group under pointwise product. We equip Z2(G,T) with the topology of point-
wise convergence.

A 2-cocycle v on G is called a coboundary whenever v(x, y) = ρ(x)ρ(y)ρ(xy)
(x, y ∈ G) for some ρ : G → T, ρ(e) = 1, in which case we write v = dρ (such
a ρ is uniquely determined up to multiplication by a character). The set of all
coboundaries, which is denoted by B2(G,T), is a subgroup of Z2(G,T), which
is easily seen to be closed. (Indeed, assume that (dρα) is a net in B2(G,T)
converging to v ∈ Z2(G,T). Due to Tychonov’s theorem, we may, by passing
to a subnet if necessary, assume that ρα converges pointwise to ρ, for some
ρ : G→ T, ρ(e) = 1. Then we have v = dρ.)

The quotient group H2(G,T) := Z2(G,T)/B2(G,T) is called the second
cohomology group of G with values in T. We denote elements in H2(G,T) by
[u] and write v ∼ u when [v] = [u] (u, v ∈ Z2(G,T)). We also write v ∼ρ u
when we have v = (dρ)u for some coboundary dρ.

We recall a few facts concerning infinite products of complex numbers (see
[17]). Let (zi) denote a sequence of complex numbers. We say that the infinite
product

∏

i zi exists (or converges) if the limit of the net (
∏

i∈J zi)J∈F exists,
where F denotes the family of non-empty finite subsets of N ordered by inclusion.
We then also use

∏

i zi to denote this limit. We will need the following result:

Assume that
∑

i |1 − zi| < ∞. Then
∏

i zi exists, and
∏

i zi 6= 0 if all zi’s are
non-zero. Conversely, assume that

∏

i zi converges to a non-zero element. Then
∑

i |1 − zi| <∞.

We shall be interested in product sequences in Z2(G,T): we call a sequence
(ui) in Z2(G,T) a product sequence whenever the (pointwise) infinite product
u =

∏

i ui exists on G×G (u being then obviously a 2-cocycle itself).
A cohomological problem concerning product sequences is that perturbing

a product sequence (by a coboundary in each component) does not necessarily
lead to a product sequence, as may be illustrated by taking all ui’s to be 1 and
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perturbing by the same coboundary v 6= 1 in each component. The following
lemma somewhat clarifies this problem.

Lemma 2.1. Let (ui) and (vi) be two sequences in Z2(G,T) satisfying vi ∼ρi
ui

for every i.

i) Assume that ρ :=
∏

i ρi exists. Then (vi) is a product sequence if and only if
(ui) is a product sequence, in which case we have

∏

i vi ∼ρ
∏

i ui.

ii) Assume that (ui) and (vi) are both product sequences. Then
∏

i vi ∼
∏

i ui
(even if

∏

i ρi does not necessarily exist).

Proof. As i) is straightforward, we only show ii). So we assume that u =
∏

i ui
and v =

∏

i vi both exist. Then w :=
∏

i dρi =
∏

i uivi also exists and is
the limit of a net of 2-coboundaries. As B2(G,T) is closed, this implies that
w ∈ B2(G,T). Since v = wu, this shows that v ∼ u, as asserted.
(To see that

∏

i ρi does not necessarily exist, assume that G possess a non-trivial
character γ. Set ui = vi = 1 and ρi = γ for all i. Then clearly vi ∼ρi

ui while
∏

i ρi does not exist.)

A projective unitary representation U of G on a Hilbert space H associated
with some u ∈ Z2(G,T) is a map from G into the group of unitaries on H such
that

U(x)U(y) = u(x, y)U(xy) (x, y ∈ G).

If we pick a ρ : G → T satisfying ρ(e) = 1 and set V = ρU , then V is also
a projective unitary representation of G on H associated with a 2-cocycle v
satisfying v ∼ρ u. Such a V is called a perturbation of U .

To each u ∈ Z2(G,T) one may associate the left u-regular projective unitary
representation λu of G on ℓ2(G) defined by

(λu(x)f)(y) = u(y−1, x)f(x−1y) (f ∈ ℓ2(G), x, y ∈ G).

Choosing u = 1 gives the left regular representation of G which we will just
denote by λ. It is well known (and easy to see) that if v ∼ρ u, then λv is
unitarily equivalent to ρλu.

For i = 1, 2, let Ui be a projective unitary representation of G on a Hilbert
space Hi associated with ui ∈ Z2(G,T). Then the naturally defined tensor
product representation U1 ⊗ U2 is easily seen to be a projective unitary repre-
sentation of G on the Hilbert space H1⊗H2 associated with the product cocycle
u1u2. In the case of ordinary unitary representations of a group, it is a classical
result of Fell (cf. [8], 13.11.3) that the left regular representation acts in an
absorbing way with respect to tensoring (up to multiplicity and equivalence).
In the projective case we have the following analogue.

Proposition 2.2. Let u, v be elements in Z2(G,T) and let V be any projective
unitary representation of G on a Hilbert space H associated with v. Then the
tensor product representation λu ⊗ V is unitarily equivalent to λuv ⊗ idH, i.e.
to (dim V ) · λuv.
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Proof. We leave to the reader to check that the same unitary operator W as in
the non-projective case ( which is determined on ℓ2(G) ⊗ H (∼= ℓ2(G,H)) by
(W (f ⊗ ψ))(x) = f(x)V (x−1)ψ) implements the asserted equivalence.

We conclude this section with a short review on infinite tensor products of
Hilbert spaces and operators. (See [11, 12] for more information.)

Let H = {Hi} denote a sequence of Hilbert spaces and φ = {φi} be a
sequence of unit vectors where φi ∈ Hi for each i ≥ 1. We denote by Hφ or
by

⊗φ
i Hi the associated infinite tensor product Hilbert space of the Hi’s along

the sequence φ.
For any sequence ψi ∈ Hi such that

∑

i

| 1 − ‖ψi‖ | <∞ and
∑

i

| 1 − (ψi, φi) | <∞,

there corresponds a so-called decomposable vector in Hφ denoted by ⊗iψi. If
⊗iξi is another decomposable vector in Hφ, then

(⊗iψi,⊗iξi) =
∏

i

(ψi, ξi).

A decomposable vector of the form ψ1 ⊗ . . .⊗ ψk ⊗ φk+1 ⊗ φk+2 ⊗ . . . is called
elementary. The set of all elementary decomposable vectors is total in Hφ.

Let T1, T2, . . . be a sequence of bounded linear operators where each Ti acts
on Hi. For each fixed n ∈ N there exists a unique bounded linear operator T̃n
acting on Hφ which is determined by

T̃n(⊗iψi) = T1ψ1 ⊗ . . .⊗ Tnψn ⊗ ψn+1 ⊗ ψn+2 ⊗ . . .

for each decomposable vector ⊗iψi. Similarly, one may define T̃J for each
(nonempty) finite J ⊂ N. Under certain assumptions, the net {T̃J} converges in
the strong operator topology to a bounded linear operator on Hφ which is then
denoted by ⊗iTi.

By [12, Part II, Proposition 6]), a sufficient condition for ⊗iTi to exist is
that

∏

i

‖Ti‖ exists ,
∑

i

|1 − ‖Tiφi‖ | <∞ and
∑

i

|1 − (Tiφi, φi) | <∞,

in which case we have (⊗iTi) (⊗iψi) = ⊗iTiψi for all elementary decomposable
vectors ⊗iψi.

When all Ti’s are unitaries (which is the case of interest in this paper) we
have the following result, which will be used several times in the sequel.

Proposition 2.3. Let (Ti) be a sequence of unitaries where each Ti acts on Hi.
Then ⊗iTi exists on Hφ if and only if

(∗)
∑

i

|1 − (Tiφi, φi)| <∞,

in which case ⊗iTi is a unitary on Hφ satisfying (⊗iTi)∗ = ⊗iT ∗
i .
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Proof. Assume first that (∗) holds. It is then quite elementary to deduce from
Guichardet’s result mentioned above that ⊗iTi and ⊗iT ∗

i both exist. Moreover,
these two operators are then isometries, being the strong limit of a net of uni-
taries, and they are easily seen to be the inverse of each other. So both are
unitaries satisfying (⊗iTi)

∗ = ⊗iT
∗
i .

Assume now that T := ⊗iTi exists on Hφ. Then T is non-zero (being an
isometry), so there are elementary decomposable vectors ⊗iψi and ⊗iξi such
that

0 6= c := (T ⊗i ψi,⊗iξi).

Let J be any finite subset of N large enough so that ψi = ξi = φi for all i /∈ J.
Then we have

(T̃J ⊗i ψi,⊗iξi) =
∏

i∈J

(Ti ψi, ξi).

Since T = limJ T̃J , we get c = limJ

∏

i∈J(Ti ψi, ξi), i.e.
∏

i∈N
(Ti ψi, ξi) converges

to a non-zero value.
Thus we get

∑

i |1− (Ti ψi, ξi)| <∞ and therefore
∑

i |1− (Ti φi, φi)| <∞ since
ψi = ξi = φi for all but finitely many i’s.

3 Infinite tensor products of projective unitary

representations

Before attacking the main problem whether it is possible to form an infinite
tensor product of a sequence of projective unitary representations, at least in
some cases, we first show that this construction, when possible, produces a new
projective unitary representation ofG, and also make some general observations.

Theorem 3.1. Let Ui be a sequence of projective unitary representations of G
acting respectively on a Hilbert space Hi and with associated ui ∈ Z2(G,T). Let
φ = (φi) be a sequence of unit vectors where each φi ∈ Hi. Assume that ⊗iUi(x)

exists on Hφ = ⊗φiHi for each x ∈ G. Then we have

i) (ui) is a product sequence in Z2(G,T).

ii) The map x → Uφ(x) := ⊗iUi(x) is a projective unitary representation of G
on Hφ with u =

∏

i ui as its associated 2-cocycle.

iii) If there exists one k such that Uk is unitarily equivalent to λuk
, then Uφ

is unitarily equivalent to λu ⊗ idH, where H denotes any infinite dimensional
separable Hilbert space.

iv) λ⊗ Uφ is unitarily equivalent to λu ⊗ idHφ .

Proof. Notice first that Proposition 2.3 implies that each Uφ(x) := ⊗iUi(x) is
a unitary.

i) Let g, h ∈ G. We must show that
∏

i ui(g, h) converges. Now

⊗iUi(gh)
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and
(⊗iUi(g))(⊗iUi(h)) = ⊗iUi(g)Ui(h) = ⊗iui(g, h)Ui(gh)

are both unitaries. Putting ai = (Ui(gh))φi , φi ), we deduce from Proposition
2.3 that

∑

i

| 1 − ai | <∞ and
∑

i

| 1 − ui(g, h)ai | <∞.

This implies that
∑

i | 1 − ui(g, h) | < ∞, and therefore that
∏

i ui(g, h) con-
verges, as desired. ( We use here implicitely that whenever z ∈ T and a ∈ C,
then |1 − z| = |1 − z| ≤ |1 − a| + |a− z| = |1 − a| + |za− 1|).

ii) Using i) we get

Uφ(x)Uφ(y) = ⊗iui(x, y)Ui(xy) = (
∏

i

ui(x, y)) ⊗i Ui(xy) = u(x, y)Uφ(xy)

for all x, y ∈ G, as asserted.
iii) and iv) follow easily from Proposition 2.2.

An obvious, but noteworthy consequence of part i) of this theorem is that
it is impossible to form the infinite tensor power of a single projective unitary
representation unless the associated 2-cocycle vanishes. In another direction,
the case where infinitely many of the Ui’s are projective regular representations
of G can not occur in this theorem when G is uncountable or non-amenable, as
easily follows from our next theorem. (We refer to [18] or [19] for information
on amenability).

Theorem 3.2. Let (ui) be a sequence in Z2(G,T) and set Ui = λui
for every

i. Let φ = (φi) be a sequence of unit vectors in ℓ2(G). Assume that ⊗iUi(x)

exists on Hφ = ⊗φi ℓ
2(G) for each x ∈ G. Then G is countable and amenable.

Proof. Using Proposition 2.3, it follows that
∑

i |1−(Ui(x)φi, φi)| <∞ for every
x ∈ G. Notice that

|(Ui(x)φi, φi)| ≤ (λ(x)|φi|, |φi|) ≤ 1.

Hence we get
(λ(x)|φi| , |φi|) → 1 (x ∈ G).

This means that the trivial 1-dimensional representation of G is weakly con-
tained in λ and the amenability of G follows.
Moreover, setting fi(x) := |(λ(x)φi, φi)| ≥ 0 we have 0 ≤ fi ≤ 1, fi ∈ C0(G)
(cf. [8, 13.4.11]) and fi → 1 pointwise. Then f−1

i ([1/2, 1]) =: Hi is finite and
G = ∪iHi, so G is countable.

In view of this theorem, it is quite natural to wonder whether some converse
holds. We shall provide a partial answer in Corollary 3.4. To ease our exposition,
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we introduce some terminology. A sequence (Fi) of non-empty, finite subsets of
G will be called a F -sequence (resp. σF -sequence) for G whenever

lim
i

#(Fi ∩ xFi)

#Fi
= 1 for all x ∈ G,

(resp.
∑

i

|1 −
#(Fi ∩ xFi)

#Fi
| <∞ for all x ∈ G).

A F -sequence (Fi) for G is often called a Fölner sequence in the literature. We
remark that the definition is usually phrased in a slightly different, but equiv-
alent, way (involving the symmetric difference of sets) and that some authors
also require that Fi ⊆ Fi+1 for every i. Anyhow, thanks to Fölner (see [18, 19]),
we know that G is countable and amenable if and onl y if G has a F -sequence.
Now, obviously, a σF -sequence for G is also a F -sequence. Moreover, any F -
sequence has some subsequence which is a σF -sequence, as is easily checked.
Hence we can also conclude that G is countable and amenable if and only if G
has a σF -sequence.

When F is a subset of G, we denote by χF its characteristic function.

Theorem 3.3. Let (ui) be a sequence in Z2(G,T). Assume that G is countable
and amenable, and has a σF -sequence (Fi) which satisfies

(∗)
∑

i

1

#Fi

∑

y∈Fi

|1 − ui(y
−1, x)| <∞ for all x ∈ G.

Set Ui = λui
and φi := χFi

/(#Fi)
1/2

for every i.
Then φ = (φi) is a sequence of unit vectors in ℓ2(G) such that ⊗iUi exists on

Hφ = ⊗φi ℓ
2(G).

Proof. We first record some easy calculations. Let F be a finite (non-empty)

subset of G and set φF := χF /(#F )
1/2

. Let u ∈ Z2(G,T). Then we have

(λ(x)φF , φF ) =
1

#F
#(F ∩ xF )

for every x ∈ G. More generally we have

(λu(x)φF , φF ) =
1

#F

∑

y∈F∩xF

u(y−1, x)

and therefore

( (λ(x) − λu(x))φF , φF ) =
1

#F

∑

y∈F∩xF

(1 − u(y−1, x))

for all x ∈ G.
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Using the triangle inequality and the above computations, we get

∑

i

|1 − (Ui(x)φi, φi)| ≤
∑

i

|1 − (λ(x)φi, φi)| +
∑

i

|( (λ(x) − Ui(x))φi, φi )|

=
∑

i

|1 −
#(Fi ∩ xFi)

#Fi
| +

∑

i

1

#Fi
|

∑

y∈Fi∩xFi

(1 − ui(y
−1, x)) |

≤
∑

i

|1 −
#(Fi ∩ xFi)

#Fi
| +

∑

i

1

#Fi

∑

y∈Fi

|1 − ui(y
−1, x)|

for all x ∈ G. Since (Fi) is a σF -sequence for G satisfying (∗), both sums above
converge for all x ∈ G. Hence,

∑

i |1− (Ui(x)φi, φi)| <∞ for all x ∈ G and the
assertion follows from Proposition 2.3.

Clearly, if ui = 1 for all but finitely many i’s, any σF -sequence (Fi) for
G trivially satisfies (∗). In this case, the above theorem could also have been
deduced from [7].

Corollary 3.4. Let G be countable and amenable, and let (vj) be a product
sequence in Z2(G,T). Then there exist a subsequence (ui) of (vj) and a sequence

φ = (φi) of unit vectors in ℓ2(G) such that ⊗iλui
exists on Hφ = ⊗φi ℓ

2(G).

Proof. First we pick a σF -sequence (Fi) for G and a growing sequence (Hi)
of non-empty finite subsets of G satisfying ∪iHi = G. Since the (pointwise)
product

∏

j vj exists, we can choose a subsequence (ui) of (vj) satisfying

|1 − ui(y
−1, x)| ≤ 1/i2 for all x ∈ Hi, y ∈ Fi, i ∈ N.

Let x ∈ G and choose N ∈ N such that x ∈ HN . Then we get

∑

i

1

#Fi

∑

y∈Fi

|1 − ui(y
−1, x)|

≤
∑

i<N

2 +
∑

i≥N

1

#Fi

∑

y∈Fi

1/i2

= 2(N − 1) +
∑

i≥N

1/i2 <∞.

This shows that (Fi) satisfies (∗) in Theorem 3.3, from which the result then
clearly follows.

Corollary 3.5. Let G be countable and amenable. Then there always exist
some product sequence (ui) in Z2(G,T) satisfying ui 6= 1 for all i and some
sequence φ = (φi) of unit vectors in ℓ2(G) such that ⊗iλui

exists on Hφ =

⊗φi ℓ
2(G). If H2(G,T) is non-trivial and 1 6= [u] ∈ H2(G,T), then the sequence

(ui) above may chosen so that u =
∏

i ui.



Infinite tensor products and projective representations 10

Proof. We call a product sequence (ui) in Z2(G,T) 1-free if ui 6= 1 for all i.
It is easy to see that 1-free product sequences do exist in B2(G,T). As 1-
freeness is clearly preserved when passing to subsequences, the first assertion
follows from the previous corollary. The 1-free product sequence (ui) is then in
B2(G,T). Therefore (by closedness)

∏

i ui ∈ B2(G,T), so we may write it as
dρ for some normalized ρ : G → T. Assume now H2(G,T) is non-trivial and
1 6= [u] ∈ H2(G,T). Set v1 = dρ u and vi = ui−1, i > 1. Then (vi) is a 1-free
product sequence satisfying u =

∏

i vi. Further we can define a new sequence
ψ = (ψi) of unit vectors in ℓ2(G), by setting ψ1 = δe and ψi = ψi−1, i > 1. It is
then obvious that ⊗iλvi

exists on Hψ, which proves the second assertion.

Remarks.

1) It follows from Theorem 3.1 iii) that representations obtained as the
infinite tensor product of projective regular representations are never irreducible.

2) Let G be countable and amenable, and let (ui) and (vi) be two sequences
in Z2(G,T) satisfying vi ∼ρi

ui for every i. Assume that ⊗iλui
exists on

Hφ = ⊗φi ℓ
2(G) for some sequence φ = (φi) of unit vectors in ℓ2(G). As

∏

i vi
does not necessarily exist, it may happen that ⊗iλvi

can not be formed at all
(cf. Theorem 3.1). However, it is quite clear that ρ1λv1 ⊗ ρ2λv2 ⊗ · · · exists
on ⊗ψiℓ2(G), where ψi is defined by ψi(x) = ρi(x−1)φi(x), and this may be
considered as a problem of gauge fixing. On the other hand, let us also assume
that ⊗iλvi

exists on Hψ = ⊗ψi ℓ
2(G) for some sequence ψ = (ψi) of unit vectors

in ℓ2(G). Then we may conclude that ⊗iλvi
is, up to unitary equivalence, just

a perturbation of ⊗iλui
.

(To prove this, we first appeal to Theorem 3.1 and obtain that both u =
∏

i ui
and v =

∏

i vi exist. Using Lemma 2.1 we may then write v = dρ u for some
normalized ρ : G→ T. Now, using that λv ≃ ρλu and Theorem 3.1, we get

⊗iλvi
≃ λv ⊗ id ≃ ρ(λu ⊗ id) ≃ ρ⊗i λui

,

where id denotes the identity representation of G on any infinite separable
Hilbert space.)

3) To produce examples of infinite tensor product of projective unitary rep-
resentations of not necessarily amenable groups, one can proceed as follows. Let
G be any countable group possessing a non-trivial amenable factor groupK (one
can here for instance let G be any non-perfect, non-amenable group, e. g. any
non-abelian countable free group, since the abelianized group G/[G,G] is then
non-trivial and abelian) and let (vi) be a sequence in Z2(K,T) such that ⊗iλvi

exists on ⊗φi ℓ
2(K). Using the canonical homomorphism π : G→ K, we may lift

each vi to a ui ∈ Z2(G,T) in the obvious way. Set Ui(x) := λvi
(π(x)), x ∈ G,

for each i. It is then a simple matter to check that each Ui is a projective
unitary representation of G on ℓ2(K) associated to ui, and that ⊗iUi exists on

⊗φi ℓ
2(K).
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We now turn to another class of examples which is in spirit related to the
setting of the Stone-Mackey-von Neumann theorem, i. e. with so-called CCR-
representations of a locally compact abelian group and its dual (cf. [20]).

Let A and B be two discrete groups and σ : A × B → T be a bilinear
map. We call a triple {V,W,H} for a CCR-representation of σ whenever V and
W are unitary representations of respectively A and B on H which satisfy the
CCR-relation

V (a)W (b) = σ(a, b) W (b)V (a)

for all a ∈ A, b ∈ B.
We now set G = A×B and define uσ : G×G→ T by

uσ( (a1, b1), (a2, b2) ) = σ(a2, b1).

It is an easy exercise to check that uσ is a 2-cocycle on G (in fact a bicharacter,
i. e. a bilinear map on G × G into T). When both A and B are abelian, then
[uσ] 6= 1 in H2(G,T) whenever σ is non-trivial, as follows from [16] since uσ is
then clearly non-symmetric. Note that there is an 1-1 correspondence between
CCR-representations of σ and projective unitary representations ofG associated
with uσ ( being given by setting U(a, b) = V (a)W (b) whenever {V,W,H} is a
CCR-representation of σ).

There is a canonical way to produce a CCR-representation of σ on ℓ2(B), to
which we may associate a projective unitary representation Uσ of G on ℓ2(B)
associated with uσ. We recall this construction (and remark that a similar con-
struction can be done on ℓ2(A) in an analogous way):

For each a ∈ A, b ∈ B we set σa(b) = σ(a, b), so the map (a 7→ σa) belongs to
Hom(A, B̂) where B̂ := Hom(B,T). Let then Vσ(a) denote the multiplication
operator by the function σa on ℓ2(B) and λB be the left regular representation
of B on ℓ2(B). By computation we have

Vσ(a)λB(b) = σ(a, b) λB(b)Vσ(a)

for all a ∈ A, b ∈ B. Hence, the triple {Vσ, λB, ℓ
2(B)} is a CCR-representation

of σ and we can put Uσ(a, b) := Vσ(a)λB(b) for all (a, b) ∈ G.

Assume now that (σi) is a sequence of bilinear maps from A×B into T. The

question whether is it possible to form ⊗iUσi
on ⊗φi ℓ

2(B) for some sequence φ =
(φi) of unit vectors in ℓ2(B) is then clearly equivalent to whether it is possible
to form the infinite tensor product of the CCR-representations associated with
the σi’s. In the case of a positive answer, the product

∏

i uσi
will exist (as

a consequence of Theorem 3.1), so
∏

i σi will then exist too and the infinite
tensor product of the CCR-representations associated with the σi’s will be a
CCR-representation of this product map.

Quite similarly to Theorem 3.2 and Theorem 3.3 we have:
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Theorem 3.6. Let (σi) be a sequence of bilinear maps from G = A × B into
T. Set Ui := Uσi

.

i) Assume that ⊗iUi exists on ⊗φi ℓ
2(B) for some sequence φ = (φi) of unit

vectors in ℓ2(B). Then B is countable and amenable.

ii) Assume that B is countable and amenable, and that (Fi) be a σF-sequence
for B satisfying

∑

i

1

#(Fi)

∑

b∈Fi

|1 − σi(a, b)| <∞

for every a ∈ A. Set φ = (φi) where φi := χFi
/#(Fi)

1/2.

Then ⊗iUi exists on ⊗φi ℓ
2(B).

Proof. i) Since Ui(e, b) = λB(b), this follows from [1] (or Theorem 3.2).
ii) Let B be countable and amenable, and (Fi) be as in ii). Since (Fi) is a σF-

sequence for B it follows from [7] (or Theorem 3.3) that ⊗iUi(e, b) = ⊗iλB(b)

exists on ⊗φi ℓ
2(B) for every b ∈ B. The existence of ⊗iUi on ⊗φi ℓ

2(B) reduces

then to whether ⊗iVσi
exists on ⊗φi ℓ

2(B), i. e. whether

∑

i

|1 − (Vσi
(a)φi, φi)| =

∑

i

|1 − ((σi)a φi, φi)| <∞

holds for every a ∈ A. As we have

|1 − ((σi)a φi, φi)| =
1

#(Fi)
|
∑

b∈Fi

(1 − σi(a, b))| ≤
1

#(Fi)

∑

b∈Fi

|1 − σi(a, b)|

for every a ∈ A, this follows from the assumption on (Fi).

We leave to the reader to deduce from this theorem the analogous versions
of Corollary 3.4 and Corollary 3.5 in this setting.

4 The case of free abelian groups

The purpose of this section is to examplify the results of the previous section in
the concrete case where G is a finitely generated free abelian group.

We let N ∈ N and set G = ZN .

When x = (x1, . . . , xN ) ∈ G, we set |x|1 =
∑N

j=1 |xj | .

When m ∈ N, we define Km ⊂ G by

Km = {x ∈ G | 0 ≤ xi ≤ m, i = 1 . . .N } (= {0, 1, . . . ,m}N).

To each N ×N real matrix A, one may associate uA ∈ Z2(G,T) by

uA(x, y) = eix·(Ay).
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In fact, every element in H2(G,T) may be written as [uA] for some skew-
symmetric A (see [2, 3]). Without loss of generality, we can assume that
A ∈MN ((−π, π]), i.e. all of A’s coefficients belong to (−π, π]. We set

|A|∞ = max{|aij|, 1 ≤ i, j ≤ N}.

We first record a technical lemma.

Lemma 4.1. Let A ∈MN ((−π, π]), x, y ∈ G and m ∈ N. Then

(1) |1 − uA(x, y)| ≤ |A|∞|x|1|y|1

(2)
∑

x∈Km
|x|1 = Nm(m+1)N

2

(3) 1 − #((x+Km)∩Km)
#Km

≤ |x|1
m+1 .

Proof. 1) follows from |1 − eix·(Ay)| ≤ |x · (Ay)| ≤ |A|∞|x|1|y|1.

2)
∑

x∈Km
|x|1 =

∑N
j=1

∑

x∈Km
|xj | = N(m+1)N−1(

∑m
k=0 k) = Nm(m+1)N

2 .

3) 1 − #((x+Km)∩Km)
#Km

= #(Km\(x+Km))
#Km

≤ (m+1)N−1

(m+1)N |x|1 = |x|1
m+1 .

Proposition 4.2. Let (Ai) be a sequence in MN((−π, π]) and (mi) be a se-
quence in N. For each i ∈ N, we set

Fi = Kmi
⊂ G,

φi =
1

(#Fi)1/2
χFi

∈ ℓ2(G),

ui = uAi
∈ Z2(G,T).

Then we have:

(1) (Fi) is a F -sequence for G if and only if mi → +∞.

(2) (Fi) is a σF -sequence for G if and only if
∑∞
i=1

1
mi

<∞.

(3)
∏

i ui exists ⇔
∑

i |Ai|∞ <∞.

(4) The projective unitary representation ⊗iλui
of G exists on ⊗φi

i ℓ
2(G) when-

ever
∞
∑

i=1

1

mi
<∞ and

∞
∑

i=1

mi|Ai|∞ <∞

(and
∏

i ui is then the associated 2-cocycle).
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Proof. The nontrivial parts of (1) and (2) are consequences of Lemma 4.1, part
(3). Assertion (3) relies on the inequality 2|θ|/π ≤ |1 − eiθ| ≤ |θ| which holds
when |θ| ≤ π. Concerning (4) let x, y ∈ G. Then we have

1

#Fi

∑

y∈Fi

|1 − ui(−y, x)| ≤
1

(mi + 1)N
(
∑

y∈Fi

|Ai|∞|x|1|y|1) (by Lemma 4.1, (1))

=
|x|1|Ai|∞
(mi + 1)N

∑

y∈Fi

|y|1

=
|x|1|Ai|∞
(mi + 1)N

Nmi(mi + 1)N

2
(by Lemma 4.1, (2))

=
N |x|1

2
mi|Ai|∞

for every i ∈ N. Hence we have

∑

i

1

#Fi

∑

y∈Fi

|1 − ui(−y, x)| ≤
N |x|1

2

∑

i

mi|Ai|∞.

Now if we assume that
∑∞
i=1

1
mi

< ∞ and
∑∞

i=1mi|Ai|∞ < ∞, then {Fi} is

a σF -sequence for G (by (2)) and
∑

i
1

#Fi

∑

y∈Fi
|1 − ui(−y, x)| < ∞ for all

x ∈ G, and the conclusion follows from Theorem 3.3.

Example. Let A ∈ MN ((−π, π]). Set Ai = 2−iA and ui = uAi
(i ∈ N).

Then clearly uA =
∏

i ui. Further, if we let mi = i2, then
∑

i 1/mi < ∞
and

∑

imi|Ai|∞ = |A|∞
∑

i i
2/2i < ∞ so (4) in the above proposition applies.

Theorem 3.1 then gives
λuA

⊗ id ∼= ⊗iλui
,

thus producing an infinite tensor product decomposition of the amplification
of λuA

. It is well known that the C*-algebra C∗(λuA
) generated by λuA

on
ℓ2(G) is a so-called non-commutative N -torus. Using this decomposition result,
we can clearly obtain a faithful representation of C∗(λuA

) onto the C∗-algebra

generated by ⊗iλui
on ⊗φi ℓ

2(G) for some suitably chosen sequence φ of unit
vectors in ℓ2(G).

We shall now exhibit projective unitary representations arising from CCR-
representations of bilinear maps on some direct product decomposition of G.

We assume from now on that N ≥ 2 and write G = ZN ≃ ZP × ZQ where
1 ≤ P,Q < N and P +Q = N .

To each P ×Q matrix D with coefficients in (−π, π], we associate a bilinear
map σD : ZP × ZQ → T by

σD(a, b) = eia·(Db).

Using the construction described at the end of the previous section, we then
obtain a CCR-representation of σD on ℓ2(ZQ), or, equivalently, a projective
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unitary representation UD of G = ZN with associated 2-cocycle uD. This
cocycle is easy to describe: a simple computation gives

uD(x, y) = eix·(D̃y) (x, y ∈ G)

where D̃ is the N ×N matrix given by

D̃ =

(

0 0
−Dt 0

)

.

Notice that uD = uD̃ and [uD] is non-trivial whenever D 6= 0.

Proposition 4.3. Let (Di) be a sequence of P × Q matrices with coefficients
in (−π, π], and let (Ui) = (UDi

) be the associated sequence of projective unitary
representations of G on ℓ2(ZQ). Let (ni) be a sequence in N.

Set Hi = {b ∈ ZQ | 0 ≤ bi ≤ ni, i = 1 . . .Q} and ψi = 1/(#Hi)
1/2χHi

(i ∈ N).

Then ⊗iUi exists on ⊗ψi

i ℓ
2(ZQ) whenever

∑

i 1/ni <∞ and
∑

i ni|Di|∞ <∞.

Proof. This follows from Theorem 3.6. As the details are quite similar to the
proof of the previous proposition, we leave these to the reader.

Example. We take P = Q = 1 so that G = Z × Z = Z2, and let (Dj) = (θj)
be a sequence in (−π, π]. This gives rise to the sequence (Uj) of representations
of Z2 on ℓ2(Z) with associated 2-cocycles

uj(x, y) = e−iθjx1y2 (x, y ∈ Z
2).

By Proposition 4.3 we can then form the infinite tensor representation ⊗jUj
whenever we can choose a sequence (nj) in N such that

∑

j 1/nj < ∞ and
∑

j nj |θj | <∞ (e.g. nj = j2 will do if (j4|θj |) is bounded).
By a more careful analysis of this example involving the familiar Dirichlet

sums, one can deduce that ⊗jUj will exist whenever we can choose (nj) such
that

∑

j

1

nj
<∞ and

∑

j

|1 −
1

2nj + 1

sin((2nj + 1)θj/2)

sin(θj/2)
| <∞.

Assuming that
∑

j |θj | < ∞ (so
∏

j uj exists), it would be interesting to know
whether such a choice of (nj) can always be made.

5 Infinite products of actions

For each i ∈ N let Hi be a Hilbert space, φi ∈ Hi be a unit vector, Mi ⊂ B(Hi)
be a von Neumann algebra and αi : G → Aut(Mi) be an action of G on Mi.
We denote by Ii the identity operator on Hi. We then form the ∗-algebra

⊙iMi (resp. von Neumann algebra ⊗i(Mi, φi)) acting on ⊗
(φi)
i Hi generated

by operators of the form ⊗iTi where Ti ∈ Mi and Ti = Ii for all but finitely
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many i’s. At the ∗-algebraic level we define an action ⊙iαi of G on ⊙iMi such
that for every finite J ⊂ N we have

⊙iαi((⊗i∈JTi) ⊗ (⊗i/∈JIi)) = (⊗i∈Jαi(Ti)) ⊗ (⊗i/∈JIi).

One natural question is whether ⊙iαi may be extended to an action of G on the
von Neumann algebra ⊗i(Mi, φi). As we shall see, the answer may be negative
in some situations, regardless of the choice of unit vectors φi.

We retrict ourselves to the case where each αi is unitarily implemented, i. e.
we assume that for every i and g there exists a unitary Ui(g) on Hi such that
αi,g = Ad (Ui(g)). This assumption is automatically satisfied for many classes
of von Neumann algebras (see [21], §8). Note that if Ui(g) ∈ Mi for all g ∈ G
and Mi is a factor, especially if Mi = B(Hi), then g → Ui(g) is a projective
unitary representation of G on Hi.

We consider the following condition:

(∗)
∑

i

(1 − |(Ui(g)φi, φi)|) <∞ for all g ∈ G.

Proposition 5.1. Condition (∗) is equivalent to the following condition:

(∗∗) ∃ ρi : G→ T, ρi(e) = 1, such that ⊗i ρiUi exists on ⊗φi

i Hi.

When (∗) holds, then ⊙iαi extends to a unitarily implemented action α on
⊗i(Mi, φi), which is inner whenever Ui(g) ∈ Mi for every i and g ∈ G.

Proof. The first assertion follows from Proposition 2.3, using [11, §1.2]. When
(∗) holds, then αg = Ad (U(g)) where U(g) = ⊗iρi(g)Ui(g) is well defined on

⊗φi

i Hi. Clearly U(g) ∈ ⊗i(Mi, φi) whenever Ui(g) ∈ Mi for every i and g ∈ G,
and αg is then inner for every g ∈ G.

We now treat the case where every Mi is a type I factor. We use the well
known fact that every automorphism of a type I factor is inner and also that
⊗i(B(Hi), φi) = B(⊗φi

i Hi) ( [11, Proposition 1.6]).

Theorem 5.2. Assume that Mi = B(Hi) for all i. Then ⊙iαi extends (uniquely)
to an action α = ⊗αi on ⊗i(B(Hi), φi) if and only if condition (∗) holds.

Proof. Assume that an extension α of ⊙iαi exists on Mφ = ⊗i(Mi, φi). Using

the facts recalled above, we have αg = Ad (U(g)) for some U(g) ∈ U(⊗φi

i Hi) for
every g ∈ G.
Let J be a non-empty finite subset of N.
We identify Mφ with (⊗i∈JMi) ⊗ JM where JM := ⊗i/∈J (Mi, φi), and con-
sider JM as a von Neumann subalgebra of Mφ in the obvious way. It is easy to
see that α restricts to an action Jα of G on JM such that α = (⊗i∈Jαi) ⊗ Jα.
SinceJM is a also type I factor, we can write Jαg = Ad (JU(g)) for some

JU(g) ∈ U(⊗φi

i/∈JHi) for each g ∈ G.
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Set now UJ(g) = ⊗i∈JUi(g) for each g ∈ G. Then αg = Ad (UJ (g)⊗ JU(g)).
Therefore, for each g ∈ G, there exists some zJ(g) ∈ T such that U(g) =
zJ(g)UJ(g) ⊗ JU(g).

Let g ∈ G. Since U(g) 6= 0 we can pick two elementary decomposable vectors

⊗ψi and ⊗ξi in ⊗φi

i Hi (which do not depend on J) satisfying

0 6= c(g) := |(U(g) ⊗ ψi,⊗ξi)| =
∏

i∈J

|(Ui(g)ψi, ξi)| |(JU(g) ⊗i/∈J ψi,⊗i/∈Jξi)|

Since |(JU(g) ⊗i/∈J ψi,⊗i/∈Jξi)| ≤ 1 we get

0 < c(g) ≤
∏

i∈J

|(Ui(g)ψi, ξi)|.

As this holds for every J , one easily deduces that
∏

i∈N
|(Ui(g)ψi, ξi)| converges

to a non-zero number. Since ψi = ξi = φi for all but finitely many i’s, this
implies that (∗) holds. Hence, we have shown the only if part of the assertion.
The converse part follows from Proposition 5.1.

The proof of the above result is reminiscent of the proof of a lemma in [22]
(see also [9]). In the same line of ideas, we have the following result, which is
related to [6, Lemme 1.3.8].

Theorem 5.3. Assume that all Mi’s are factors and that ⊙iαi extends to an
action α on Mφ = ⊗i(Mi, φi). Then α is inner if and only if there exists for
each g ∈ G and each i a unitary vi(g) ∈ Mi implementing αi,g such that the
following condition holds:

(1)
∑

i

(1 − |(vi(g)φi, φi)|) <∞ for all g ∈ G.

On the other hand, α is outer if and only if, for each g ∈ G, g 6= e, at least one
of the αi,g is outer or there exists for each i a unitary vi(g) ∈ Mi implementing
αi,g such that

(2)
∑

i

(1 − |(vi(g)φi, φi)|) = ∞.

Proof. Assume first that α is inner. So we have αg = Ad (U(g)) for some unitary
U(g) ∈ Mφ for every g ∈ G. Recall from [11] that Mφ is a factor. Using [14,
Corollary 1.14], it follows easily that each αi is inner. Hence, there exists for
each g ∈ G and each i a unitary vi(g) ∈ Mi implementing αi,g.

Let J be a non-empty finite subset of N. As in the previous proof, we
identify Mφ with (⊗i∈JMi)⊗ JM where JM := ⊗i/∈J(Mi, φi), We set VJ (g) =
⊗i∈Jvi(g) for each g ∈ G and WJ (g) = (VJ(g) ⊗ (⊗i/∈JIi) )∗U(g). Then, using
that we may write α = (⊗i∈Jαi) ⊗ Jα, we get

WJ (g) ∈ (⊗i(Mi, φi)) ∩ ((⊗i∈JMi) ⊗ (⊗i/∈JCIi))
′.

Using that all Mi are factors, it is a simple exercise to deduce that WJ (g) ∈
(⊗i∈JCIi)⊗ (⊗i/∈J(Mi, φi)). We may therefore writeWJ(g) = (⊗i∈JIi)⊗JV (g)
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for some unitary JV (g) ∈ ⊗i/∈J (Mi, φi). This gives U(g) = VJ (g) ⊗ JV (g) and
we can clearly proceed further in the same way as in the previous proof to
show that (1) holds, thereby proving the only if part of the first assertion. The
converse part of this assertion follows from Proposition 5.1. The second assertion
follows from a similar argument.

The following corollary may be seen as generalization of [10, Theorem 6.7].

Corollary 5.4. Assume for each i ∈ N that βi is an action of G on some von
Neumann algebra Ni and that there exists a normal βi-invariant state τi on Ni.
Denote the GNS-triple of τi by (πi,Hi, ξi) and set Mi = πi(Ni). Let αi be the
action of G on Mi induced by βi. Then ⊙iαi extends to an action α of G on
⊗i(Mi, ξi).

Assume further that all Ni’s are factors and all πi’s are faithful. Then α is
inner if and only if there exists for each g ∈ G and each i a unitary vi(g) ∈ Ni

implementing βi,g such that the following condition holds:

(1)
∑

i

(1 − |τi(vi(g))|) <∞ for all g ∈ G.

On the other hand, α is outer if and only if, for each g ∈ G, g 6= e, at least one
of the βi,g is outer or there exists each i a unitary vi(g) ∈ Ni implementing βi,g
such that

(2)
∑

i

(1 − |τi(vi(g))|) = ∞.

Proof. We first recall that there exists for each i a unitary representation Vi :
G→ B(Hi) such that

πi(βi,g(x)) = Vi(g)πi(x)Vi(g)
∗ and Vi(g)πi(x)ξi = πi(βi,g(x))ξi

for all g ∈ G, x ∈ Ni (see [8]). The induced action αi on Mi is then defined
by αi,g(πi(x)) = πi(βi,g(x)). As Vi(g)ξi = ξi for all g ∈ G, the first assertion
follows obviously from Proposition 3.1. The second assertion is then easily
deduced from Theorem 5.3.

Example. Let ui be a sequence in Z2(G,T). Set Ni = λui
(G)

′′

⊂ B(ℓ2(G))
and let βi,g be the inner automorphism of Ni implemented by λui

(g) for all
g ∈ G, i ∈ N. Let τi denote the canonical normal faithful tracial state of Ni

(determined by τi(λui
(g)) = 1 if g = e and 0 otherwise), which is trivially βi-

invariant. If ξ denote the normalized delta-function at e, then τi = ωξ|Ni
. So

we may identify the GNS-triple of τi with (idi, ℓ
2(G), ξi), where idi denotes the

identity representation of Ni and ξi = ξ, i. e. we may take Mi = Ni and αi = βi
in the notation of Corollary 5.4. Hence, ⊙αi = ⊙βi extends to an action α on
⊗i(λui

(G)
′′

, ξi).
Further, if all λui

(G)
′′

are factors, then α is outer, as

∑

i

(1 − |τi(λui
(g))|) =

∑

i

1 = ∞ for all g 6= e.
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A necessary and sufficient condition for a twisted group von Neumann algebra
λu(G)

′′

to be a factor may be found in [15].
If we replace each Ni with B(ℓ2(G)) in this example, the extended product

action may be formed in many cases under the assumption that G is countable
and amenable, as follows from Teorem 3.3 and Proposition 5.1. This requires
a suitable choice of unit vectors φi in ℓ2(G). This product action restricts then
to an action on ⊗i(λui

(G)
′′

, φi) which is inner, in contrast to the factor case
above. When G is either uncountable or non-amenable, we have the following:

Theorem 5.5. Let ui be a sequence in Z2(G,T) and αi = Adλui
be the as-

sociated sequence of actions of G on B(ℓ2(G)). If G is either uncountable or
non-amenable, then ⊙iαi does not extend to an action of G on ⊗i(B(ℓ2(G)), φi),
regardless of the choice of vectors φi.

Proof. According to Proposition 5.1 and Theorem 5.2, the existence of such an
extension ⊗i(B(ℓ2(G)), φi) would imply the existence of ⊗iρiλui

on ⊗φi

i ℓ
2(G) for

some choice of functions ρi : G→ T with ρi(e) = 1. It is straightforward to see

that this amounts to the existence of ⊗iλvi
on ⊗ψi

i ℓ
2(G) for some vi ∈ Z2(G,T)

with vi ∼ ui and some sequence ψi of unit vectors in ℓ2(G). This is impossible
if G is either uncountable or non-amenable, as follows from Theorem 3.2.

Another type of possible obstruction for extending a product action from the
∗-algebraic level to the von Neumann algebra level is of cohomological nature,
as we now illustrate:

Theorem 5.6. Let αi be a sequence of actions of G on B(Hi) and write each
αi as AdUi(g) where Ui is a projective representation of G with associated 2-
cocycle ui. Assume that [ui] = [u] for every i and [u] 6= [1] in H2(G,T).
Then ⊙iαi does not extend to an action of G on ⊗i(B(Hi), φi), regardless of the
choice of vectors φi.

Proof. Assume that such an extension exists ⊗i(B(Hi), φi). Using Proposition

5.1 and Theorem 5.2, we deduce that ⊗ρiUi exists on ⊗φi

i Hi for some choice
of functions ρi : G → T with ρi(e) = 1. It follows then from Theorem 3.1
that

∏

i(dρi)ui exists. Hence dρiui → 1 (in the pointwise topology). As each
ui = (dρ′i)u for some ρ′i, we get that u is a limit of 2-coboundaries. Since
B2(G,T) is closed, this means that u is itself a coboundary, i. e. [u] = 1, which
gives a contradiction.

Example. The simplest case where the above situation occurs is when G =
Z2 × Z2. Indeed, let

V =

(

0 1
1 0

)

, W =

(

1 0
0 −1

)

.

A projective unitary representation of G = Z2 × Z2 on C2 is then obtained
by setting U((a, b)) = V aW b (a, b ∈ Z2). Since V aW b = σ(a, b)W b Ua where
σ(a, b) = −1 if a = b = 1 and 1 otherwise, the associated cocycle u is easily
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computed to be u((a1, b1), (a2, b2)) = (−1)a2b1 . It is not difficult to check that
[u] 6= 1. Remark that U is nothing but the projective representation associated
to the CCR representation of σ on C2 = ℓ2(Z2) determined by V and W.

For each i ∈ N consider the action αi of G on M2(C) given by αi,(a,b) =
Ad (U((a, b))). Then, according to Theorem 5.6, the infinite tensor product of
the αi ’s does never make sense as an action on ⊗i(M2(C), φi).

On the other hand, the canonical tracial state of M2(C) is trivially αi-
invariant. Therefore we may use Corollary 5.4 to form the infinite tensor product
action after passing to the GNS-representation with respect to this tracial state
for each i. As another application of Corollary 5.4, the resulting product action
is easily seen to be outer.
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