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How to decompose continuous-variable quantum logic gates
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We present a general and relatively efficient method for decomposing an arbitrary exponential
operator of bosonic mode operators into a set of universal logic gates. Our work is mainly oriented
towards the field of continuous-variable quantum computation, but our results might have implica-
tions on any field that incorporates exponential operator decompositions such as quantum control,
discrete-variable quantum computation or Hamiltonian simulation. As an important example and
a potential application, we present the decompositions of self-Kerr and cross-Kerr interactions.
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Introduction– Since quantum computation has been
proposed as a generalization of computer science, one
of its most important theoretical challenges is how to
decompose an arbitrary gate into a universal set. The
corresponding theory of discrete-variable decompositions
is very extensive and mostly employs matrix representa-
tions of logic gates utilizing matrix decomposition tech-
niques [1, 2]. On infinite-dimensional space, logic gates
are no longer represented by matrices but by unitary ex-
ponential operators. In contrast to discrete-variable the-
ory, there is not an established method to decompose
an arbitrary operator in the continuous-variable (CV)
regime except the proof-of-princible results on universal
gate sets in Refs. [3, 4].
Reference [3] makes use of an exponential operator ap-

proximation and proves that by employing certain ele-
mentary gate sets (discussed below) one can derive any
operator up to a certain error. In Ref. [4], it is proved
that Gaussian operations can be efficiently simulated on a
classical system. However, none of these works intend to
present a constructive and efficient decomposition recipe.
Moreover, the approximations used in Ref. [3], which are
providing a scaling such that the number of elementary
operations to simulate a given operator to any desired
accuracy is not exponential, are nevertheless, from an
operational and experiment-oriented point of view, still
unsatisfactory.
The problem of decomposition is intrinsically related

to the concept of universality. Universality means to have
a set of operators that allows you to simulate any oper-
ator on a certain Hilbert space through concatenations
of the elements of the universal set. So the problem of
universality is equivalent to decomposing, at least ap-
proximately, an arbitrary unitary exponential operator
to a set of elementary unitary exponential operators:

eitH(a,a†) = {eit1H1(a,a
†), eit2H2(a,a

†), ..., eitNHN (a,a†)}.

Here, a and a† are annihilation and creation operators,
respectively, and {Hn} are fixed Hermitian functions of
mode operators. The coefficients t1, t2, ... are interaction
times of the Hamiltonians and are functions of t. Thus,

different concatenations of elements of this set for vary-
ing interaction times should enable one to simulate an
arbitrary operator. We assume that we have access to
arbitrary interaction times for the initial set [18].

In our setting, there are now two important criteria
for CV gate decompositions, namely how systematic and
how efficient the decompositions are. Here we shall de-
rive methods according to these criteria and present a
systematical and relatively efficient framework for de-
composing any given operator. Our general method is
first expressing operators in terms of linear combinations
of commutation operators and then realizing each com-
mutation operator and their combinations through ap-
proximations. The idea behind this approach together
with an important example, namely that of decomposing
the unitary Kerr interactions, will be presented in the
first part of the paper. In the second and third part, we
then give a general and systematical recipe to decompose
any unitary CV operator acting on bosonic modes to a
universal set. In the fourth part of the article, we discuss
the efficiency of the decompositions and present a guide-
line to obtain an arbitrary order of error. For this pur-
pose, we employ a novel technique for obtaining efficient
approximations [5]. Throughout, we use the convention
~ = 1/2, i.e., the fundamental commutation relation is
[X,P ] = i/2 with X ≡ (a† + a)/2 and P ≡ i(a† − a)/2.

General Gaussian decompositions– For Gausian oper-
ators, i.e., second order operators, exact and finite de-
compositions to elementary sets are known. Here, order
is defined as the polynomial order of the mode operators
in the Hamiltonian of a given operator. For example, the
Bloch-Messiah decomposition allows to decompose any
second order operator, i.e., any unitary Gaussian oper-
ation, to passive linear multi-mode optics, single-mode
squeezing, and displacement operations [6].

In Ref. [4] the following set is presented as a single-

mode Gaussian universal set: {ei
π

2
(X2+P 2), eit1X , eit2X

2

},
and in Ref. [7], similar to the Bloch-Messiah decompo-
sition, a recipe is given to decompose any single-mode
transformation of second order to this set with no more
than four steps. These exact decompositions emerge from
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the fact that mode transformations through second order
unitary operations are linear, and thus, one can utilize
matrix representations and matrix decomposition tech-
niques. In fact, for Gaussian operator decompositions,
one can find infinitely many elementary sets and decom-
positions, and instead of those sets above, one may choose
the one that suits best the given situation and purpose.
Universal decompositions– In order to decompose an

arbitrary single-mode operator in CV systems, it has
been shown that, in principle, adding a nonlinear ele-
ment (of order three or more) to the toolbox is sufficient
[3]. In the present work we use the following set:

{ei
π

2
(X2+P 2), eit1X , eit2X

2

, eit3X
3

}. (1)

This set is not unique, and one may use different Gaus-
sian elements as explained above and a different non-
linear element. However, this particular set turns out
to be useful for describing CV quantum computation
in the one-way model using CV cluster states [8, 9].
Note that one can simplify this elementary set fur-
ther by omitting the second order Hamiltonian, since

eit
2X2

= eit
4 2

27 eit
2

3
P eitX

3

e−it 2

3
P e−itX3

ei
t
3

3
X , together

with the Fourier transformation whose action is given
in Eq. (2) below. Even though this simplification has
value from an academical point of view, as it reduces the
minimal number of elementary gates, we are basically
motivated by decomposing an arbitrary gate to a set of
experimentally accessible gates. All second order gates
are relatively easy to implement, and replacing them by
third order Hamiltonians will increase the complexity of
the gate sequence. Therefore we shall use the overcom-
plete set (1) in our decompositions without loss of gen-
erality. One may also prefer a further extended set de-
pending on a certain experimental situation in order to
reduce the complexity of the decompositions.
In addition, one can obtain some nonlinear opera-

tions through unitary conjugation: UeitH(a,a†)U † →

eitH(UaU† ,(UaU†)†). An important unitary conjugation is
the Fourier transform:

ei
π

2
(X2+P 2)eitX

m

e−iπ
2
(X2+P 2) = eitP

m

. (2)

Employing unitary conjugation, with the set (1), one can
now generate certain nonlinear gates exactly. For exam-
ple, eitX

3

eitP
2

e−itX3

= eit(P−t 3

2
X2)2 , which is a fourth

order operator, or, eitP
2

eitX
3

e−itP 2

= eit(X+tP )3 , using
similar ideas to obtain higher order operations. However,
there is only a limited number of such decomposable non-
linear operators, and therefore we will make use of the
idea of operator approximations.
Besides the abstract notion of universality [3], how can

a given unitary exponential operator be decomposed to
the elementary set (1)? What is a systematical and effi-
cient way? Efficiency, of course, is a relative concept, and
so we will discuss what the available tools are and present

a well-defined problem for which we aim at a decompo-
sition as efficient as possible. The tools we use for CV
gate decompositions includes Gaussian operator decom-
positions, unitary conjugation, and exponential operator
approximations which we define and discuss later.
Before proceeding to the general case, let us demon-

strate how to realise a particular nonlinear exponential
operator using the above tools and the set (1). A very
important operator in quantum information processing
is the Kerr interaction operator. It allows to convert a
coherent state into a cat state [10] and to realize a con-
trolled quantum gate for qubits [11]. The Kerr interac-
tion, up to a quadratic Gaussian element, is defined as
follows,

eit(X
2+P 2)2 = eit(X

4+X2P 2+P 2X2+P 4).

In order to decompose the Kerr operation to the set (1),
we first write Kerr Hamiltonian as the linear combination
of commutators and then realize them through operator
approximations. The following relations, together with
the Fourier transform (2), are enough to realize this gate
up to a phase:

X4 = −
2

9
[X3, [X3, P 2]], (3a)

X2P 2 + P 2X2 = −
4i

9
[X3, P 3]. (3b)

In other words, in order to decompose the Kerr inter-
action to the set (1), it is sufficient to realize the above
commutators and their linear combinations.
Let us now generalize our approach to an arbitrary

Hamiltonian. Obviously, any single-mode Hamiltonian as
a polynomial of bosonic mode operators consists of oper-
ators of the form cXmPn+ c∗PnXm. Now we show that
any such operator can be written as a linear combination
of commutation operators. First note that cXmPn +
c∗PnXm = Re(c)(XmPn + PnXm) + iIm(c)[Xm, Pn],
and then one can derive the following two identities,

Xm =−
2

9
[Xm−1, [X3, P 2]], (4)

XmPn + PnXm =−
4i

(n+ 1)(m+ 1)
[Xm+1, Pn+1] (5)

−
4

n+ 1

n−1
∑

k=1

[Pn−k, [Xm, P k]].

Equation (4) is necessary to obtain arbitrary powers of
X and P operators with the Fourier conjugation (2), and
Eq. (5) basically prescribes how to systematically decom-
pose an elementary Hamiltonian to commutation opera-
tions of orders of X and P and their combinations where
we can use the tools we have. Also, due to the Jacobi
identity, we have [Pn−k, [Xm, P k]] = [P k, [Xm, Pn−k]],
and this may also lead to some simplification depending
on the value of n.
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For multi-mode operators one needs an extended el-
ementary set including an entangling operation [3], for
example, the beam splitter operation, eit(X1⊗P2−P1⊗X2),
where the subscripts denote different modes. Using
Gaussian decomposition methods, for simplicity, we may
assume that we have access to the following gate without
loss of generality, eitX1⊗X2 . For multi-mode Hamilto-
nians we can again use the simplifications for a single
mode and Eq. (5), because of the fact that the operators
on one mode commute with the operators on the other
mode. However, for this purpose, we initially need to re-
alize the two-mode operations with arbitrary powers of
X and P in both modes, similar to the single-mode re-
lation (4). The following relation together with Fourier
conjugation (2) and Eq. (4), is sufficient to realize the
two-mode operations with arbitrary powers of X and P ,

Pn
1 ⊗P s

2 = −
1

(n+ 1)(s+ 1)
[P s+1

2 , [Pn+1
1 , X1⊗X2]]. (6)

Then, we can use the Eq. (5) again with the single-mode
operations to realize an arbitrary two-mode expression.
As an example, consider the cross-Kerr Hamiltonian up
to a Gaussian transformation: (X2+P 2)1⊗(X2+P 2)2 =
X2

1 ⊗ X2
2 + X2

1 ⊗ P 2
2 + P 2

1 ⊗ X2
2 + P 2

1 ⊗ P 2
2 . Thus, the

relation, [P 3
2 , [P

3
1 , X1 ⊗X2]] is sufficient.

From an academical perspective, equations (4), (5) and
(6) are universal not only for any Hamiltonian, but also
for any initial universal set with a nonlinear gate dif-
ferent from X3 because of the well known equations:
∂F
∂P

= −2i[X,F ], ∂F
∂X

= 2i[P, F ], where F is a function of
operators X and P . Thus, any initial nonlinear Hamil-
tonian can be reduced to a form Xm. But, from a prac-
tical perspective, it would be unwise to use equations (4)
and (5) for any given Hamiltonian and any given initial
set because of the increased complexity. Instead, one
should derive an optimized expression (in terms of the
number of operators needed for the decomposition) uti-
lizing the available tools for every other Hamiltonian and
every other universal set.
Efficiency– Besides having a systematical framework,

we also require the decomposition to be relatively effi-
cient. We define efficiency as the number of operators
needed to realize a given operator with a certain ignor-
able error (note that this definition slightly differs from
previous ones [3] where efficiency is the scaling of the
number of operators with respect to the error). Now re-
call that, in general, our decompositions are based on
writing a general Hamiltonian as linear combination of
commutators using Eqs. (5), (4) and employing operator
approximations. We discussed how to rewrite Hamilto-
nians in the preceding sections, and next, we will now
focus on the efficiency of operator approximations.
Let us start with a few definitions. In the following

equation,

etC = et1Aet2Bet3A...etMB, (7)

if the Taylor expansion of both sides matches for the
orders of t up to tm, then it is called mth order decom-
position which we denote as Qm(t) [19]. For example, an
important case is when C = A+B, for which we will use
the term splitting. Another important case is when C is
the commutation of A and B. Throughout the article,
we call an exponential operator with exponent [A,B] the
commutation operator. For example, the identity below
is a well-known second order approximation for a commu-
tation operator. It has been exploited already as an im-
portant tool in quantum control [12], in discrete-variable
quantum computation [13], CV quantum computation
[3], or, in general, Hamiltonian simulation theory [14],

et
2[A,B] = eitBeitAe−itBe−itA + f(t3, A,B) + . . . (8)

It basically says that, for t < 1, the concatenation or-
der is the same as applying the commutation operator
of A and B, up to some error where the dominant term
is of the order t3. Now in order to obtain more reliable
gates, a straightforward way to improve accuracy is us-
ing smaller interaction times, t → t/n, and applying the
decomposition n2 times to obtain the same interaction
time as before,

et
2[A,B] =

(

eiB
t

n eiA
t

n e−iB t

n e−iA t

n

)n2

+ f

(

t3

n
,A,B

)

.

For the rest of the article, we call this approach rescal-
ing. Besides improving accuracy, rescaling is neces-
sary to realize further nested commutations. One can
replace operator tA by t2[B,A] in Eq. (8) to simu-

late the nested commutation operator eit
3[B,[B,A]] =

eitBet
2[B,A]e−itBe−t2[B,A] + f ′(t4, A,B) and make use of

the same idea for further nested commutations. How-
ever, in this identity, we are also supposed to approxi-
mate [B,A] using approximation (8), and so we get an
operator, whose interaction time is of the same order as
the dominant error term, which makes the approximation
meaningless and invalid. To obtain a reasonable decom-
position, the order of dominant error should be smaller
than t3. Thus, we again need rescaling. However, rescal-
ing requires relatively many operators to enhance accu-
racy.

In a certain decomposition, using the above-mentioned
approximations, the number of operators to approximate
a single commutation operator with coefficient 0.1 and or-
der of dominant error term 10−3, requires 4000 operators
and for the nested commutation operator, for the same
values, the number of operators will be 2 × 107; thus,
for approximating a Kerr interaction with coefficient 0.1,
one needs about 108 operations which is an unsatisfacto-
rily high number. Hence, deriving better approximations
is a crucial part of our decomposition framework. What
we use is a novel method for obtaining higher-order ap-
proximations [5], based on generalized Baker Campbell
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Hausdorff series (gBCH) [15]. With this idea, the con-
catenation converges much faster to an arbitrary set of
commutations and linear combinations of these, reduc-
ing the number of operators from the order of 108 to the
order of 102. How this works will be briefly explained
below.
As a first step, consider an arbitrary concatenation of

the two exponential operators
∏

i e
itiAeit

′
i
B like on the

right hand side of (7). The resulting operator of this
sequence, like operator C on the left hand side of (7),
can be calculated through gBCH. It will correspond to
a linear combination of many operators. Each of the
coefficients of the operators in C corresponds itself to a
polynomial. Then, we solve these polynomials in order
to eliminate undesired operators and keep the desired
ones. Since solving polynomials is in general a hard task,
the above procedure will be limited. After obtaining a
certain order of approximations, as a second step, we
use a concatenation of these first-step approximations to
derive approximations of much higher order. This step
is similar to the Suzuki method [16]. The difference is,
however, instead of improving step by step and obtaining
each order recursively, we obtain a by many orders higher
approximation in one step, again, utilizing gBCH.
As an example, using our method, the required num-

ber of operators for a Kerr interaction with coefficient
0.1 and the dominant error term 10−3 is now around
250. However, using the fourth-order elementary gate
X4 in our elementary set instead of the cubic one
will reduce this number to around 70. For deriving
these numbers, we used Eq. (3) and the following ap-
proximations. For decomposing the three-party split-
ting of the operator ei(A+B+C), we used the follow-
ing concatenation series:

∏

i e
itiAeit

′
i
Beit

′′
i
C . A third-

order decomposition is then comprised of 10 opera-
tors with the following parameters: 0.4515, 0, 0.4515,
0, 1.0824, 0.6308, 0.6308, 1.1367, 1.1367, −0.0824, 0,
−1.2191, 0, −1.2191 where the order of parameters
match with the concatenation order. A fifth-order de-
composition for the commutation operator et

2[A,B] is
comprised of 16 operators with the following parame-
ters: −2.12133, −1.68068, −0.019988, 1.60205, 2.02532,
2.74368, 0.0612175, −1.17081, −3.23589, 0.0187355,
1.51902, −0.989126, 0.571647, 0.476157 where the order
of the parameters match that of concatenation (7). Sim-
ilarly, a fifth-order decomposition for the nested commu-
tation operator eit

3[A,[A,B]] consists of 15 operators with
the following parameters: 0, 0.5, −0.912433, −1.000141,
2.439891, −0.531940, 0.184788, 2.000998, −0.477395,
−1.659152, −0.761744, 1.465192, 1.181123, −1.312200,
−1.654230, 0.537205.
In summary, we presented a systematical method to

decompose arbitrary CV unitary gates into an elemen-
tary set of gates using approximations with much higher

efficiency than in any of the existing proof-of-principle
methods. In fact, different from the previous proof-of-
principle demonstrations, our treatment brings the ab-
stract notions of decomposition theory for CV quantum
computation close to experimental realizations.
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