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Abstract

We investigate the temporal correlations and multifractalnature of trading volume of 22
liquid stocks traded on the Shenzhen Stock Exchange in 2003.We find that the trading
volume exhibits size-dependent non-universal long memoryand multifractal nature. No
crossover in the power-law dependence of the detrended fluctuation functions is observed.
Our results show that the intraday pattern in the trading volume has negligible impact on
the long memory and multifractality.
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1 Introduction

As implied by a well-known adage in the Wall Street that it takes volume to move
stock prices, trading volume contains much information about the dynamics of
price formation. For instance, the investigation of price-volume relationship has
a long history in finance [1], attracting more and more interest of physicists, and
recently has been studied at the transaction level [2, 3, 4, 5, 6]. In addition, the
distributions of trading volumes at different time scales have been found to have
power-law right tails for different stock markets [7, 8, 9, 10, 11], which can ac-
count at least partly the power-law tails of returns [6, 12, 13, 14]. The distributions
of trading volumes for Chinese stocks have also been reported to have power-law
tails [6, 15, 16].

Another important feature of trading volumes is its long-range temporal correla-
tion. Lobato and Velasco used a two-step semiparametric estimator in the frequency
domain for the long-memory parameterd of daily trading volume for 30 stocks
composing DJIA from 1962 to 1994 and find thatd = 0.30 ± 0.08 [17], which
amount to the Hurst indexH = d + 0.5 = 0.80 ± 0.08. Gopikrishnan et al per-
formed detrended fluctuation analyses of trading volume for1000 largest US stocks
over the two-year period 1994-1995 [7]. They found that, thetrading volumes at
different time scales (from 15 min to 390 min) show stronger correlations with
H = 0.83 ± 0.02. Bertram used the autocorrelation and variance plots to investi-
gate the memory effect of high-frequency trading volumes for 200 most actively
traded stocks on the Australian Stock Exchange spanning theperiod January 1993
- July 2002, and found that the average Hurst index isH = 0.79 ± 0.03 [18]. Qiu
et al conducted similar analysis on 18 liquid Chinese stocksfrom 2004 to 2006 and
reported thatH = 0.83, which does not depend on the intraday pattern [16].

By investigating the TAQ data sets of 2674 stocks in the period 2000-2002, Eisler
and Kertész found that the strength of correlations depends on the liquidity of stocks
so that the Hurst index increases logarithmically with the average trading volume or
the company size [8, 9, 19, 20, 21]. There is also evidence showing that trading vol-
umes possess multifractal nature in different markets, such as the high-frequency
trading volumes of 30 DJIA constituent stocks [22], of New York Stock Exchange
stocks [23] and of the Korean stock index KOSPI [24]. These properties have not
been studied for the Chinese market, which will be investigated in this work.

The paper is organized as follows. We give a brief description of the data in Section
2. The intraday pattern, temporal correlations and multifractal nature of trading
volume are studied in Section 3, where we will show that the intraday pattern has
negligible impact on the temporal correlations and multifractal nature. Section 4
concludes.
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2 Data sets

We analyze an ultra-high-frequency database containing 22Chinese stocks traded
on the Shenzhen Stock Exchange in 2003. It records the sizes of all individual trans-
actions. The 22 stocks investigated in this work cover a variety of industry sectors
such as financials, real estate, conglomerates, metals & nonmetals, electronics, util-
ities, IT, transportation, petrochemicals, paper & printing and manufacturing. Our
sample stocks were part of the 40 constituent stocks included in the Shenzhen Stock
Exchange Component Index in 2003 [6, 15, 25]. The market started with an opening
call auction period from 9:15 A.M. to 9:25 A.M. followed by a 5-min cooling pe-
riod, and then the market entered the double continuous auction period [6, 15, 25].
We focus on the trades occurred in the double continuous auction period.

The tickers of the 22 stocks investigated are the following:000001 (Shenzhen De-
velopment Bank Co. Ltd), 000002 (China Vanke Co. Ltd), 000009 (China Baoan
Group Co. Ltd), 000012 (CSG holding Co. Ltd), 000016 (Konka Group Co. Ltd),
000021 (Shenzhen Kaifa Technology Co. Ltd), 000024 (China Merchants Property
Development Co. Ltd), 000027 (Shenzhen Energy Investment Co. Ltd), 000063
(ZTE Corporation), 000066 (Great Wall Technology Co. Ltd),000088 (Shenzhen
Yan Tian Port Holdings Co. Ltd), 000089 (Shenzhen Airport Co. Ltd), 000429
(Jiangxi Ganyue Expressway Co. Ltd), 000488 (Shandong Chenming Paper Group
Co. Ltd), 000539 (Guangdong Electric Power Development Co.Ltd), 000541 (Fos-
han Electrical and Lighting Co. Ltd), 000550 (Jiangling Motors Co. Ltd), 000581
(Weifu High-Technology Co. Ltd), 000625 (Chongqing Changan Automobile Co.
Ltd), 000709 (Tangshan Iron and Steel Co. Ltd), 000720 (Shandong Luneng Tais-
han Cable Co. Ltd), and 000778 (Xinxing Ductile Iron Pipes Co. Ltd).
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Fig. 1. A segment of the time series of 1-min trading volumeV∆t for stock 000001.

Let vi be the size of thei-th trade for a given stock andN ≡ N∆t the number of
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trades in a fixed time interval∆t. Then the trading volume at time scale∆t is

V∆t =
N∑

i=1

vi. (1)

A segment of the time series of 1-min trading volumeV∆t for stock 000001 is
illustrated in Fig. 1.

3 Results

3.1 Intraday pattern

Many researches report that there exist intraday patterns in the trading volume but
with different shapes [7, 16, 26, 27, 28, 29]. Figure 2 gives the intraday pattern of
trading volume for stock 000002 and the average for all 22 stocks. The average
trading volume increases and then decreases in the morning,with two mild peaks
at about 10:00 and 11:00. At the first minute in the afternoon,there is a significant
jump, which is simply due to the fact that orders submitted inthe noon closing
period(11 : 30 − 13 : 00) are executed at 13:00. Afterwards, we see a monotonic
increase in the average trading volume. Our result is quite similar to that in Refs.
[16, 29], and the intraday pattern does not has a U-shape.
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Fig. 2. Intraday pattern of trading volumes is given. Stock 000002 (code number) is shown
as an example of individual stock in the left plot, while average result of 22 stocks is listed
in the right.

3.2 Size-dependent correlation in trading volume

We investigate the temporal correlations of trading volumes based on the detrended
fluctuation analysis (DFA) [30, 31] which is a special case ofthe multifractal DFA
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method [32]. If the time series are long-range power-law correlated, the detrended
fluctuation functionFq(s) versuss could be describe as follow,

Fq(s) = 〈[F 2(s)]q/2〉
1/q

∼ sh(q), (2)

wheres is the length of each segments (time window size) andF 2(s) is the variance
of the detrended time series in a given segment after removing a linear trend, while
h(q) is the generalized Hurst exponent. Whenq = 2, we have

F2(s) ∼ sH , (3)

which gives the well-known Hurst exponentH.

We perform DFA on the 1-min original trading volume data and the deseasonal-
ized (or adjusted) data after removing the intraday patternfor each stock. Fig. 3(a)
illustrates the power-law dependence ofF2(s) on s for stock 000002. In addition,
the two curves are almost parallel, indicating that the intraday pattern has negli-
gible impact on the memory effect of trading volume. The results are similar for
other stocks. The slopes of the best fitted linear lines in Fig. 3(a) give the estimates
of the Hurst indexes for the original data (H1) and the adjusted data (H2), which
are presented in Table 1. The average Hurst indexes areH̄1 = 0.88 ± 0.05 and
H̄2 = 0.89 ± 0.04. We also plotH2 againstH1 in Fig. 3(b) to show thatH2 ≈ H1.
A careful scrutiny shows thatH2 is slightly greater than or equal toH1. We note
that there is no crossover in the DFA plot of trading volume for Chinese stocks,
which should be compared to the fact that there is no consensus for the presence of
crossover [7, 9].
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Fig. 3. Detrended fluctuation analysis of 1-min trading volume. (a) Dependence ofF2(s)
on s for original and deseasonalized trading volumes for stock 000002. (b) Relationship
between the Hurst indexesH1 andH2 of original and deseasonalized trading volumes. The
solid line isH2 = H1 and the dashed line isH2 = H1 + 0.01.

It is important to stress that the Hurst index varies from onestock to another, which
depends on the company size or average trading volume of a stock. In Fig. 4, we
present the dependence of the Hurst indexes of trading volumes on different loga-
rithmic values of〈V 〉, the sample average ofV∆t for individual stocks. We find that
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there is a linear relationship for both original and deseasonalized data:

Hi = H∗

i + γHi
log〈V 〉, i = 1, 2 (4)

where the base of log is 10,γH1
= 0.06 ± 0.03 for the original data, andγH2

=
0.05 ± 0.03 for the adjusted data. The relation (4) was first observed by Eisler and
Kertész for the traded value (also called dollar volume or capital flow, defined by the
trading volume times stock price), and they found thatγH = 0.06±0.01 for NYSE
stocks andγH = 0.05± 0.01 for NASDAQ stocks [8, 9, 19]. Jiang et al verified the
relationship for the traded values of about 1500 Chinese stocks and obtained that
γH = 0.013± 0.001 [33]. Since large average trading volume corresponds roughly
to large company size (or capitalization), our results showthat larger company has
stronger correlation in the trading volume. We note that therelation (4) is observed
for the first time for trading volume in this work.
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Fig. 4. Logarithmic dependence of Hurst index on average trading volume for the original
data (�) and adjusted data (�). The data points for the adjusted trading values have been
shifted vertically downwards for better visibility.

3.3 Mean-variance analysis

We now conduct the mean-variance analysis on the time seriesof trading volume.
For each stock, the mean〈V∆t〉 and the varianceσ2

∆t are calculated for different
time scales∆t. SinceV∆t is additive, the mean-variance analysis gives [34]

σ∆t ∼ 〈V∆t〉
β , (5)

where〈·〉 denotes time averaging. Fig. 5(a) illustrates the power-law dependence of
σ∆t with respect to〈V∆t〉 in double logarithmic coordinates for three time windows
∆t =1 min, 0.5 trading day (120 min) and 20 trading days and for theoriginal
data. For the deseasonalized data,〈V 〉 ≡ 1 so that the mean-variance does not
apply. The slopes of the best linear fits give the estimates ofβ at different time
scales∆t. Fig. 5(b) plotsβ as a function of∆t for the original trading volume data,
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which has a logarithmic trend,

β = β∗ + γβ log ∆t, (6)

whereγβ = 0.059 ± 0.001. We find that the following relation holds

γβ ≈ γHi
, i = 1, 2, (7)

which has been well verified for the traded values for different stock markets in-
cluding developed [8, 19] and emerging stock markets [33].
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Fig. 5. Mean-variance analysis of trading volume. (a) Power-law dependence ofσ∆t on
〈V∆t〉 for ∆t =1 min (◦), 120 min (♦) and 20 days (△) for the original data. (b) Logarithmic
dependence of the scaling exponentβ on the time scale∆t for the original data.

3.4 Multifractal analysis

In this section, we employ the MF-DFA method [32] to investigate the multifractal
nature of trading volumes. In this procedure, theq-th order fluctuation function
Fq(s) versuss is analyzed for differentq. We vary the value ofs in the range
from smin = 20 to smax = M/4 (M is the length of a series), sinceFq becomes
statistically unreliable for very large scaless, and systematic deviations will be
involved for very small scaless. The relationship betweenh(q) and the mass scaling
exponentsτ(q) in the conventional multifractal formalism based on the partition
functions [32, 35] is formalized as follows,

τ(q) = qh(q) − Df , (8)

whereDf is the fractal dimension of the geometric support of the multifractal mea-
sure (in our caseDf = 1). According to the Legendre transform [35], we have

α = h(q) + qh′(q) and f(α) = q(α − h(q)) + 1, (9)

providing the estimation of strength of singularityα and its spectrumf(α).
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Fig. 6 illustrates an example the multifractal analysis forstock 000002. It is evi-
dence from Fig. 6(a) thatτ(q) is a non-linear function ofq, which is a hallmark for
the presence of multifractality. There is no remarked discrepancy observed between
the original and adjusted data of trading volumes. To further clarify the negligible
influence of the intraday pattern on the multifractal natureof trading volumes, we
calculate two characteristic values∆h = hmax − hmin and∆α = αmax − αmin

respectively for each time series. The results of∆h and∆α are listed in Table 1.
The results are presented in Fig. 6(b). We see that∆h1 ≈ ∆h2 and∆α1 ≈ ∆α2,
indicating that the intraday pattern in the trading volume has negligible impact on
the multifractal nature.
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Fig. 6. Multifractal detrended fluctuation analysis of trading volumes for stock 000002.
(a) Non-linear dependence ofτ(q) with respect toq and the multifractal spectrumf(α)
in the inset. (b) Negligible impact of intraday pattern on the multifractal nature of trading
volumes.

4 Conclusion

We have studied the temporal correlations and multifractalnature of trading vol-
ume for 22 most actively traded Chines stocks on the ShenzhenStock Exchange.
Detrended fluctuation analysis shows that the trading volumes at different time
scales possess non-universal long memory, whose Hurst index H depends loga-
rithmically on the average trading volume asH = H∗ + γH log〈V 〉. The mean-
variance unveils that the scaling exponentβ depends logarithmically on the time
scale asβ = β∗ + γβ log ∆t. Empirical evidence shows thatγH = γβ, consis-
tent with the theoretical derivation. The investigation ofthe size-dependent non-
universal correlation in trading volume has not been conducted before. Multifractal
detrended fluctuation analysis confirms that the trading volume exhibits multifrac-
tal nature. Comparing the results obtained from the original trading volume data
and the adjusted data after removing the intraday pattern, we conclude that the in-
traday pattern has negligible impact on the temporal correlations and multifractal
nature of trading volumes.
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In general, the results obtained for the Shenzhen Stock Exchange in this paper are
qualitatively the same as other emerging and developed markets. However, there are
some differences. There are studies showing that there is a crossover phenomenon
in the power-law relation between the detrended fluctuationfunction and the scale
for some markets, which is not observed for the Shenzhen Stock Exchange. Also,
the multifractal spectra differ from one market to another with different singularity
width, which is usually determined by the distribution and the correlation structure
of the time series showing the idiosyncracy of different markets.

Acknowledgments:

This work was partly supported by the National Natural Science Foundation of
China (70501011 and 70502007), the Shanghai Educational Development Founda-
tion (2008SG29), the China Scholarship Council (2008674017), and the Program
for New Century Excellent Talents in University (NCET-07-0288).

References

[1] J. M. Karpoff, The relation between price changes and trading volume: A
survey, J. Financ. Quart. Anal. 22 (1987) 109–126.

[2] K. Chan, W. M. Fong, Trade size, order imbalance, and the volatility-volume
relation, J. Financ. Econ. 57 (2000) 247–273.

[3] F. Lillo, J. D. Farmer, R. Mantegna, Master curve for price impact function,
Nature 421 (2003) 129–130.

[4] M. Lim, R. Coggins, The immediate price impact of trades on the Australian
Stock Exchange, Quant. Financ. 5 (2005) 365–377.

[5] R. Næs, J. A. Skjeltorp, Order book characteristics and the volume-volatility
relation: Empirical evidence from a limit order market, J. Financ. Markets 9
(2006) 408–432.

[6] W.-X. Zhou, Universal price impact functions of individual trades in an order-
driven market, http://arxiv.org/abs/0708.3198v2 (2007).

[7] P. Gopikrishnan, V. Plerou, X. Gabaix, H. E. Stanley, Statistical properties
of share volume traded in financial markets, Phys. Rev. E 62 (2000) R4493–
R4496.

[8] Z. Eisler, J. Kertész, Size matters: Some stylized facts of the stock market
revisited, Eur. Phys. J. B 51 (2006) 145–154.

[9] Z. Eisler, J. Kertész, The dynamics of traded value revisited, Physica A 382
(2007) 66–72.

[10] S. M. D. Queiros, On the emergence of a generalised Gammadistribution:
Application to traded volume in financial markets, Europhys. Lett. 71 (2005)
339–345.

[11] J. de Souza, L. G. Moyano, S. M. D. Queiros, On statistical properties of
traded volume in financial markets, Eur. Phys. J. B 50 (2006) 165–168.

9



[12] X. Gabaix, P. Gopikrishnan, V. Plerou, H. E. Stanley, Institutional investors
and stock market volatility, Quart. J. Econ. 121 (2006) 461–504.

[13] X. Gabaix, P. Gopikrishnan, V. Plerou, H. E. Stanley, A theory of limited liq-
uidity and large investors causing spikes in stock market volatility and trading
volume, J. Eur. Econ. Assoc. 4 (2007) 564–573.

[14] X. Gabaix, P. Gopikrishnan, V. Plerou, H. E. Stanley, Quantifying and under-
standing the economics of large financial movements, J. Econ. Dyn. Control
32 (2008) 303–319.

[15] G.-H. Mu, W. Chen, J. Kertész, W.-X. Zhou, Preferred numbers and the dis-
tributions of trade sizes and trading volumes in the Chinesestock market, Eur.
Phys. J. B 68 (2009) 145–152.

[16] T. Qiu, L.-X. Zhong, G. Chen, Statistical properties oftrading volume of Chi-
nese stocks, Physica A 388 (2009) in press.

[17] I. N. Lobato, C. Velasco, Long memory in stock-market trading volume, J.
Bus. Econ. Stat. 18 (2000) 410–427.

[18] W. K. Bertram, An empirical investigation of Australian Stock Exchange data,
Physica A 341 (2004) 533–546.

[19] Z. Eisler, J. Kertész, Scaling theory of temporal correlation and size-
dependent fluctuations in the traded value of stocks, Phys. Rev. E 73 (2006)
046109.

[20] Z. Eisler, J. Kertész, Why do Hurst exponents of tradedvalue increase as
the logarithm of company size?, in: A. Chatterjee, B. K. Chakrabarti (Eds.),
Econophysics of Stock and Other Markets (Proceedings of theEconophys-
Kolkata II), Springer, Berlin, 2006, pp. 49–58.

[21] Z. Eisler, I. Bartos, J. Kertész, Fluctuation scalingin complex systems: Tay-
lor’s law and beyond, Ann. Phys. 57 (2008) 89–142.

[22] L. G. Moyana, J. de Souza, S. M. D. Queiros, Multi-fractal structure of traded
volume in financial markers, Physica A 371 (2006) 118–121.

[23] Z. Eisler, J. Kertész, Liquidity and the multiscalingproperties of the volume
traded on the stock market, Europhys. Lett. 77 (2007) 28001.

[24] K. E. Lee, J. W. Lee, Probability distribution functionand multiscaling prop-
erties in the Korean stock market, Physica A 383 (2007) 65–70.

[25] G.-F. Gu, W. Chen, W.-X. Zhou, Quantifying bid-ask spreads in the Chinese
stock market using limit-order book data: Intraday pattern, probability dis-
tribution, long memory, and multifractal nature, Eur. Phys. J. B 57 (2007)
81–87.

[26] R. A. Wood, T. H. McInish, J. K. Ord, An investigation of transactions data
for NYSE stocks, J. Financ. 40 (1985) 723–739.

[27] A. R. Admati, P. Pfleiderer, A theory of intraday patterns: Volume and price
variability, Rev. Financ. Stud. 1 (1988) 3–40.

[28] J. A. Stephan, R. E. Whaley, Intraday price change and trading volume rela-
tions in the stock and stock option markets, J. Financ. 45 (1990) 191–220.

[29] Y. T. Lee, R. C. W. Fok, Y. J. Liu, Explaining intraday pattern of trading
volume from the order flow data, J. Business Financ. Accounting 28 (2001)
199–230.

10



[30] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, A. L. Gold-
berger, Mosaic organization of DNA nucleotides, Phys. Rev.E 49 (1994)
1685–1689.

[31] J. W. Kantelhardt, E. Koscielny-Bunde, H. H. A. Rego, S.Havlin, A. Bunde,
Detecting long-range correlations with detrended fluctuation analysis, Phys-
ica A 295 (2001) 441–454.

[32] J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin,
A. Bunde, H. E. Stanley, Multifractal detrended fluctuationanalysis of non-
stationary time series, Physica A 316 (2002) 87–114.

[33] Z.-Q. Jiang, L. Guo, W.-X. Zhou, Endogenous and exogenous dynamics in
the fluctuations of capital fluxes: An empirical analysis of the Chinese stock
market, Eur. Phys. J. B 57 (2007) 347–355.

[34] L. R. Taylor, Aggregation, variance and the mean, Nature 189 (1961) 732–
735.

[35] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia,B. I. Shraiman, Frac-
tal measures and their singularities: The characterization of strange sets, Phys.
Rev. A 33 (1986) 1141–1151.

11



5 Appendix

Table 1
Appendix table. The subscript “1” means original data and the subscript “2” stands for

adjusted data.

Stock code H1 H2 ∆h1 ∆h2 ∆α1 ∆α2

000001 0.90 ± 0.015 0.91 ± 0.014 0.40 0.37 0.60 0.55

000002 0.90 ± 0.009 0.90 ± 0.009 0.55 0.55 0.79 0.78

000009 0.88 ± 0.009 0.89 ± 0.008 0.56 0.56 0.81 0.80

000012 0.83 ± 0.005 0.84 ± 0.005 0.46 0.45 0.65 0.63

000016 0.92 ± 0.006 0.93 ± 0.006 0.36 0.38 0.56 0.60

000021 0.91 ± 0.015 0.92 ± 0.015 0.52 0.58 0.78 0.85

000024 0.88 ± 0.005 0.89 ± 0.005 0.50 0.52 0.70 0.75

000027 0.92 ± 0.016 0.93 ± 0.016 0.46 0.42 0.71 0.67

000063 0.89 ± 0.007 0.90 ± 0.007 0.57 0.54 0.82 0.78

000066 0.91 ± 0.009 0.91 ± 0.009 0.50 0.50 0.73 0.72

000088 0.82 ± 0.007 0.84 ± 0.007 0.54 0.52 0.76 0.74

000089 0.85 ± 0.011 0.89 ± 0.008 0.63 0.64 0.90 0.91

000429 0.94 ± 0.014 0.95 ± 0.014 0.23 0.23 0.45 0.45

000488 0.86 ± 0.007 0.88 ± 0.007 0.47 0.47 0.67 0.70

000539 0.76 ± 0.007 0.84 ± 0.008 0.63 0.59 0.88 0.84

000541 0.83 ± 0.009 0.84 ± 0.009 0.48 0.48 0.71 0.71

000550 0.93 ± 0.017 0.93 ± 0.017 0.50 0.52 0.73 0.78

000581 0.84 ± 0.006 0.87 ± 0.006 0.52 0.54 0.78 0.80

000625 0.87 ± 0.012 0.88 ± 0.011 0.59 0.57 0.85 0.81

000709 0.92 ± 0.010 0.93 ± 0.010 0.31 0.34 0.52 0.57

000720 0.83 ± 0.007 0.83 ± 0.007 0.50 0.48 0.70 0.68

000778 0.86 ± 0.008 0.87 ± 0.007 0.53 0.52 0.75 0.74
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