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Quantum fidelity in the thermodynamic limit
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We study quantum fidelity, the overlap between two ground states of a many-body system, focus-
ing on the thermodynamic regime. We present novel analytical results for quantum fidelity of the
Ising chain – a paradigmatic model of quantum phase transitions – and discuss a theory extending
these findings to systems characterized by other universality classes. In particular, we show how
quantum fidelity approaches a non-analytic limit and discuss scaling properties of quantum fidelity
when it cannot be approximated by the popular fidelity susceptibility approach.
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A quantum phase transition (QPT) happens when dra-
matic changes in the ground state properties of a quan-
tum system can be induced by a tiny variation of an
external parameter [1]. This external parameter can be
a strength of a magnetic field in spin systems (e.g. Ising
chains [2] and spin-1 Bose-Einstein condensates [3]), in-
tensity of a laser beam creating a lattice for cold atom
emulators of Hubbard models [4], or dopant concentra-
tion in high-Tc superconductors [5]. At the heart of the
sharp transition lies non-analyticity of the ground state
wave-function across the critical point separating the two
phases. QPTs, traditionally associated with condensed
matter physics, are nowadays intensively studied from
the quantum information perspective (see e.g. [6]).

Quantum fidelity – also referred to as fidelity – is a
popular concept of quantum information science defined
here as the overlap between two quantum states

F(g, δ) = |〈g − δ|g + δ〉|, (1)

where |g〉 is a ground state wave-function of a many-body
Hamiltonian Ĥ(g) describing the system exposed to an
external field g, and δ is a small parameter difference. It
provides the most basic probe into the dramatic change
of the wave-function near and at the critical point [7].

The recent surge in studies of fidelity follows discov-
ery that quantum criticality promotes decay of fidelity
[7]. This is in agreement with the intuitive picture of
a QPT: as system properties change dramatically in the
neighborhood of the critical point, ground state wave-
function taken at different values of the external param-
eter – |g − δ〉 and |g + δ〉 – have little in common and so
their overlap decreases.

As fidelity is given by the angle between two vectors in
the Hilbert space, it is a geometric quantity [8]. Thus, it
has been proposed as a robust geometric probe of quan-
tum criticality applicable to all systems undergoing a
QPT regardless of their symmetries and order parame-
ters whose prior knowledge is required in traditional ap-
proaches to QPTs. Fidelity has been recently studied
in this context in several models of condensed matter
physics (see [9] and references therein). Moreover, it has

been recently linked to the interdisciplinary field of dy-
namics of QPTs [10] in studies of both the sudden quench
[11, 12] and critical dynamics of decoherence [13].

Exact analytical results for fidelity are typically un-
available, with an exception provided by ground states
expressible through some matrix product states [14].
Thus, advanced numerical techniques have been em-
ployed including tensor networks [15] and quantum
Monte Carlo simulations [16].

A standard approximation uses Taylor expansion of
the ground state wave function in δ → 0: |g + δ〉 =
∑

n δ
n∂n

g |g〉/n! leading in the lowest order to [7, 9, 17]

F ≈ 1− δ2χF (g)/2, (2)

where χF defines fidelity susceptibility. Fidelity suscep-
tibility, unlike fidelity, is a local quantity independent of
the parameter shift δ. It is thus easier to analyze than
fidelity. Similarly as fidelity, χF is sensitive to criticality.
Thus, it was proposed and studied as a probe of quantum
critical properties [7, 9, 17].

Other approach focuses on studies of fidelity per site
[15, 18, 19]. It was proposed in this context that one can
investigate the overlap between any two ground states
and the quantum criticality will be revealed by the pinch
points appearing when fidelity is calculated between a
critical and a non-critical ground state. The pinch point
is characterized by divergence of the derivative of fidelity.
We show that when the popular expansion (2) breaks,

the system enters a regime where new universal scaling
properties of fidelity emerge. For example, fidelity ap-
proaches a non-analytic function of δ there [20]. This
can be intuitively understood when we fix g and δ, such
that both states entering (1) are obtained near the critical
point, and vary the system size N . As singularities in the
wave-function arise for N → ∞, we expect (2) to work
well for small systems. For large ones, however, the wave-
function approaches the non-analytic limit and fidelity
shall reflect it [20]. Thus, on general grounds, we predict
that there is a fundamental change in the functional de-
pendence of fidelity around the critical point when the
system size increases. We illustrate this prediction on a
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FIG. 1: (color online) Fidelity of the Ising chain near the
critical point as a function of the system size N at fixed
δ = 10−4. The curves from top to bottom correspond to
F(1, δ), F(1+ δ, δ) and F(1+5δ, δ) (1). As the system size is
increased, the slope of the curves changes smoothly from 2 to
1. The crossover region between the two limits is at N = N3/2

where the slope equals 3/2. To numerically locate it, we have
calculated F(1, δ), F(1+δ, δ) and F(1+5δ, δ) – as in the main
figure – for various δ’s and found that the crossover condition
is reached for N3/2|δ| ∼ 1. This is illustrated in the upper
inset where the power-law fits (straight lines) to numerical
data (crosses) give N3/2 = (0.3÷ 3.6)/|δ|0.995±0.003 . Order of
the curves in the upper inset is the same as on the main plot.
Lower inset shows that fidelity stays close to unity for small
systems (dashed line calculated for lnN = 7) and explores all
the values between zero and unity when system size increases
(solid line calculated for lnN = 12). Our theory, Eq. (4), per-
fectly overlaps with the latter numerical result on the scales
explored in the lower inset.

specific example, the quantum Ising model, and develop
a scaling theory to generalize the Ising model-findings to
other critical systems.
The Hamiltonian of the Ising chain reads [1]

Ĥ(g) = −

N
∑

i=1

(σx
i σ

x
i+1 + gσz

i ),

where g stands for a magnetic field acting along the z di-
rection. Above the spin-spin interactions try to enforce
±x polarization of spins, while the magnetic field tries
to polarize spins along its direction (+z for g > 0). This
competition results in two critical points at gc = ±1:
the system is in the ferromagnetic (paramagnetic) phase
for −1 < g < 1 (|g| > 1). The critical exponents are
z, ν = 1. This model is solved in a standard way by map-
ping spins onto non-interacting fermions via the Jordan-
Wigner transformation [1].
Behavior of fidelity (1) around the critical point, g ≈

gc, is summarized in Figs. 1 and 2. In the first figure
the parameter difference δ is kept fixed and the system

size is increased. For small system sizes we reproduce the
known result, lnF ∼ −N2 [7], resulting from finite size
scaling effects (see e.g. [9, 11, 12, 16]). For large system
sizes, however, we obtain lnF ∼ −N in qualitative agree-
ment with the fidelity per site approach [15, 18, 19]. As
shown in Fig. 1, the transition between the two regimes
takes place when

N |δ| ∼ 1 (3)

(a theory explaining this result will be outlined below).
Similarly, we observe two distinct regimes when the

system size N is kept fixed and the parameter difference
δ is varied (Fig. 2). For N |δ| ≪ 1 we observe lnF ∼ −δ2,
in agreement with (2), while for N |δ| ≫ 1 we find lnF ∼
−|δ|. In the latter fidelity approaches non-analytic limit
(where ∂δF at δ = 0 is undefined) reflecting singularities
associated with the QPT [20].
We also see on both figures that all curves collapse for

N |δ| ≪ 1, while they stay distinct in the opposite limit.
Thus, for N |δ| ≫ 1 sensitivity of fidelity to quantum
criticality is enhanced. This can be understood if we
focus on Fig. 1: in the large N limit dramatic changes
in the ground state wave-function near the critical point
are expected.
As analytical results for fidelity are scarce, we find it

remarkable that we can derive accurate analytical de-
scription in the complicated limit of N |δ| ≫ 1, where
the Taylor expansion (2) fails. To proceed, we calcu-
late F(1 + ǫ, δ), where ǫ measures distance from the
critical point. For the Ising chain F = Πk>0fk,
where fk = cos(θ+(k)/2 − θ−(k)/2) and tan(θ±(k)) =
sin k/(1 + ǫ ± δ − cos k). We stay close to the criti-
cal point so that 0 ≤ |δ|, |ǫ| ≪ 1 and introduce nat-
ural parameterization: c = ǫ/|δ|. Taking the limit of
N → ∞ at fixed δ the product Πkfk can be changed into
exp(N

∫

dk ln fk/2π), which can be further simplified to

lnF ≃ −N |δ|A(c) (4)

in the leading order in δ and ǫ. Above A(c) is given by

A(c) =











1

4
+

|c|K(c1)

2π
+

(|c| − 1)ImE(c2)

4π
; |c| ≤ 1

|c|

4
−

|c|K(c1)

2π
−

(|c| − 1)ImE(c2)

4π
; |c| > 1.

(5)
where c1 = −4|c|/(|c|−1)2, c2 = (|c|+1)2/(|c|−1)2, and
K and E are complete elliptic integrals of the first and
second kind, respectively. Agreement between (4) and
numerics is very good: see Fig. 3 for detailed comparison
of A(c) to numerics as well as Figs. 1 and 2. Several
interesting results can be obtained from (4).
First, Eq. (4) shows analytically how the so-called An-

derson catastrophe – disappearance of the overlap be-
tween distinct ground states of an infinitely large many-
body quantum system [21] – happens in the Ising chain.
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FIG. 2: (color online) Transition in the Ising chain from an-
alytic to non-analytic regime as a function of parameter dif-
ference δ at fixed system size N = 105. The curves from top
to bottom correspond to F(1, δ), F(1 + δ, δ) and F(1 + 5δ, δ)
(1). As we go from small to large δ’s the slope of the curves
changes smoothly from 2 to 1. The crossover region be-
tween the two limits is at |δ| = |δ3/2| where the slope equals
3/2. To numerically locate it, we have calculated F(1, δ),
F(1+ δ, δ) and F(1 + 5δ, δ) – as in the main figure – for vari-
ous N ’s and found that the crossover condition is reached for
N |δ3/2| ∼ 1. This is illustrated in the upper inset where the
power-law fits (straight lines) to numerical data (crosses) give
|δ3/2| = (0.2 ÷ 1.4)/N0.996±0.002 . Order of the curves in the
upper inset is the same as on the main plot. Lower inset shows
that fidelity stays close to unity for small δ’s (dashed line cal-
culated for ln |δ| = −15) and explores all the values between
zero and unity when parameter difference increases (solid line
calculated for ln |δ| = −8.5). Difference between our theory,
Eq. (4), and the latter numerical result (not shown in the in-
set) is barely visible on the scales explored in the lower inset.

Second, Eq. (4) explains the lack of collapse of the var-
ious curves providing fidelity around the critical point in
the N |δ| ≫ 1 limit. Indeed, fidelity calculated for two
ground states symmetrically around the critical point
is F(1, δ) = exp(−N |δ|/4), but if one of the ground
states is obtained at the critical point, F(1 ± δ, δ) =
exp(−N |δ|(π−2)/4π). In the opposite limit of N |δ| ≪ 1,
F ≈ 1 − δ2N2/16 in both cases explaining the collapse
of all curves in this limit in Figs. 1 and 2.

Third, there is a singularity in the derivative of fi-
delity when one of the states is calculated at the critical
point: dF(g ± δ, δ)/dg|g=gc=1 is divergent when N → ∞
such that N |δ| ≫ 1. This reflects singularity of the
wave-function at the critical point approached in the
thermodynamic limit. Quantitatively, dA(c)/dc|c→1± =
ln |1− c|/4π− 3 ln 2/4π+(1± 1)/8+O((1− c) ln |1− c|),
which is logarithmically divergent at c = 1 (Fig. 3).
This divergence is a signature of a pinch point found in
[15, 18, 19] when fidelity between two distinct ground
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FIG. 3: (color online) Scaling function A(c) of the Ising chain:
see (4) and (5). Right inset highlights singularity at c = 1
point, while the left one presents the logarithmic divergence
of dA/dc|c=1 discussed in the text. The solid black lines pro-
vide the analytic description (5). The red crosses illustrate
that numerics, obtained for N = 105 and δ = π10−3, closely
follows our theory.

states states was studied. The logarithmic divergence in
the Ising chain was numerically observed in [19].
Last but not least, we obtain from (4) a compact ex-

pression for fidelity away from the critical point. Taking
|c| ≫ 1 (but still |ǫ| ≪ 1), A(c) ≃ 1/16|c| and so

F ≃ exp(−Nδ2/16|ǫ|). (6)

This reduces to a known result for fidelity susceptibility
when the argument of the exponent is small and so F ≈
1− δ2N/16|ǫ| (see e.g. [9]), but provides a new result in
the opposite limit where lowest order Taylor expansion
is insufficient. We notice also that (6) is analytical in δ
even in the limit of N → ∞, which is in agreement with
our intuition: there are no singularities expected when
the system is far away from the critical point.
All the above results can be generally derived by study-

ing the so-called scaling parameter

d̃(g + δ, g − δ) = − lim
N→∞

lnF(g, δ)/N,

introduced in [18] in the context of fidelity per site ap-
proach to the thermodynamic limit. We expect that this
limit is reached when

min[(ξ(g + δ), ξ(g − δ)] ≪ L, (7)

where ξ(g) is the correlation length at magnetic field g
and L is the linear size of the system (N = Ld for a
d-dimensional system). Indeed, the smaller of the two
correlation lengths sets the scale on which the states en-
tering fidelity “monitor” each other (1). In particular,
it explains our results showing that the thermodynamic
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limit is reached even when one of the states is calculated
at the critical point and so its correlation length is infi-
nite. Near a critical point (7) is equivalent to L|δ|ν ≫ 1
[22]. For the Ising chain studied above it reads N |δ| ≫ 1
properly predicting the crossover condition numerically
found: see (3) and Figs. 1 and 2.
Generalizing the scaling theory of second order QPTs

(Sec. 1.4 of [23]), we propose the following scaling ansatz
for the universal part of the scaling parameter

d̃(gc + ǫ+ δ, gc + ǫ − δ) = b−df((ǫ+ δ)b1/ν , (ǫ− δ)b1/ν),

where f is the scaling function, b is the scaling factor,
and ν is the critical exponent providing divergence of the
coherence length ξ ∼ |g − gc|

−ν . The scaling function
depends on both ǫ+ δ and ǫ− δ as they are renormalized
simultaneously. The factor b−d appears for dimensional
reasons. Scaling of ǫ + δ and ǫ − δ is given by scaling of
the correlation length ξ(ǫ ± δ) = bξ((ǫ± δ)b1/ν).
Taking g = gc + ǫ, introducing natural parameteri-

zation ǫ = c|δ|, and fixing the scale of renormalization
through |δ|b1/ν = 1 we get d̃(g + δ, g − δ) = |δ|dνf(c +
1, c− 1), which for constant c gives

lnF ∼ −N |δ|dν , (8)

in agreement with Ising chain calculation (4) for which
f(c+ 1, c− 1) equals A(c). In a general context, Eq. (8)
shows how universal part of the scaling parameter causes
the Anderson catastrophe near a critical point.
We assume below ǫ, δ > 0 for simplicity and set b

through (ǫ+ δ)b1/ν = 1 to expand the scaling function f
away from the critical point (δ ≪ ǫ ≪ 1). Simple calcula-
tion results in d̃(g+δ, g−δ) = (ǫ+δ)dνf(1, (ǫ−δ)/(ǫ+δ)),
where the second argument of f is close to unity. Expand-
ing f in it we get d̃(g + δ, g − δ) ≈ 2δ2ǫdν−2f ′′(1, x)|x=1

as f(1, x) has a minimum equal to zero at x = 1. Thus,
away from a critical point we end up with

lnF ∼ −Nδ2|ǫ|dν−2. (9)

When the system is small enough, Nδ2|ǫ|dν−2 ≪ 1, but
still in the thermodynamic limit (7), we reproduce the
known result for fidelity susceptibility 1−F ∼ δ2N |ǫ|dν−2

[11, 16]. Otherwise, Eq. (9) provides a new result again
in agreement with the Ising model calculation (6).
To check our scaling predictions in a system belong-

ing to another universality class, we have studied the
extended Ising model [14, 18, 24] where z = 2 and ν = 1.
It also supports Eqs. (8) and (9) [25]. On general
grounds, one can expect that for systems with dν ≥ 2
non-universal (system-specific) corrections to the above
scaling relations may be significant, which requires fur-
ther investigation [25].
Summarizing, our work characterizes fidelity – a mod-

ern probe of quantum criticality – in the thermodynamic
limit. We have derived, and verified on a specific model,

new universal scaling properties of fidelity. These find-
ings should be experimentally relevant as the first experi-
mental studies of fidelity have been already done [26, 27].
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