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Abstract 
 
A microeconomic model is developed, which accurately predicts the shape of personal income 
distribution (PID) in the United States and the evolution of the shape over time. The underlying 
concept is borrowed from geo-mechanics and thus can be considered as mechanics of income 
distribution. The model allows the resolution of empirical and definitional problems associated 
with personal income measurements. It also serves as a firm fundament for definitions of income 
inequality as secondary derivatives from personal income distribution.  

It is found that in relative terms the PID in the US has not been changing since 1947. 
Effectively, the Gini coefficient has been almost constant during the last 60 years, as reported by 
the Census Bureau.  
 
Key words: personal income, modelling, mechanics, the US 
JEL Classification:      D01, D31, E01, O12, C81 



 3 

Content 

 

1.1. Introduction         4   
1.2. Measurements of personal income      13 
1.3. Microeconomic model of the personal income       
       distribution and evolution       19 
1.4. Modelling the overall personal income distribution 
       in the USA between 1994 and 2006      31  
1.5. Modelling the age-dependent personal income  
       distribution in the USA between 1994 and 2006                                              40  
1.6. Modelling the average and median income dependence  
       on work experience in the USA from 1967 to 2006               46   
1.7. Modelling of high incomes – the Pareto distribution    58     
1.8. Modelling Gini coefficient for personal incomes in  
       the USA between 1947 and 2006      66 
1.9. Modelling the evolution of age-dependent Gini  
       coefficient between 1965 and 2007      78 
1.10. Inequality estimates: Census Bureau vs.  
        Internal Revenue Service       85 
1.11. Conclusion         90 
    

References         97 
Tables          98 
Figures         101 



 4 

§1.1. Introduction 

 

Income distribution is a fundamental process in all economic systems. Conventional economic 

theories provide a variety of views on the mechanism driving the division of gross domestic 

product among economic agents. Income distribution at personal level did not deserve the 

highest attention of the mainstream economists who are focused on households. We do not share 

this approach and consider personal income as a natural and indivisible level for theoretical 

consideration. Total income of families and households corresponds to a higher level of 

aggregation and the dynamics of their evolution is prone to all disturbances associated with 

fluctuations in their composition and average size over time. Therefore, we introduce and 

elaborate a concept describing the distribution of personal income and its evolution. Because of 

data availability, quality and time coverage an unavoidable choice for our study is the United 

States.  

 Redline of our investigation follows up the answer to the key question: Whether the 

configuration of personal incomes in the US is the result of distribution of a random part of 

nominal GDP growing at a rate prone to stochastic external (in economics - exogenous) shocks 

or there exists a deterministic and fixed hierarchy of personal incomes, which evolution defines 

the rate of GDP growth?  If the distribution is a stochastic process together with the part of GDP 

related to personal incomes, i.e. with gross personal income (GPI), one should develop a 

statistical approach.  If the distribution is fixed and defines the overall growth of economy one 

would be able to formulate a deterministic (e.g. mechanical) model. In this Chapter, we are 

trying to prove that the second answer is valid and the evolution of each and every personal 

income is predictable, potentially as accurate as in classical mechanics.    

 We do not feel that economics as a science is currently able to provide adequate concepts 

and methods to analyze personal incomes in quantitative terms. So, we adapt an interdisciplinary 

approach, which has already shown its fruitfulness in many scientific and technological areas. 

This success is achieved not only due to the coincidence of formal description of various 

physical, chemical, biological, and sociological processes, but also expresses the existence of 

very deep common roots in the nature. For example, the power law distribution of sizes is 

observed in economics (Pareto distribution), in frequencies of words in longer texts, in 

seismology (Guttenberg-Richter recurrence curve), geomechanics (fractured particle sizes), and 

many other areas. Recent studies associate the power law distribution with a realization of some 

stochastic processes known as “self-organized criticality” (SOC).  

 Economics and its numerous applications in real life demand huge amount of numerical 

data in order to estimate current state of a given economy and future development. Such data 
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have been continuously gathered from the very beginning of capitalism as an economic system, 

but the 20th century and especially its second part is characterized by a dramatic increase in the 

number of economic observations and measurements. The resulting data set has become an 

object of a thorough study not only for professional economists but also for specialists in many 

other disciplines. There are many examples of successful application of mathematical and 

physical methods from many adjacent disciplines for understanding economic phenomena and 

processes.  

 Personal income distribution (PID) represents one of high-quality sets of quantitative data 

with a history of more than sixty years of continuous measurement with increasing accuracy. 

Irrelevant to the nature of these data, even the simplest scatter plot reveals some specific 

features, which are often observed in physics: growth and fall is well approximated by 

exponential and power law functions. Some of these functions are the solutions of ordinary 

differential equation, and thus one can presume that the processes behind the data can be also 

described by such equations. This makes it very attractive to apply standard methods of analysis 

and to model the evolution of personal incomes according to 'first principles' adopted in the 

natural sciences.  

 Among numerous possibilities, we selected the geomechanical model of a solid with 

inhomogeneous inclusions proposed and developed by V.N. Rodionov and co-authors (1982) as 

an analogue of an economy expressed as a set of personal incomes. The economy plays the role 

of a solid body and personal incomes correspond to inelastic stresses on the inclusions. We 

expected that some of the already available equations and solutions for a solid would provide an 

adequate description of incomes, and some of the equations would need modification. The 

intuition behind such an assumption was based not only on our professional experience in both 

disciplines but also on a formal equivalence of the PID in the United States and the Guttenberg-

Richter recurrence curve.   

 The original geomechanical model describes the distribution of stresses in solid by 

separating them into elastic and inelastic components. Inelastic stresses are concentrated only on 

inhomogeneous inclusions and play an important role in the processes of deformation and 

fracturing. In the model, the size distribution of inclusions, d(l), is chosen to retain constant the 

total volume for any size l: d(l)~l-3. In other words, the number of inclusions of a given size l 

(per unit volume) decreases inversely proportional to the size cubed. This is a power law or scale 

free size distribution. The lower limit of l is likely constrained by the characteristic length of 

atom and the largest size should be substantially smaller then the size of the solid.   

 The growth rate of inelastic stresses is proportional to the rate of elastic deformation. 

Inelastic stresses are irreversible and dissipate over time. This is a fundamental property of real 



 6 

solids – no stress or deformation can be retained forever and even such hard rock as basalt 

undergoes plastic deformation and dissipation of stored energy.  The defining property of the 

geomechanical model consists in the assumption that the rate of dissipation of inelastic stresses 

is inversely proportional to the size of inclusion, i.e. the larger is the inclusion the longer time is 

needed to dissipate the same level of inelastic stress. (When applied to economics this rule says 

that larger incomes more resistant to decline, i.e. they decay at a lower rate than small incomes.) 

To simplify relevant mathematics, only one deformation process with a constant rate is usually 

considered in the geomechanical model. The deformation is caused by some external forces, 

which provide a constant energy supply.  

 This geomechanical model has been adapted and modified for the purposes of economic 

modelling. Formally, the size of inclusion is interpreted as the size of some tool or means, which 

is used to generate or earn income. Such words as “generate”, “produce”, “earn” and their 

synonyms are equivalent in the framework of our model and express the assumption that the sum 

of all personal incomes is equal to GDP. The proposed model is a microeconomic model because 

it addresses the evolution of personal incomes depending on individual properties and 

conditions. On the other hand, when aggregated over the whole working age population, the 

model allows a macroeconomic level of consideration. Thus the model is a dual one expressing 

the fact that by definition Gross Personal Income (GPI) is equal to GDP. Here we assume that 

GPI is equal to Gross Domestic Income and there is no impersonal income, because any income, 

personal or corporate, ultimately has its personal owner who can use this income for 

consumption, saving or investment.  

 In contrast to the geomechanical model, observations of income force the size of earning 

means to be distributed uniformly from some nonzero minimum to a finite maximum value. 

Uniform distributions of sizes are not usual in physics. As a rule, larger objects are less frequent. 

Because the PIDs measured in the US and their aggregates are well predicted with a uniform size 

distribution of earning tools, we did not thoroughly analyze alternatives. It could be a good 

exercise for students, however.   

  In the microeconomic model, deformation caused by external forces is interpreted as the 

capability of a person to generate income independent of the size of earning means. As an 

inherent characteristic of a person it could hardly be changed under normal conditions. This 

property is related only to money earning and does not depend on other personal talents and 

deficiencies. In a sense, two persons with equal talent in some profession have quite different 

salaries. Unlike talent, the capability to earn money is a measurable characteristic expressed in 

monetary units.  
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 The income earned per year or income rate, as an analogue of inelastic stress 

concentrated on an inclusion, is proportional to the product of the size of earning means and the 

capability to earn money. These capabilities (or rates of external deformation) are also 

distributed uniformly among people of working age. The capabilities and sizes of earning means 

- both are getting larger as real GDP per capita grows. As a result, the evolution of the system of 

personal incomes is described by equations, which include some features additional to those in 

the geomechanical model. The microeconomic model has the same functional dependence 

between defining variables and similar formal solution. So, in mathematical terms, we are ready 

to start modelling personal incomes. 

 Before one starts a quantitative modelling, a thorough investigation of data availability 

and quality should be carried out. No model can be proved valid or invalid when relevant data do 

not provide an appropriate resolution. The breakthroughs in the natural sciences always happen 

at the edge of resolution leaving behind firm knowledge. Following this tradition, §1.2 is fully 

devoted to the assessment of data quality. The distribution of personal incomes is measured by 

various institutions, both governmental and private. We rely on the data which have been 

gathered by the US Census Bureau in the March Supplements of the Current Population Surveys 

since 1947. Other sources cover shorter periods or have gaps in measurements. Moreover, the 

Census Bureau provides the dependence on age – a feature most important for an evolutionary 

model. At the same time, there are numerous and severe deficiencies in the CPS data. The most 

painful and dangerous for the consistency of quantitative modelling is the incompatibility of data 

after any new revision to the CPS questionnaire: the unit of income measurement has been 

randomly changing through time. In physics, metrology was introduced several centuries ago 

and always serves as a backbone of any empirical investigation.   

 The microeconomic model is formally introduced in §1.3. This is the final result of an 

extended empirical investigation. To select some initial model from numerous alternatives, to 

modify it for matching a bulk of observations, and to estimate empirical parameters and 

coefficients required time and efforts.  In its computer version, the main loop of the model 

programmed in FORTRAN took around 25 lines. A few subprograms allow different levels of 

aggregation: from individual income to GPI. The programming is a straightforward one and one 

can repeat it in no time using defining equations and reported parameters. Real GDP per capita is 

the driving force of the model. Therefore, we do not need to numerically integrate ordinary 

differential equations, but to use measured GDP.   

  

 To begin with we test the predictive power of the model by estimating the overall PIDs in 

the United States. This is an intermediate level of aggregation which disregards the dependence 
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of individual incomes on age. Together with predicted PIDs, §1.4 introduces initial conditions 

for actual modelling. Initial values of defining parameters are obtained by standard trial-and-

error method. Since the Pareto law is an empirical one and is obtained directly from 

observations, the microeconomic model covers only the low income zone. This zone includes 

90% of working age population, however. 

 One of basic results of §1.4 consists in finding of a rigid hierarchy of personal incomes.  

When normalized to gross personal income and total working age population all PID between 

1994 and 2001 collapse to one curve. In other words, the normalized PID is an invariant. In 

classical mechanics, such invariants (in closed systems) as energy and momentum provide 

fundamental constraints on possible evolution of the systems and also result in strict links 

between aggregate variables. These links are usually expressed in homonymic equations of 

classic mechanics. One can refer to the representations given by Euler and Lagrange, for 

example. If similar invariants would exist in real economy one could derive numerical 

conclusions, and likely a sound theory.  

Understanding and modelling of age-dependent PID does deserve special attention as 

demonstrated in §1.5. There are really dramatic changes in the shape of PID: from practically 

exponential fall in the youngest and eldest age groups to a piecewise function in the mid-age 

groups. All these features are successfully modelled for the period between 1994 and 2002. The 

success is even enhanced by the fact that the analysis and prediction was based on the same 

microeconomic model and parameters as obtained for the overall PID in §1.4. It is a formal 

quantitative validation of the model – it predicts beyond the set of data used for the estimation of 

empirical parameters and coefficients.   

Therefore, the microeconomic model quantitatively describes the evolution (with age and 

over time) of each and every personal income as a function of the individual capacity to earn 

money, the size of earning means, and real economic growth. At this stage, the modelling of age-

dependent PID was not accompanied by the explicit prediction of the level of income inequality. 

In paragraph 1.6, a different set of data is modelled - the dependence of average and 

median income on work experience. This data set spans a longer period since 1967. Here we first 

test the consistency of the model at higher incomes described by the Pareto law. The modelling 

meets significant difficulties related to the changes in the portion of GPI in GDP and income 

definition in the CPS questionnaire. The revisions to the CPS and population estimates after 

decennial censuses create artificial steps in the PIDs.  Median income may be a more robust 

variable due to lower sensitivity to higher incomes. Its dynamics is relatively better predicted by 

the model. Overall, the dependence of mean and median on work experience and its evolution 

over time validates the model.  
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Paragraph 1.7 addresses several problems associated with the Pareto distribution. There is 

no general understanding and formal model of the processes leading to the power law 

distribution of personal incomes. This is a challenge for the future. However, there are several 

quantitative features of the Pareto distribution which can be modelled.  Of crucial importance is 

the dependence of the portion of people in the Pareto distribution on work experience. 

Apparently, the youngest and eldest age group should be characterized by lower portions than 

intermediate groups. The model is able to accurately predict this dependence and its evolution 

through time. It is another point in favour of the model.     

Numerous quantitative features related to economic inequality are discussed in §§ 1.8 and 

1.9. This type of inequality is an apparently inevitable and multi-dimensional phenomenon in 

any social system. Due to practical and emotional importance for everyone, inequality attracts 

high attention of economists, politicians, and ordinary people. The former ones are focused at 

revealing potential quasi-deterministic or statistical links between economic inequality and 

numerous micro- and macroeconomic variables. There is no clear understanding whether the 

economic inequality is a positive or negative factor for such fundamental economic parameters 

as real economic growth, inflation, and unemployment (Galbraight, 1998). 

Income inequality is one of quantitative measures of economic inequality. There are 

many theories of inequality arising from the distribution of income. Neal and Rosen (2000) 

presented an almost comprehensive overview of state-of-art in this field. In spite of the efforts 

associated with the development of a consistent model of income distribution there are some 

problems yet to resolve. Moreover, modern economic theories do not meet some fundamental 

requirements applied to scientific theories - a concise description of accurately measured 

variables and prediction of their evolution beyond the period of currently available 

measurements.  

In §1.8, we model the most popular aggregate measure of income inequality - the Gini 

coefficient, G, for PIDs in the United States. This coefficient is characterized by a number of 

advantages such as relative simplicity, anonymity, scale independence, and population 

independence. On the other hand, the Gini coefficient belongs to the group of operational 

measures: its evolution through time is not theoretically linked to macroeconomic variables and 

the differences in Gini coefficient observed between various countries are not well explained. 

These caveats make the Gini coefficient more useful in political and social applications but not 

in economics as a potentially quantitative (hard) science.  

As a rule, the Gini coefficient is estimated from household surveys, and inequality is 

reported at family and household levels. Such an aggregation is affected by social and 

demographic processes, which may bias true economic mechanisms driving income inequality. 
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Theoretically, the indivisible level for the study of income inequality is the personal income. In 

our framework, personal incomes are presumed to be sensitive only to macroeconomic variables. 

Paragraph 1.9 describes the data on personal income distribution in various age groups, 

presents estimates of relevant Gini coefficients, elaborates on empirical PIDs, and compares the 

evolution of observed Gini coefficients to that predicted by our model. The age-dependent PID 

in the youngest group is characterized by large differences from the overall PIDs. Obviously, all 

individuals start with zero income and the initial part of income trajectory in time, as personal 

income observations show, is close to an exponential growth. In the mid-age groups, PIDs are 

similar to the overall PID. In the oldest age group, PID is also different and is closer to that in the 

youngest group. Accordingly, Gini coefficient undergoes a substantial evolution from the 

youngest to the oldest age groups. 

In §1.10, we join the vivid discussion of increasing economic inequality in the United 

States. Our quantitative assessment of personal income inequality is quite different from that 

articulated by many economists. In §1.8, we conducted quantitative estimates of Gini coefficient 

using personal income distributions, which have been reported since 1947 by the US Census 

Bureau , and found that this coefficient was practically constant over time. Having a constant 

Gini coefficient since (at least) 1947, one might find it strange that other researches and media 

thoroughly discuss increasing inequality during the last 25 years. It was difficult to actually 

understand why those researches do not use the US Census data despite the Census Bureau 

(2004) explicitly states: 

 

Because of its detailed questionnaire and its experienced interviewing staff trained to 
explain concepts and answer questions, the CPS ASEC is the source of timely official 
national estimates of poverty levels and rates and of widely used estimates of household 
income and individual earnings, as well as the distribution of that income. 

 

Paul Krugman, the 2008 Laureate of the Sveriges Riksbank Prize in Economic Sciences 

in Memory of Alfred Nobel, explained why he and other researchers are forced to deny the 

estimates based on Census Bureau data:  

 
First, because Census data are based on a limited sample, not the whole population, 
they’re unreliable in tracking the income of small groups – and the really rich are a small 
group, who just happen to bulk large in the economy. Second, the questionnaire is "top-
coded": if the individual interviewed has earnings higher than $999,999, those earnings 
are recorded simply as $999,999. Since a lot of income growth in the last few decades 
has taken place among people with multimillion-dollar incomes, the Census data miss an 
important part of the story. 
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In practical and theoretical terms, both statements (reasons) are wrong. First, in hard 

sciences, one is not often able to measure true values of desired variables, but usually measures 

some portions of them. For example, nobody tries to invent a weighting machine in order to 

measure the Earth’s mass. It is enough to measure gravity acceleration in one point since this 

acceleration is proportional to the total mass. Therefore, if a portion of a whole object is a 

representative one and is measured consistently over time, one can carry out a reliable 

quantitative analysis. A randomly changing portion, as sometimes happens to macroeconomic 

variables after introduction of new definitions, would, obviously, ruin any such quantitative 

analysis. So, using surveys of small population samples does create a problem with internal 

precision, but should not necessary disturb results of overall quantitative analysis. This Chapter 

provides extensive quantitative results which confirm that the Census Bureau has been collecting 

high-quality data. 

Second, the "top-coded" approach does not harm the estimates of income in the "the 

richest of the rich" group. This effect is known more than hundred years already. Higher incomes 

are very accurately distributed according to the Pareto law. As a matter of fact, one does not need 

to measure any personal income in the high-income group. S/he needs to estimate the number of 

persons with income above some given (high) threshold. Then, one can use simple mathematical 

equations to obtain accurate population density at any income level and also total income above 

any threshold.   

The logic of the presentation of a new model in a book cardinally differs from that of 

scientific research itself. When studying some process or phenomenon, one does not possess 

complete knowledge about defining relationships and parameters. This state of incomplete 

knowledge gives birth to numerous questions and problems one has to address during the study. 

When the research is finished, the obtained model should accurately describe corresponding 

observations and all (or almost all) wrong hypothesis and irrelevant assumptions are eliminated. 

As a result, the presentation of a finished model usually skips all unnecessary details and is 

focused on a comprehensive description of relevant relationships and parameters. Following this 

tradition, in Chapter 1 we first present our model and then demonstrate how accurate it predicts 

various quantitative properties of personal income distributions in the US as related to some 

measured macroeconomic and demographic parameters. The model is validated according to 

standard procedures involving comparison of predicted and observed data.  
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§§§§1.2.  Measurements of personal income  

 

Before starting any quantitative research one needs to evaluate data consistency and quality. This 

paragraph addresses several questions associated with the quality of income measurements:  

 

What is personal income? 

Are there alternative definitions of personal income? 

How is personal income measured? 

How large is the uncertainty of income measurements? 

What improvements are necessary for successful quantitative modelling? 

 

The history of income measurements in the United States started in 1947, when a question about 

individual income was first included in the first Annual Social and Economic Supplement, 

ASEC, (former Annual Demographic Survey, ADS, or March Supplement) to the Current 

Population Survey (htp://www.census.gov). Fully electronic tables presenting personal incomes 

by detailed socioeconomic characteristics have been published by the US Census Bureau since 

1994. Scanned versions of hard copies of income tables since 1947 are also available via the 

Census Bureau. 

 The electronic tables include information on the number of people with income in 

relatively narrow intervals of $2500, starting from zero income and current losses, up to the 

highest income of $100,000. These tables also provide mean incomes in five-year wide age 

groups, except that for the youngest group, which spans the ages from 15 to 24 years. The 

detailed income tabulations from the CPS related to personal income are available since 1994 

and aggregated data - for a longer period since 1967.  Before 1994, data representation has been 

changing through time with numerous revisions to income definition and methodology of 

measurements.  

The definition of personal income has been actively discussed by the Canberra Group on 

Household Income Statistics (2001) under the umbrella of the United Nations.  As a matter of 

fact, there are many definitions of personal income and, thus, there are many measures of 

income. From the point of view of the orthodox economics, the Haig-Simons-Hicks (HSH) 

concept could provide the theoretical framework for any definition of personal income. The 

concept defines the income as the maximum amount that can be consumed in a given time period 

without any change in real wealth. Technically, two most elaborated definitions of personal 

income in the US are given by the Bureau of Economic Analysis (BEA) and the Census Bureau; 

both measure only different portions of the HSH amount. Therefore, there is always some room 
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for improvement in the definitions.  The Internal Revenue Service’s definition is of lower 

theoretical interest for quantitative modelling because it excludes too many sources of income 

for unbiased estimates. 

The BEA conducts the estimates of personal income from administrative record and 

defines it in the following terms: 

 

Personal income. Income received by persons from all sources. It includes income received from 
participation in production as well as from government and business transfer payments. It is the 
sum of compensation of employees (received), supplements to wages and salaries, proprietors' 
income with inventory valuation adjustment (IVA) and capital consumption adjustment (CCAdj), 
rental income of persons with CCAdj, personal income receipts on assets, and personal current 
transfer receipts, less contributions for government social insurance.   

 

This is the approach which considers personal income as a portion of GDP for macroeconomic 

purposes.  As one can judge, this is a technical definition and relevant income measurements 

need enormous efforts for data gathering and processing. Private companies or scientific 

foundations can hardy repeat such measurements.  Therefore, alternative measurements of 

personal income, as defined by the BEA (and Census Bureau), are not feasible. 

The Census Bureau uses the microeconomic approach and measures money (personal) 

incomes in the ASEC Supplement to the Current Personal Survey (CPS), which are aimed at 

understanding of income distribution.  Under this framework, income is split into categories 

related to the types of transaction disregarding the sources of income. Overall, the Census 

Bureau defines personal income as 

 

… as total pre-tax cash income earned by persons, excluding certain lump sum payments and 
excluding capital gains. 

 

 

A striking difference for a researcher carrying out standard analysis consists in the total 

personal income reported by the BEA and CB. In 2001, the former agency reported $8.678 

trillion and the latter published the estimate of gross personal (money) income of $6.446 trillion. 

The difference is $2.232 trillion or 35%.  Disregarding any details of the difference in personal 

income components following from both definitions one should assess the difficulty met by 

quantitative modelling. The uncertainty of 35% can make any reasonable model an appropriate 

one, and also allows denying almost any model as statistically unreliable.  

In this study, we use only the data on personal income distribution gathered by the 

Census Bureau. The reasons for this choice follow from the “Guidance on Differences in Income 

and Poverty Estimates from Different Sources. August 19, 2004”:  
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• The CPS ASEC provides a consistent historical time series of many decades in 

length at the national level...  

• ...detailed questionnaire and its experienced interviewing staff trained to explain 

concepts and answer questions...  

• The CPS ASEC provides the most timely and most accurate cross-section data for 

the nation on income and poverty. 

Hence, the defining factor consists in the availability of the detailed and accurate age-sex-race 

tabulation in various income bins since 1947. The BEA reports only the aggregate Gross 

Personal Income value. For a quantitative model, the detailed data are of crucial importance, but 

one has to bear in mind the possibility of highly biased personal income estimates to be present. 

Our working hypothesis is that the extra personal income reported by the BEA is distributed over 

the working age population in a way, which does not disturb the personal income distribution 

reported by the Census Bureau.  Obviously, this is a crude extrapolation, but it does not 

contradict our empirical findings.  We also disregard personal income definitions related to 

decennial censuses, the American Community Survey, the Survey of Income and Participation 

Program, and the Small Area Income and Poverty Estimates. They do not provide either the 

national level of coverage or the continuous time series.    

  The next question concerns the procedure of income measurements conducted by the 

Census Bureau. The CPS is basically a labor force survey covering 60,000 households, and the 

ASEC uses a sample of about 100,000 addresses per year. Currently, the questionnaire contains 

50+ sources of income. For each person of 15 years old and over in the sample, the CPS asks 

questions on the amount of money income received in the preceding calendar year from each of 

the following sources: earnings, unemployment compensation, workers’ compensation, social 

security, supplemental security income, public assistance, veterans’ payments, survivor benefits, 

disability benefits, pension or retirement income, interest, dividends, rents, royalties, and estates 

and trusts,  educational assistance, alimony, child support, financial assistance from outside of 

the household, other income.  The income statistics is gathered during one month but 

covers the whole preceding calendar year.  This introduces a bias into such demographic 

characteristic as age.   

The CPS does not measure capital from the sale of property, including stocks, bonds, a 

house, etc.; withdrawals of bank deposits; money borrowed; tax refunds; gifts; and lump-sum 

inheritances or insurance payments.  

 A crucial issue for our analysis is the precision of income measurements. (Because the 

true personal income is not defined one can measure only internal consistency of measurements, 

i.e. precision, not the distance between measured and true value, i.e. accuracy. However, we do 
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not make any major difference between the terms.). There are two principal sources of errors in 

income measurements - sampling error and non-sampling error as presented by the US Census 

Bureau (2002). The first is related to the difference between the CPS sample and working age 

population as a whole. The CPS sample may differ in many ways from the population controls as 

obtained from decennial censuses and further corrections between the censuses for total deaths, 

migration, and people in the armed forces. When the CPS is projected to the total population in 

the weighting procedure, the biases may still be present and affect income estimates in the 

unknown way. Statistical accuracy of this type of error can be estimated and included into 

analysis. 

The non-sampling error includes all other potential sources of error including under-

coverage, definition difficulties, variations in interpretation of questions, incorrect information 

due to unwillingness or inability to recall, etc. Due to the intrinsic nature of these type errors 

their magnitude is unknown. Small population numbers related to specific income-age-sex-race 

groups deserve closer attention. In relative terms, the sampling and non-sampling errors are both 

most prominent where the enumerated population is comparable to the measurement accuracy. 

For example, the number of very young and very old people with very high incomes is always 

small. As shown in §1.5, there is no people reported in some income bins near $100,000 in the 

age group between 15 and 24 years. An obvious problem, which hardly can be resolved by any 

population survey, is associated with the measurement of very low incomes near $1 per year. 

Also due to definitional problem, many persons with very low incomes are reported as people 

without income.  So, the uncertainty in these sensitive groups is very high and one should not 

expect any quantitative modelling to fit relevant data. On the contrary, a good quantitative model 

validated by accurate data can provide an invaluable assistance in the development of a sound 

definition and related measurement procedure. This is a standard situation in the natural sciences, 

where theoretical predictions stimulate more accurate measurements, i.e. determine what and 

how to measure.  

The US Census Bureau also constantly improves the precision of the personal income 

measurements. This process includes extension of the number of interviewed households, 

covering some specific groups such as Hispanic origin, etc. The last major change in the 

procedure occurred in 2002, when the total number of the surveyed units became 99,000. 

Between 1994 and 2001 there were 60,000 units in the basic CPS and additional 21,000 units for 

the March Survey, i.e. 81,000 in total. As explicitly stated by the US Census Bureau, these 

changes make it sometimes difficult to compare income data sets obtained in different years. 

Most prominent revisions were as follows: 

Income year Change 
1947 Data based on 1940 census population controls. 
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1961 
Implementation of first hot-deck procedure to impute missing income entries (all income 
data imputed if any missing). Introduction of 1960 census-based sample design. 

1965 Implementation of new procedures to impute missing data only. 
1966 Questionnaire expanded to ask eight income questions. 
1967 Implementation of a new March CPS processing system. 

1974 
Implementation of a new March CPS processing system. Questionnaire expanded to ask 11 
income questions. 

1975 
These estimates were derived using Pareto interpolation and may differ from published data 
which were derived using linear interpolation. 

1976 
First year medians are derived using both Pareto and linear interpolation. Prior to this year 
all medians were derived using linear interpolation. 

1979 
Implementation of 1980 census population controls. Questionnaire expanded to show 27 
possible values from 51 possible sources of income. 

1985 Recording of amounts for earnings from longest job increased to $299,999.  

1993 
Data collection method changed from paper and pencil to computer-assisted interviewing. 
Limits either increased or decreased in some categories. 

2000 

There are two versions of the 2000 income data available. One version is based on the 
traditional sample of about 50,000 households and reflects the use of 1990 census population 
controls. The second version is based on a sample of 78,000 households, reflecting a 28,000 
household sample expansion and the use of Census 2000 population controls.  

 

The income part of the CPS questionnaire has not suffered major revisions since 1980. 

There are several important items which would be appropriate to include in the next revision, as 

proposed by the Canberra Group. Among them are interhousehold transfers and some fringe 

benefits. In addition, some items such as wages, transfer payments, and self-employment require 

substantial improvement due to clear misreporting.    

Summarizing the quantitative properties of personal income measurements in the United 

States relevant to our modelling we would like to stress that: 

• Personal income definition has suffered severe revisions in the past, but does not meet yet 

the complete set of requirements associated with variables in the natural sciences. The 

“right” definition of personal income should provide the full coverage of working age 

population, not only the most obvious groups such as workers and pensioners.    

•  The right definition of personal income has to provide the gross personal income equal to 

GDP. 

• The uncertainty of personal income measurements is inherently related to two sources: 

definition and methodology, the latter being easier to resolve.  

• The magnitude of the uncertainty varies with age, race, sex, and income level. Due to 

non-sampling errors it is difficult to estimate the absolute and relative magnitude of the 

uncertainty.  

• Potentially, the upper limit of the uncertainty might be estimated as the difference 

between various definitions of income. In that case, the uncertainty is unacceptably high 

in some age groups and income bins.    

• Quantitative properties of personal income distribution and their evolution over time 

might be helpful for the proper definition of personal income.   
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After the start of this research, the problem of quality and accuracy of income 

measurements immediately became a fundamental one.  Good measurements are always based 

on a positive feed back from scientific knowledge to technological implementation and vise 

versa. Metrology, which embraces both theoretical and experimental determination of 

uncertainty, is always the first step in any scientific research.  In other words, any quantitative 

theory or model demands the units of measurements, system of units and the development of 

measuring techniques.  Economics, if accepting the challenge to join the natural sciences, needs 

to demonstrate a sufficient level of uncertainty characterizing major data sets.  No surprise that, 

in line many empirical studies in physics, we start every chapter with sometimes extended but 

very specific review of accuracy related to studied economic variables. Otherwise, our concept 

cannot be realized in quantitative models.    
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§1.3. Microeconomic model of the personal income distribution and evolution  

 

Historically, the model is the result of a long process. Initially, the idea was to represent the 

distribution and evolution of personal incomes as defined by geo-mechanical model of a solid 

with non-linear inhomogeneous inclusions. This geo-model is characterized by a specific sizes 

distribution, which retains constant total volume for all sizes of inclusions. The initial idea had 

undergone a number of modifications and corrections before was confirmed in its final form. 

Because of the geo-mechanical legacy we called the invented a new term for economics 

presented in the framework of (geo-) mechanics “mechonomics”.  Later on, this term was 

applied to the research as a whole.  

Therefore, the microeconomic model for the evolution of personal incomes is based on a 

“first principle” approach expressed as an equation balancing money production and money 

dissipation. The former is formally equivalent to the production of goods and services. The latter 

is the result of a number of factors acting against individual production efforts and reducing the 

amount of money earned below its potential level. Similarly, efficiency of a steam engine is not 

100% because of heat losses and friction. Such processes are often referred as dissipative 

processes or dissipation. In that sense, our model is an analogue to numerous physical models 

including the model of solid with inhomogeneous inclusions. Thus we use the term “dissipation” 

instead of economic terms like “depreciation” in order to stress that economic systems are 

similar to physical systems. 

The model presents functional dependence for continuous evolution of all personal 

incomes in an economic system and attributes real economic growth to personal efforts to earn 

money. Such an approach links the model to the roots of economic activity because the only 

source of any income or wealth consists in personal efforts. Due to natural interactions and 

inevitable economic ranking in any society personal incomes are distributed not in a random, but 

in predefined and fixed way, and actual PIDs demonstrate a simple functional dependence on 

real economic growth. 

Figure 1.3.1 illustrates schematically some principal features of personal income 

distribution in the USA, which undoubtedly has to be addressed in any model of income 

distribution. These features were a part of the empirical intuition behind our model. The Figure 

displays the dependence of mean income (averaged in 10-year intervals) on work experience in 

the USA in 2002. The empirical dependence is normalized to its peak value and is approximated 

by two functions: (1-exp(-α0t)) (α0=0.085) in the interval of work experience  from 0 to 39 

years, and by (1-exp(-α0Tcr))exp(-α1t) (α1=0.06) above Tcr=39 years. In spite of a good 

description of the observations, this approximation does not present a correct model because it 
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does not distinguish between people with different incomes and does not provide any driving 

force for the evolution of personal income. This is an example of the approximation often used 

instead of “first principle” model. It demonstrates, however, potential simplicity of the processes 

underlying income distribution, which lead to simple functional dependencies.  

The microeconomic model presented in this paragraph takes the advantage of recent 

accurate measurements of personal income distribution in the USA. There was no such data for 

the period before 1947, and individual incomes were thought to be unpredictable. This 

unpredictability is valid for an individual, if to trace his/her income evolution in time. But any 

individual can only follow one of the predefined trajectories predicted by the model. If 

somebody suddenly jumps to a new and higher income value some other individual with the 

income value equal to the new income of the first person has to drop to first person’s income 

value in order to retain fixed PID. One can treat this observation as a manifestation of a 

conservation law for PID – relative number of positions with given income is conserved. This is 

similar to the level’s degeneracy in quantum physics. 

 Conventional economic models of income distribution lack these natural roots aiming at 

artificial division of total personal income into employee compensation and corporate profits 

with further (again artificial) separation into groups attributed to various types of economic 

activity: consumption, savings, and investment. Relative importance of these parts separated by 

force varies with time depending on individual decisions to split a personal income into these 

three portions. This decision is based, however, only on the individual effort to earn income and 

can be random in the sense of incomplete information and wrong interpretation. That’s why one 

can not construct a precise model for the economic evolution expressed in terms of these 

artificial parameters and any economic policy based on a full control of these parameters 

ultimately fails. There is nothing except the personal income production in any developed 

economy and the production volume expressed in monetary units is predefined.  The PID 

evolution can be exactly predicted to the extent of the accuracy of population counting and GDP 

measurements as we demonstrate in the following paragraphs. 

Principal assumption of the microeconomic model is that every person above fourteen 

years of age has a capability to work or earn money using some means, which can be a job, bank 

interest, stocks, interfamily transfers, etc. An almost complete list of the means is available in the 

US Census Bureau technical documentation (2002) as the sources of income are included in the 

survey list. Some important sources of income are not included, however, what results in the 

observed discrepancy between aggregate (gross) personal income, GPI, and GDI. 

 Here we introduce the model as described by Kitov (2005a). The rate of income, i.e. net 

income a person earns per unit time, is proportional to her/his capability to earn money, σ. The 
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person is not isolated from the surrounding world and the work (money) s/he produces dissipates 

through interaction with the outside world, decreasing resulting income rate. The counteraction 

of external agents, which might be people or any other externalities, determines the price of 

goods and services a person creates. The price depends not on some absolute measure of quality 

of the goods but on the aggregate opinion of the surrounding people on relative merits 

(expressed in monetary units) of the producers, not goods. For example, the magic of famous 

brands provides a significant increase in incomes for their owners without proportional 

superiority in quality because people appreciate the creators not goods. As a whole, an 

equilibrium system of prices arises from aggregate opinions on relative merits of each and every 

person not from the physical quantities and qualities of goods and services. Personal incomes are 

ranked in some fixed hierarchy and, when expressed in monetary units, the hierarchy is 

transformed in a dynamic system of prices. Since the hierarchy of incomes is fixed, the amounts 

and qualities of goods can only reorder individuals not change the final aggregate price of 

everything produced – GDP.    

Analogously to many cases observed in natural sciences, the rate of dissipation is 

proportional to the attained income (per unit time) level and inversely proportional to the size of 

the means used to earn the money, Λ. Bulk heating of a body accompanied by cooling through 

its surface is an analogue. For a uniform distribution of heating sources, the energy released in a 

body is proportional to its volume or the cube of characteristic linear size and the energy lost 

through its surface is proportional to the square of the linear size. In relative terms, the energy 

balance or the ratio of cooling and heating is inversely proportional to the linear size. As a result, 

a larger body undergoes a faster heating because loses relatively less energy and also reaches a 

higher equilibrium temperature. In line with this consideration, one can write an ordinary 

differential equation for the changing rate of income earned by a person in the following form: 

 

dM(t)/dt= σ(t)-αM(t)/Λ(t)                                              (1.3.1) 

 

where M(t) is the rate of money income denominated in dollars per year [$/y], t is the work 

experience expressed in years [y], σ(t) is the capability to earn money [$/y2]; and α is the 

dissipation coefficient also expressed in [$/(y2)]. The size of earning means, Λ, is expressed in 

[$/y]. General solution of equation (1), if σ(t) and Λ(t) are considered to be constant (as shown 

later these two variables evolve very slowly with time), is as follows: 

 

M(t) = (σ/α)Λ(1-exp(-αt/Λ))                                       (1.3.2) 
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In quantitative modelling, we integrate (1) numerically in order to include the effects of the 

changing σ(t) and Λ(t). Equations (1.3.2) through (1.3.4) are derived and discussed in detail 

below to demonstrate some principal features of the proposed model. These equations represent 

some particular solutions of (1.3.1), where measured change in σ(t) and Λ(t) in all terms of 

(1.3.1) is neglected. 

One can introduce the concept of a modified capability to earn money as a dimensionless 

variable Σ(t)=σ(t)/α.  .  .  .  Absolute value of the modified capability, Σ(t), and the size of earning 

means evolves with time as the square root of real GDP per capita: 

  

Σ(t) = Σ(t0)sqrt[GDP(t)/GDP(t0)] 

 and  

Λ(t) = Λ(t0)sqrt[GDP(t)/GDP(t0)] , 

 

where GDP(t0) and GDP(t) are per capita values at the start point of the modelling, t0, and at 

time t, respectively. Then the capacity of a “theoretical” person to earn money, defined as 

Σ(t)Λ(t), evolves with time as real GDP per capita. Effectively, equation (1.3.2) states that the 

evolution in time of a personal income rate depends only on personal capability to earn money, 

the size of means used to earn money, and economic growth. The latter factor is common for 

everybody and does not affect relative distribution of personal incomes just the overall level.    

The modified capability to earn money, Σ(t), and the size of earning means, Λ(t), 

obviously have positive minimum values among all individuals in a given economy, Σ BminB(t) and 

ΛBminB(t), respectively. One can now introduce relative and dimensionless values of the defining 

variables in the following way: S(t)=Σ(t)/Σ BminB(t) and L(t)=Λ(t)/ΛBminB(t).  

From a calibration procedure described below, a fundamental assumption is made that 

possible relative values of S(t0) and L(t0) can be represented as a sequence of integer numbers 

from 2 to 30, i.e. only 29 different integer values of the relative S(t0) and L(t0) are available: 

SB1B=2,…, SB29B=30; LB2B=2,…, LB29B=30. The largest possible relative value of 

SBmaxB=SB29B=30=LBmaxB=L B29B is only 15 (=30/2) times larger than the smallest possible value S=SB1B 

and L=L B1B (in the model, the minimum values ΛBminB and Σ BminB are chosen to be two times smaller 

than the smallest observed values of ΛB1B and Σ B1B). Because the absolute values of variables Λi, Σi, 

ΛBminB, and Σ BminB evolve in time according to the same law, the relative and dimensionless variables 

LBi B(t) and SBi B(t), i=1,…,29, retain the same discrete distribution. This means that the distribution of 

relative capability to earn money and the size of earning means is fixed as a whole over calendar 

years and also over ages. 
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Figure 1.3.2 depicts several examples of the evolution of personal income. The curves are 

normalized to the maximum income possible in the model - SL=30x30=900, and dissipation 

factor α====0.07.  The predicted income for a person using a means of dimensionless size L=2/30 

and having a dimensionless capability to earn money S=2/30 approaches its maximum possible 

level of 4/302 (relative to the overall maximum possible of 302/302=1) just in few years after the 

start of work. During the rest of her/his life, the person has the same relative personal income, 

and the absolute level of the income increases proportionally to the growth of per capita GDP. 

 In the case where S=15/30 and L=15/30, a longer time is necessary for a person to 

approach the maximum potential income equal to 152/302. This person reaches 95% of the 

potential income in 10 to 15 years from the start of work. Then, almost no change in relative 

income is observed as in the case of the lower income person. 

 It is interesting to compare two cases with the same potential maximum level of income 

but different L values.  These cases are S=2/30, L=30/30; and S=30/30, L=2/30.  Corresponding 

curves in Figure 1.3.2 reach the same level in 40 years and approximately 3 years, respectively. 

Hence, the earning means’ size plays a key role in the evolution of theoretical PID. This 

parameter defines the change of effective dissipation rate in (1.3.2), because α  is constant. Thus, 

effective time constant in (1.3.2) is Λ/α . The larger is the effective time constant, the longer time 

is needed to reach the same relative level of income. So, increasing value of L leads to slower 

relative income growth.  

Now, one can carry out appropriate substitutions in (1.3.2) and normalize the equation to 

the maximum values SBmaxB and LBmaxB. The normalized equation for the rate of income, MBij B(t), for a 

person with capability, SBi B and the size of earning means, LBj B is as follows:  

 

MBij B(t)/(SBmaxBLBmaxB ) = 

= (Σ BminB ΛBminB)(SBi B/SBmaxB)(LBj B/LBmaxB)(1 - exp(-(α/ΛB minB LBmaxB)t/(LBj B/LBmaxB)))   (1.3.3) 

 

or 

M' Bij B(t) =Σ BminB(t)ΛBminB(t)S'Bi BL' Bj B{1 - exp[-(1/ΛBminB)(α't/L' Bj B)]}                     (1.3.3') 

 

where M' Bij B(t)=M Bij B(t)/(SBmaxBLBmaxB); S'Bi B=(SBi B/SBmaxB); L' Bj B=(L Bj B/LBmaxB); α'=α/LBmaxB; SBmaxB=30, and LBmaxB=30. 

Below we omit the prime indices. The term Σ BminB(t)ΛBminB(t) corresponds to the total (cumulative) 

growth of GDP per capita from the start point of a personal work experience, t (t0=0), and is 

different for different start years. This term might be considered as a coefficient defined for 

every single year of work experience because this is a predefined external variable. Thus, one 

can always measure personal incomes in units Σ BminB(t0)ΛBminB(t0). Then (1.3.3') becomes a 



 24 

dimensionless one and the coefficient changes from 1.0 as GDP per capita evolves relative to 

start year. 

Equation (1.3.3’) represents the rate of income for a person with the defining parameters 

SBi B and LBj B and work experience t relative to the maximum possible personal income rate, which is 

obtained by a person with SB29B=30/30=1 and LB29B=30/30=1 at the same work experience t. The 

term 1/ΛBminB in the exponential term evolves inversely proportional to the square root of GDP per 

capita. This is the key term for the evolution of personal incomes, which accounts for the 

differences between the start years of work experience. Numerical value of α/ΛBminB is obtained by 

calibration carried out for the start year of corresponding modelling. This calibration assumes 

that ΛBminB(t0)=1 (and Σ BminB(t0)=1 as well) at the start point of the modelling and only the 

dimensionless dissipation factor α  has to be empirically determined. In this case, absolute value 

of α depends on the start year of modelling. 

This is a good place to speculate on the sufficient size of economy in terms of population, 

which follows up from the distribution of earning capability and means size. There are 841 

(=29x29) different states or income trajectories available for people in a given economy. It is 

natural to assume that each state should be occupied by at least 841 persons, each of them having 

an equal chance to join any other state. So, to fill all possible states 841x841=707281 people are 

needed. This number of people is related to the same birth year.  There are about 50 different 

years of age in a standard working age population in developed countries. Then the number of 

people in the sufficient size economy is estimated as ~35,000,000. This is a very crude estimate, 

but it gives a useful threshold discriminating small and large economies. Working age 

population is such self-consistent economies as Germany, France, the UK, Italy, Spain scatters 

around this level. The economies are characterized by a practically full set of internally produced 

goods and services, which provides economic independence and sustainability.  Personal income 

distribution in these countries should be driven by the uniform distribution of capabilities and 

earning means. In other words, income distribution in these countries should mimic that in the 

United States. Thorough investigations are needed in this field, although.   

 The world’s biggest economies, the US and Japan, are essentially bigger than the 

threshold and must be characterized by the best fit between the modelled and observed personal 

income distribution. This conclusion follows from the number of people in each single year of 

age group reaching 4,500,000 and 1,700,000, respectively. The overwhelming number makes the 

distribution of people among 841 available states more uniform or less volatile.  

In smaller economies, say less than 1,000,000 to 5,000,000 people, there are not enough 

people to fill all income states uniformly and higher disparity between theoretically equal states 

is observed. As a result, personal income distribution in such smaller countries might be biased 
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relative to that predicted by the model. In many cases social policy aimed at a lower income 

(economic) inequality. However, these countries are on the brink of self-consistency and 

sustainability. In many cases they depend on larger neighbours or are focused on few products. 

Vulnerability is a common consequence.  

As Figure 1.3.1 indicates, money earning capacity, SBi BL Bj B, drops to zero at some critical 

time, TBcr, in any personal work experience history and the solution of (1) becomes as follows: 

 

Mij B(t) = 

MBij B(Tcr)exp(-α1(t-Tcr)/ ΛBminB LBj B) =    (1.3.4) 

= {Σ BminB(t)ΛBminB(t)SBi BLBj B(1-exp(-αTcr/ΛBminB LBj B))} exp(-α1(t-Tcr)/ ΛBminB LBj B)   

 

The first term is equal to the level of income rate attained by the person at time TBcrB, and the 

second term represents an exponential decay of the income rate for work experience above TBcr,, . 

The latter variable also evolves in time as the square root of GDP per capita:  

 

Tcr(t) =  Tcr(t0)sqrt(GDP(t)/GDP(t0))   (1.3.5) 

 

The exponent index α1  is different from α and varies with time. It was found that the 

exponential decrease of income rate above Tcr results in the same relative (as reduced to the 

maximum income for this calendar year) income rate level at the same age. It means that the 

index can be obtained according to the following relationship: 

 

α1 = -ln(Mr )/(Ar –Tcr)     (1.3.6) 

 

where Mr is the relative level of income rate at the reference age Ar, both are effectively constant. 

Thus, when current age reaches Ar the maximum possible income rate Mij (for i= 29 and j= 29) 

drops to Mr. Income rates for other values of i and j are defined by (1.4.4). For the period 

between 1994 and 2002, empirical estimates are as follows: Mr =0.72 and Ar=64 years. In our 

model, the exponential roll-off observed for the mean income in Figure 1.3.1 corresponds to a 

zero-value work applied by individuals with work experience beyond TBcrB to earn money. People 

do not exercise any effort to produce income starting from some predefined (but changing) point 

in time, TBcrB, and enjoy exponential decay of their incomes. It is important that this critical work 

experience is below the age or retirement and was even lower in the past.  

A physical analogue of such exponential decay is cooling of a body, for example - the 

Earth. When all sources of internal heating (gravitational, rotational, and radioactive decay) 
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disappear, the Earth only will be loosing the accumulated internal heat through the surface 

before reaching an equilibrium temperature with the outer space. This process of cooling is also 

described by an exponential decay because the heat flux from the Earth is proportional to the 

difference of the temperatures between the Earth’s surface and the outer space.  

The probability for a person to get an earning means of relative size LBj B is constant over 

all 29 discrete values of the size. The same is valid for SBi B, i.e. all people of 15 years of age and 

above are distributed evenly among the 29 groups for the capability to earn money. Thus, the 

capacity for a person to earn money is distributed over working age population as the product of 

independently distributed SBi B and LBj B - SBi BLBj B= {2×2/900, 2×3/900, …, 2×30/900, 3×2/900, …, 

3×30/900, …, 30×30/900}. There are only 841 (=29x29) values of the normalized capacity 

available between 4/900 and 900/900. Some of these cases seem to be degenerate (for example, 

2x30=3x20=4x15= …= 30x2), but as discussed above, all of them define different time histories 

according to (1.3.3’), where LBj B is also present in the exponential term. The discrete spectrum of 

the capabilities and sizes of earning means between 2 and 29 is obtained by a trail-and-error 

method. The values were varied in a wide range in order to obtain a good agreement between 

observed and predicted PIDs. Figure 1.3.3 illustrates the final result of the variation – the 

oscillations in the observed PIDs for 1994, 1997, and 2001 are well represented by the model in 

the low-income zone. One can test that other discrete spectra associated with different 

combinations of maximum S and L do not provide the same accuracy of the description of peaks 

and troughs and actual roll-off of the observed PIDs.  Also the discrete and even distribution of 

the two defining variables is very simple and natural.  

In reality, no individual income trajectory is predefined, but the model puts a strong 

constrain that it can only be chosen from the set of the 841 predefined individual future for each 

single year of birth.  

 It is not possible to quantitatively estimate the value of dissipation factor, α, , , , using some 

independent measurements. Instead, a standard calibration procedure is applied. By definition, 

the maximum relative value of LBj B (LB29B) is equal to 1.0 at the start point of the studied period, tB0B. 

The value of ΛBminB(t0) is also assumed to be 1.0. Thus, one can vary α in order to match predicted 

and observed PIDs, and the best-fit value of α    is used for further predictions. Figure 1.3.4 

presents some examples of income evolution for various effective values of α in the range from 

0.09 to 0.04. This range is approximately the same as obtained in the modelling the PID for the 

time period from 1960 to 2002 (Kitov, 2005a). Actual initial value of α  is found to be 0.086 for 

tB0B=1960. The value of ΛBminB changes during this period from 1.0 to 1.49 according to the square 

root of real GDP per capita growth. The cumulative growth of real GDP per capita from 1960 to 

2002 is 2.22 times.  
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Because the exponential term in (1.3.2) includes the size of earning means growing as the 

root square of real GDP per capita, longer and longer time is necessary for a person with the 

maximum relative values SB29B and LB29B to reach the maximum income rate. There is a critical level 

of income rate, however, which separates two income zones with different properties. This level 

is called the Pareto threshold of income. Figure 1.3.5 illustrates the increase in time necessary to 

reach the Pareto threshold depending on the decrease in dissipation factor α. For α=0.1, the time 

is about 6 years, and for the current value of 0.057 – 10 years. Effective dissipation will decrease 

in future according to GDP per capita growth. Overall, this process results in fewer and fewer 

young people to be able to reach the Pareto distribution, i.e. to become rich.  

Below the Pareto threshold, in the sub-critical income zone, observed PIDs are accurately 

predicted by the microeconomic model for the evolution of individual income. One can crudely 

approximate the PID in this zone by an exponent with a small negative index. Above the Pareto 

threshold, in the supercritical income zone, the PIDs are governed by a power (equivalent to the 

Pareto) law. The presence of the high-income zone with the Pareto distribution allows any 

person reaching the threshold to obtain any income in the distribution, with rapidly decreasing 

probability, however. 

The mechanisms driving the power law distribution and defining the threshold are not 

well understood not only in economics but also in physics as well for similar transitions. The 

absence of any explicit description of the driving mechanisms does not prohibit the usage of well 

established empirical properties of the Pareto income distribution as measured in the USA – 

constancy of the exponential index through time and the evolution of the threshold in sync with 

the cumulative value of real GDP per capita (Kitov, 2005a, 2005c). Therefore we include the 

Pareto distribution with empirically determined parameters in our model for the description of 

the PID above actual Pareto threshold. The usage of a power law distribution of incomes implies 

that we do not need to follow each and every individual income above the Pareto threshold as we 

did in the sub-critical income zone. All we need to know the number of people in the Pareto 

zone, i.e. the number of people with incomes above the Pareto threshold, as defined by 

relationships (1.3.3) and (1.3.4). 

The initial dimensionless Pareto threshold is found to be MBPB(t0)=0.43 and it evolves in 

time as real GDP per capita: 

 

MBP(t)=M BP (t0)[GDP(t)/GDP(t0)]                                     (1.3.6) 

 

When a personal income reaches the Pareto threshold, it undergoes a transformation and obtains 

a new quality to reach any income with a probability described by the power law distribution. 
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This approach is similar to that extensively used in natural sciences involving self-organized 

criticality. Due to the exponential (with a small negative index) character of the growth of 

income rate the number of people with incomes distributed according to the Pareto law is very 

sensitive to the threshold value, but people with high enough SBi B and LBj can eventually reach the 

threshold and obtain an opportunity to become rich, i.e. to occupy a position at the high-income 

zone, as shown in Figure 1.3.6. It is illustrative that nobody with both S and L below 20 can 

reach the threshold. As measured, only 10 per cent of total population is eventually able to reach 

the threshold, however. This portion exactly defines the dimensionless threshold in the model.  

There is another feature of the observed PIDs, which has to be addressed in the model. 

Actual income distributions span the range from $0 to several hundred million dollars, and the 

theoretical distribution extends only from $0 to about $100,000. The power law distribution 

starts from the Pareto threshold somewhere between $40,000 and $60,000. Above the threshold, 

the theoretical and measured distributions should diverge. What is the exact threshold? Figure 

1.3.7 presents the predicted and observed dependence on income of the cumulative (normalized) 

number of people with incomes below given level in 1999. The curves start at the point (0,0) and 

practically coincide up to $54K since our model accurately describes the low-income branch of 

the PID. This value is the determined absolute value of the Pareto threshold for 1999, which 

corresponds to the dimensionless Pareto threshold value of 0.951 in 1999 and 0.430 at the start 

point of the modelling in 1960. 

Above the Pareto threshold, the predicted distribution drops with an increasing rate to 

zero at about $100,000. This limit corresponds to the absence of the theoretical capacity to earn 

money, SBi BLBj B, above 1.0. The dimensionless units can be converted into actual 2000 dollars by 

multiplying factor of $120,000, i.e. one dimensionless unit costs $120,000. Actual and 

theoretical absolute income intervals are different above the Pareto threshold but contain the 

same portion of total population (~10%). Thus, the total amount of money earned by people in 

the Pareto distribution income zone, i.e. the sum of all personal incomes, differs in the real and 

theoretical cases. 

Here one can introduce a concept distinguishing below-threshold (subcritical) and above-

threshold (supercritical) behavior of the income earners. Using analogues from statistical 

physical, Yakovenko (2003) associates the subcritical interval for personal incomes with the 

Boltzmann-Gibbs law and the extra income in the Pareto zone with the Bose condensate. In the 

framework of geomechanics, as adapted in the modelling of personal income distribution (Kitov, 

2005a), one can distinguish between two regimes of tectonic energy release (Rodionov et al., 

1982) – slow subcritical dissipation on inhomogenieties of various sizes and fast energy release 
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in earthquakes. The latter process is more efficient in terms of tectonic energy dissipation. The 

frequency distribution of earthquake sizes also obeys the Pareto power law. 

If to sum all personal incomes in the Pareto zone, then the net actual income is 1.33 times 

larger than that would be earned if incomes were distributed according to the theoretical curve, 

in which every income is proportional to the capacity to earn money. This affectively means that 

in average every person in the Pareto zone earns 1.33 times more money than prescribed by the 

model. Figure 1.3.8 illustrates the concept. Two curves in the Figure correspond to the 

theoretical and observed total income received by people with incomes below a given value, i.e. 

the sum of all personal incomes from a given value to zero income. The theoretical curve is not 

corrected for a 33% increase for each personal income above the Pareto threshold. 

This multiplication factor is sensitive to the definition of the Pareto threshold. In order to 

match the theoretical and observed total amount of the money earned in the supercritical zone 

one has to multiply every theoretical personal income in the zone by a factor of 1.33. This 

equalizes the theoretical and observed number of people and incomes in both zones: sub- and 

supercritical. It seems also reasonable to assume that the observed difference in distributions in 

the zones is reflected by some basic difference in the capability to earn money. 

 The model is finalized. An individual income grows in time according to relationship 

(1.3.3’) until some critical age TBcr(t)B. Above TBcrB, the income rate is exponentially decreasing 

according to (1.3.4). When the income is above the Pareto threshold it gains 33% of its 

theoretical value in order to fit the overall income above the Pareto threshold. Above the Pareto 

threshold, incomes are distributed according to a power law with an index to be determined 

empirically. It is obvious that if a personal income has not reached the Pareto threshold before 

TBcrB, it never reaches the threshold because it starts to decrease exponentially.  A personal income 

above the Pareto threshold at critical work experience TBcr starts to decrease and can reach the 

Pareto threshold at some point. Then it loses its extra 33% value. 

 All people above 14 years of age are divided into 841 groups according to their capacity 

to earn money. Any new generation has the same distribution of LBj B and SBi B as previous ones, but 

different start values of ΛBmin Band Σ BminB, which evolve with real GDP per capita. Thus, actual shape 

of PIDs depends on the single year of age population distribution. The population age structure 

is an external parameter evolving according to its own rules. The critical work experience, TBcrB(t) 

also grows proportionally to the square root of per capita real GDP. Based on independent 

measurements of population age distribution and GDP one can model the evolution of the PID 

below and above the Pareto threshold. 

 Because of the reverted logic of presentation, results are presented later than the model 

itself. In the following paragraphs various data sets related to personal income distribution are 
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used for calibration of the model, i.e. for obtaining accurate estimates of defining parameters, 

and for validation as well. An adequate model has to predict the evolution of observed PIDs in 

the past, i.e. before the start year of modelling, and also in the future. 
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§1.4. Modelling the overall personal income distribution in the US between 1994 and 2002 

 

The essence of a quantitative model consists in the description of a set of variables and the 

prediction of their behavior beyond the period covered by data. The higher is the accuracy of 

description and prediction, the more reliable is the model. In order to prove the adequacy, our 

model has to describe several important aspects of   income distribution. Among them are: the 

evolution of PID over calendar time, the dependence of individual income on work experience, 

the time history  of the number of people in various income bins. The data counted in the CPS 

are aggregated in various ways. This paragraph is devoted to quantitative modelling of the 

overall, i.e. aggregated over age in given bins, personal income distribution in the US from 1994 

to 2002.  

 We have formally introduced the model for the evolution of personal income distribution 

depending on economic growth in §1.3. PID is one of the key economic parameters.  Despite 

some principal uncertainties in the data set on personal incomes, it represents the longest and the 

most detailed and accurate source of information on the distribution of income (individual, 

family, household) for a quantitative analysis and modelling. (As discussed in §1.2, other source 

provide estimates, which either cover a shorter period or less resolved, like the BEA gross 

personal income estimates.) Original income distributions, i.e. the number of people in given 

income bins, for even years between 1994 and 2002 are displayed in Figure 1.4.1. The width of 

corresponding bins is fixed to 2500 current dollars, i.e. it is not corrected for inflation. For the 

sake of clarity, the numbers of people with income inside original $2500-wide income intervals 

are aggregated into $10,000-wide intervals. The distributions show an increasing number of 

people in the fixed bins with income above ~$20,000 and a decreasing number below this value. 

(Notice the lin-log coordinates.) This is an expected result of population growth, real economic 

growth, and inflation. The first of the three processes potentially leads to an upward 

displacement with time of the curves as a whole. The displacement is uniform (in relative terms) 

when the population added every year is distributed over income in the same way as before, i.e. 

when the PID of the added population mimics the original PID. The US population grows at a 

rate of approximately 1% per year due to the excess of births over deaths and positive 

immigration. 

 The latter two processes result in the change of the shape of the distribution. Inflation (as 

represented by GDP deflator) in the US between 1994 and 2002 was measured between 1.2% in 

1998 and 2.4% in 2001. The effect of inflation consists in higher nominal incomes potentially 

obtained without real economic growth. Because population was counted in fixed income bins 

during the entire period, one can expect that some people from lower income bins were 
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eventually lifted into higher income bins. Moreover, an increasing portion of people were 

moving into the zone above the highest income of the survey - $100,000. These people find 

themselves outside the detailed counting scheme and one cannot calculate population density, i.e. 

the number of people in a given bin divided by its width, because the upper end of the income 

scale is open.  With time, this effect became so prominent that it forced the Census Bureau to 

introduce new income intervals for higher incomes after 2000. Because of much lower 

population density at the highest incomes, these intervals are $50,000-wide, i.e. twenty times 

wider than the standard bins. Here we observed another deficiency in the CB’s reporting 

methodology – it does not retain the resolution of PID uniform through time.      

 With respect to the evolution of PID in the United States, real economic growth leads to 

an effect similar to that caused by inflation. The increment in the volume of goods and services 

produced by the US economy results in an increase in the gross personal income, GPI, which 

according to our definition must be equal to GDP (GDP=GPI). People earn more and drift with 

time in the direction of higher incomes. In some rare years of economic contraction, personal 

incomes drop and some people may fall back into lower income bins. 

 An aggregate effect of these three processes divide the distributions into two zones – 

lower and above mean income, as seen in Figure 1.4.1. The mean income increases from 

$23,278 in 1994 to $32,222 in 2002 (in current dollars). So, the turning point between these two 

zones is somewhere between these values. 

 The next step of our analysis is to normalize the original PIDs to several aggregate 

values. A natural normalization is associated with total population. Such representation 

suppresses the effect of population change and reduces the original PIDs to population density 

distributions, (PDD). These PDDs can be considered as probability density functions (pdf) 

because the integral of a PDD over income, or the area below the PDD curve, is equal to unit. As 

shown later on, these density distributions better characterize the hierarchy of personal incomes 

in the US. Figure 1.4.2 illustrates the evolution of the PDD during the period between 1994 and 

2002. 

 As often happens in scientific research associated with empirical data, a trail-and-error 

method enhanced by some new conceptual assumptions provides a fruitful approach. However, 

the underlying logic of this new approach is opposite to the logic of the representation of 

obtained results. One cannot know the final result before the completion of the search, but knows 

exactly the final result when reports. In fact, only the final result really matters. But it became a 

standard to present all principal stages of corresponding search procedure and most important 

outcomes.  
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 In order to find an invariant in the US PIDs, we have conducted a series of corrections to 

the original PIDs and related PDDs. The information on the growth rate of real and nominal 

GDP and the changes in total population in the US has been used to reduce the distributions to 

those in 1994. A well-known procedure of such a reduction is the adjustment for inflation. Since 

the March Supplement of the CPS gives the number of people with incomes in fixed $2500-wide 

bins one has first to correct the enumerated distributions for the change in dollar value. This 

correction can be implemented as the contraction of income scale by a factor, which entirely 

compensates the extension caused by inflation. For example, in order to correct for 10 per cent 

inflation, one has to compress the income scale by a factor 1.1. Thus, the bin between $50,000 

and $52,500 is transformed into the bin between $45,455 and $47,727, with its center shifted 

from $51,125 to $46,591. Both bins are effectively equivalent in terms that $50,000 income in a 

given year has a value equivalent to $45,455 in the previous year, when the rate of price inflation 

is 10% per year.  Hereafter we associate measured values of population density with the centers 

of relevant income bins. For nonlinear functions approximating actual PDDs, this is not a 

quantitatively accurate procedure. Estimated population densities should be associated with the 

incomes, which provide the exact values of the approximated PDDs.   This procedure will be 

described in §1.8, where the Gini coefficient is modelled. However, for the purpose of 

illustration and comparison the difference between the centers and exact incomes is negligible.  

 The original PID for 1994 is the starting and reference distribution. The distributions for 

the following years are corrected for inflation, as represented by GDP deflator. Obviously, the 

corrected curves should reveal the change over time in real PIDs. Figure 1.4.3 displays some 

results of the correction for inflation between 1994 and 2002 as applied to the population density 

distributions. These PDDs demonstrate an increase in the portion of people with higher real 

incomes. This observation is consistent with the positive growth in real GDP during the studied 

period. Due to weak real GDP growth in 2001, the curve for 2000 is very close to that for 2002. 

One can observe the contraction of income scale resulted from the corrections described above - 

the centers of the bins corrected for inflation are drifting to the center of coordinates with time. 

 The same correction procedure has been applied to the changes associated with nominal 

and real economic growth, both total and per capita. When there is no total (working age) 

population change and inflation, the correction for real economic growth could potentially reveal 

the changes in the distribution of gross personal income in the same (in number but not in 

individual representation) population. Figures 1.4.4 and 1.4.5 compare the effects of the 

correction for the growth in nominal GDP on the original personal income distribution, and the 

correction for the growth in nominal GDP per capita on corresponding population density 

distribution. Both corrections address the question of the redistribution of the increasing income 
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generated by inflation and real economic growth over the growing population.  Is the increment 

in nominal and real volume of money distributed evenly (in relative terms) among income 

groups or some selected groups benefit from the redistribution? This is a political question as 

well, but first it must be answered using quantitative estimates provided by the Census Bureau.  

 The curves representing PIDs in Figure 1.4.4 are practically parallel. This indicates that 

the increase in working age population forces only an upward movement of the 1994 curve. 

Because these curves are parallel, the relative increase in the number of people in every income 

bin is the same, and the distribution of the income increment among the newcomers is exactly 

the same as among experienced people. In other words, the PID in the US is characterized by the 

existence of a hierarchy, and this hierarchy is rigid over time and generations. This is a 

fundamental conclusion. It is better illustrated in Figure 1.4.5, where the population density 

curves for the studied years practically coincide. It means that equivalent portions of total 

(working age) population always receive equal portions of gross personal income. This fixed 

income distribution implies the constancy of income inequality between 1994 and 2002. In §1.8, 

we will extend this conclusion to the period between 1947 and 2006.  

 It is important that the hierarchy is observed in both branches of actual (and modelled) 

PIDs: sub- and supercritical one, as characterized by quasi-exponential and power law 

distributions. Figure 1.4.6 depicts all PDDs between 1994 and 2002 (corrected for the growth in 

nominal GDP per capita) and introduces two nonlinear trend lines. This graph also illustrates the 

presence of a rigid hierarchy.   

 Using the set of defining equations developed in §1.3, we start the modelling of the 

overall PIDs with some simple examples. Our initial model is constrained to reproduce all 

aspects of actual observations at any level of detalization, but only aggregated values are 

important at this stage. The model is characterized by a number of external and internal 

parameters. The external parameters include the growth rate of GDP: both real and nominal, total 

and per capita, and the distribution of population over (single year of) age. The internal defining 

parameters of the model are the initial critical work experience, Tcr(t0), and the initial dissipation 

factor, α.34The34former parameter can34be34estimated using some independent34 observations 

and the latter one - only by calibration, i.e. by trial-and-error.   

 Various estimates of the growth rate of GDP between 1950 and 2002 are presented in 

Table 1.4.1. Total increase of the nominal and real GDP during this period is 35.7 and 5.7, 

respectively. Relevant GDP per capita, corrected for the difference between total population and 

that above 15 years of age, changed by a factor of 17.5 and 2.5, respectively. The latter value 

indicates that the real GDP per head for working age population changed only by a factor of 2.5 
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during the fifty two years after 1950. It is 2.28 times less than the total change in the real GDP. 

Actual economic development is not as fast as seems from some economic news. 

 Thus, the observed growth of real GDP is half due to the population growth or extensive 

growth. The proposed model includes the distribution of working age population over age as a 

key parameter defining fine and aggregated characteristics of personal income distribution. 

Figure 1.4.7 depicts the single-year-of-age population estimates for some selected calendar years 

as obtained from the US Census Bureau (2004b). Total population in the United States grew 

eventually from 152,200,000 in 1950 to 286,200,000 in 2001. Total population of 16 years of 

age and over grew during the same period from 111,300,000 to 225,670,000.  

As found above, the increase in total population results only in a parallel shift of the PIDs 

for the years between 1994 and 2002. What important is the change in the portion of population 

with given age through time. Figure 1.4.8 displays the same population distributions as in Figure 

1.4.7, but normalized to the largest population for all ages. The age of the peak number evolves 

over time and was 45 years in 2001. The population peaked at this age gives the largest share of 

the total population with almost the highest attained average income. In other words, the current 

age distribution in the US corresponds to a very effective case for income earning – a larger 

portion of working age population receives almost the maximum possible income, as defined by 

our model. Effectively, people between 45 and 55 years of age are closing the critical age when 

the increase in mean income turns to the exponential fall (see Figure 1.3.1).  

When the age peak surpasses the (predefined by age structure and the initial level of GDP 

per capita, as shown in Chapter 2) critical working experience, Tcr(t), which is also growing with 

time, these favourable conditions for income earning will start to deteriorate, but not severely. 

There will be only a 10% drop in the share of population with the peak income in the next 15 

years. Five years after 2002, however, are marvelous for an increase in gross personal income 

extra to that associated with the age distributions in the past. Figures 1.4.7 and 1.4.8 demonstrate 

the importance of the changes in the age distribution for our model. As a thought experiment one 

could imagine that all population has the same year of birth and track the evolution of mean 

income over time. In the beginning, when all people are 16 years of age and start working career, 

the mean income is zero. At Tcr, it finds its peak, and then exponentially decays with time. The 

age distribution smashes this pure evolutionary pattern by mixing a large number of similar 

curves with various time shifts.  

It is worth noting in this paragraph that there are visible variations in the population 

counts within 10-year age windows, which are used by the US Census Bureau for averaging 

personal income readings. This can cause substantial variations in the average income estimates, 

especially in the youngest age group, where the personal income increases exponentially with 
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age.  Fortunately, the estimates of single year of age population are available from 1900, with a 

varying accuracy. We estimate the accuracy of the population counts for single years of age as 

5% to 7%.  In wider age intervals, this accuracy is higher and may reach 1% to 2%.  

 In the model, the population of each single year of age for each calendar year (in the 

studied period) is divided by the number of different income states. Resulting values represent 

the portions of total population with the same history of income evolution, because only 841 

different combinations of the product of capability to earn money, S, and means to earn money, 

L, are available. One should bear in mind that combinations (S=2, L=30) and (S=30, L=2) are 

quite different due to the fact that the means size L defines the time constant of dissipation, α/L. 

People in a given group have the same income equal to the product of the current level of GDP 

per capita (relative to the start year) and time dependent functions in (1.3.3’) and (1.3.4). For 

example, the age group of 50+ year-olds has work experience of (t-t0=) 35+ years. Current value 

of L is the size of real earning means in the group relative to the initial value.  Actually, there are 

as many age groups as listed in the tables published by the US Census Bureau. Because of the 

uncertainty associated with the enumeration in elderly group the model includes only ages from 

16 to 75 years. Admittedly, the number of elderly is not large and is prone to strong fluctuations 

due to the changes in the population controls. This limitation can potentially affect the modelling 

of the overall personal income distribution: some people of working age and their incomes 

counted by the Census Bureau are not included in the model. 

 The internal parameters Tcr(t) and α(t) depend on time. To estimate their values by trial-

and-error method, a series of calculations for various time intervals between 1950 and 2002 has 

been conducted to fit the measured PIDs. For 1950 as a starting point, the best fit estimates are 

Tcr=23.5 years, α =0.097, respectively.  According to (1.3.5), these values can be reduced to any 

other years using the level of GDP per capita (see table 1.4.1).  

Having the externally measured age distribution and GDP per capita as well as the above 

of the internal model parameters, one can predict the overall PID for any year. For the purpose of 

this paragraph, we chose the period between 1994 and 2002.  Technically, the model is very 

simple and consists of three main steps. First, we calculate personal incomes for all 841 income 

states (trajectories) and for all ages under modelling, as defined by (1.3.3’) and (1.3.4).  As a 

result, the number of different incomes in the model for a given year reaches 841 times the age 

range (chiefly, 60 years between 16 and 75). Second, each income estimated in step one is 

multiplied by the number of people with this income in actual economy, i.e. the number of 

people of relevant age divided by 841.  Third, we aggregate over income or age intervals, as 

appropriate. In the case of the overall PID, we aggregate over all ages in 0.0025 model units 

bins. Since the model is dimensionless, we introduce an empirically determined calibration 
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factor, which transforms between current and dimensionless spaces. In other words, total 

personal income in reality, i.e. the integral of PID over income, must be equal to total personal 

income in the dimensionless space multiplied by calibration factor.  

Figure 1.4.9 presents predicted overall PIDs in current dollars for some selected years 

between 1960 and 2002. (Notice the log-log coordinates.) The evolution of the predicted PIDs 

reproduces some principal features of the observed distributions: the level of population density 

decreases at lower incomes and increases at higher income. The point where these two processes 

meet is somewhere between $20K and $30K. The curves are obtained from relevant 

dimensionless curves scaled with a factor of $70,000 in 1990. This means that one unit of the 

dimensionless scale costs $70,000 (current) for the year of 1990. The scaling factor is 

proportional to nominal GDP per capita. In 2002, the scaling factor was about $105,000 and the 

predicted personal income distribution in current (2002) dollars extends to $103,000. This value 

is the largest income which would have been predicted by the model if we do not recall that 

actual distribution at higher incomes is governed by the Pareto law. The purpose of this 

paragraph is to predict PID between zero income and the Pareto threshold. As mentioned in §1.3, 

the model defined by (1.3.3) and (1.3.4) describes the evolution of individual incomes for 90% 

of working age population.  PID beyond the Pareto threshold is described and modelled in §1.7.   

 Figures 1.4.10 through 1.4.12 compare the observed and predicted distributions for 1994, 

1998, and 2001. The observed distributions, aggregated in $10K intervals, are interpolated by 

splines in order to present continuous distributions.  In reality, fine structure of the observed 

PIDs may differ from these smooth lines. But we consider this way of representation as an 

adequate one because the uncertainty in actual PIDs is large enough and the smoothed curve is a 

good visual characteristic of the PID suppressing measurement errors and related fluctuations.  

So to say, we expect that the shape of real PID would be very close to that of predicted one if the 

former is measured precisely. The predicted distributions are obtained from a model with the 

following parameters: start37year t0=1960,37 Tcr(1960)=26.5  years, α=0.087. These calculations 

were carried out in dimensionless units and current dollars. Therefore, the initial value of the 

Pareto threshold of 0.43 evolves in time as nominal GDP per capita. The dimensionless width of 

counting bins is 0.001 and effective current dollar bins expand over time.   The conversion factor 

between dimensionless units of the model and current dollars in 1960 is $10,500. This means 

that the entire 1960 theoretical PID can be placed between $0 to $10,500; the whole 1980 PID 

spans from $0 to $40,000 because nominal GDP per capita grew by a factor of 3.8 from 1960 to 

1980. There are no people in several highest dimensionless income groups, however, because 

nobody approached the level 1.0 (dimensionless units) during the period of income growth, i.e. 

before Tcr.  
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 The PIDs for 1994 are presented in Figure 1.4.10. The predicted distribution coincides 

with the observed one in the range between $5K and $35K. The latter value is very close to the 

Pareto threshold for this year situated somewhere between $35K and $45K. Beginning from the 

Pareto threshold, the observed and predicted distributions diverge because of different character 

of decay, as described in §1.3. The observed distribution decays with income according to a 

power law. The predicted distribution decays slowly just above the threshold, but then the rate of 

the decay grows very fast and it intercepts the observed distribution near $60K. 

Figures 1.4.11 and 1.4.12 illustrate the evolution of the distributions and corresponding 

Pareto threshold. With time, the threshold moves towards higher incomes. It was around $45K in 

1998, and near $52K in 2001. Because the Pareto threshold quickly moves to $100,000, as a 

result of the observed intensive nominal economic growth in the US, one can expect that in the 

near future the overall PIDs measured by the CB will not contain the Pareto portion of the 

distribution in the range from $0 to $100,000. Therefore, the US Census Bureau will not be able 

to correctly describe personal income distribution. Even now, the distribution contains only a 

narrow range where the power law rules. As a response, the Pareto zone has been covered with 

$50,000-wide bins since 2000. 

The above analysis of the overall PID demonstrates the existence of some fixed 

hierarchical structure in the personal income distribution in the United States.  The PIDs 

normalized to the total population above 15 years of age and corrected for nominal GDP per 

capita effectively coincide for the years between 1994 and 2002. 

 The structure of the measured personal income distribution can be simulated by using the 

microeconomic model with some simple assumptions related to the distribution of capabilities to 

earn money and sizes of earning means. In the lower income zone, the observed and predicted 

distributions coincide up to the income level interpreted as the Pareto distribution threshold or 

the minimum possible income in the Pareto distribution. The Pareto part of the actual PIDs is 

considered to be a result of some processes associated with self-organized criticality and does 

not need any additional modelling except the prediction of the portion of the total population in 

the Pareto zone. This portion is of about 10 per cent and its distribution over work experience is 

also exactly predicted by the microeconomic model, as described §1.7. 

 The evolution of the overall PID is also well predicted depending on nominal GDP 

growth from 1994 to 2002. This includes the prediction of the subcritical zone width and 

relevant change of the PID slope with time. One can easily predict the future PIDs as a function 

of GDP growth and population changes. 
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 On the other hand, the observed accurate prediction of the US PIDs for years between 

1994 and 2002 demonstrates validity of the microeconomic model and general concept 

inherently related to the personal income as the only source of the economic growth. 
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§1.5. Modelling the age-dependent personal income distribution in the US between 1994 

and 2002 

 

In §1.4, we revealed the importance of several key parameters defining the model and estimated 

their empirical values. These parameters provide a deterministic description of the overall PID 

and its evolution between 1994 and 2002. At this high level of aggregation, the model provides 

accurate predictions for incomes below the Pareto threshold.  At a lower level of aggregation, as 

represented by age-dependent PIDs, one observes some new effects representing a big challenge 

to the model.  Therefore, in order to answer this challenge, the age-dependent personal income 

distribution in the United States was modelled using the same (microeconomic) model and the 

parameters obtained in the overall PID modelling.  This is an independent validation of the 

model: it was not tuned to describe new PID features when the overall PIDs were fitted. In any 

case, a model with empirically determined parameters accurately (and quantitatively) predicting 

new effects beyond its initial scope is of high scientific value.  

In §1.3, the concept of two branches of PID in the USA is introduced: a low-income 

branch and a high-income branch. The former is accurately described by the model and the latter 

is a standard power law (Pareto) distribution. In natural sciences, the Pareto distribution is a 

common observation and is thought to be a result of a number of processes called as a whole 

“self-organized criticality”. There is no economic model available to formally express some 

processes at micro level leading to the Pareto distribution, as we did in §1.4 for the quasi-

exponential distribution at lower incomes. However, one can accurately predict the number of 

people in this distribution using the developed microeconomic model and their distribution over 

age. In a sense, the number of people and their distribution over age is the only feature needed to 

model measured Pareto distribution, because other parameters of the distribution follow up from 

the definition and properties of power law. Therefore, the age dependence of personal income 

plays the defining role for the empirics of the Pareto law in economics.  

 The overall PIDs presented in §1.4 include personal incomes of all Americans above 15 

years of age as published by the U.S. Census Bureau. By design, since 1994 the Census Bureau 

has been reporting population counts in relatively narrow income bins of $2500, also in five to 

ten-year-wide age groups. It is obvious that each and every personal income undergoes important 

changes with age or, what is equivalent for the fixed age of workforce joining, with work 

experience. The starting point for all personal incomes is apparently zero at the age of 15 years. 

Then personal incomes grow at a decreasing rate to some peak values defined by given S and L. 

Between 1994 and 2002, the average income measured in the USA usually reached its relative 

maximum value at some age between 45 and 55 years and then started to decrease exponentially.  
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The overall PIDs in §1.4 are not able to express all these complex features and processes 

due to the absence of age resolution.  These processes and features, however, are extremely 

important from personal point of view as a prediction of potential income trajectory. They are 

also a big challenge to any model for the personal income distribution and its evolution.  

The overall PIDs in the USA demonstrate a very stable social structure in respect to the 

distribution of gross personal income. However, the observed PIDs change very fast from one 

age group to another. There are income data sets with high age resolution for the years between 

1994 and 2002. These sets include information on the number of people in 5-year-wide age 

intervals starting with 15 years of age. The first bin is 10-year long, however, and spans the age 

interval between 15 and 24 years. This widening reflects severe problems in income 

measurements in this age group, where standard definitions of income do not cover all potential 

income sources as, for example, intra-family money transfer (see discussion in §1.2 for details). 

 Figures 1.5.1 and 1.5.2 display the PIDs measured in 1998 in various age groups in 

absolute values and normalized to total population (in given age group) of 15 years of age and 

over, respectively. In the youngest age group, the distribution is close to an exponential one, as 

expressed by a straight line in the lin-log coordinates, with strong variations observed at incomes 

above $50K. As discussed in §1.2, this is the result of the small size of the survey, which covers 

only approximately ~100,000 households. When the level of PID in this relatively narrow age 

group drops by three orders of magnitude, such coverage can not provide adequate estimates. 

Some bins at higher incomes are not populated at all! In the Figures, the absence of population is 

manifested by gaps in the curves and zero values in corresponding tables published by the CB. 

When using the CPS data for quantitative modelling, one should bear in mind that the high-

income tails of age-dependent PIDs are not reliable (not populated). In natural sciences, there are 

many cases when size distributions expressed by power law are characterized by high-amplitude 

fluctuations at the upper size extreme.  These fluctuations are usually artificial as well as those 

observed in Figures 1.5.1 and 1.5.2 in the youngest group. The gaps induced by low resolution 

are also partly responsible for the underestimation of average income in the youngest age group.   

 With increasing age or work experience, the age-dependent PIDs obtain a slowly 

extending quasi-flat part at lower incomes followed by an exponentially decreasing part. The 

PID for the age group between 70 and 74 years as a whole is characterized by an exponential 

roll-off similar to that for the youngest group. This roll-off clearly demonstrates that a significant 

part of elderly population in the USA loses income very fast with time and not many of them can 

retain the same income as they had before: compare the eldest group with the group between 60 

and 64 years of age. Figure 1.5.2 illustrates this process in relative terms. The curve 

corresponding to the eldest reported age group lies below the curve for the age group between 25 
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and 29 years for incomes higher than $30K and well above the curve for incomes below $20K. 

The middle age groups are characterized by almost identical population density distributions. 

The observed PIDs for the year of 1998 reveal some complex features of the evolution with age. 

The PIDs for other years of the studied interval are similar and demonstrate the same principal 

features. 

 PID in a given age group also evolves over calendar time.  The features associated with 

this evolution are also of principal importance for the model - is it capable to predict well PID 

changes in all age groups. Figure 1.5.3 displays two PIDs (current dollars) in the youngest age 

group aggregated in $10K bins for the calendar years of 1994 and 2002. An exponential 

regression gives a negative index, increasing from -0.125 in 1994 to -0.095 in 2002. The ratio of 

the indices is 1.32. This value is very close to that observed for the growth in nominal GDP per 

capita from 1994 to 2002, equal to 1.34 (Bureau of Economic Analysis 2005). Thus, an 

adjustment for the change in nominal GDP per capita, like that applied to the overall 

distributions, should completely merge the curves. 

From the above Figures, we would like to highlight three important features of the 

original PIDs’ dependence on work experience. First, income distribution in the youngest age 

group is exponential over the whole reported range. Second, the distributions normalized to 

population are characterized by the development of a quasi-constant (slightly decreasing) part, 

which spans the range from zero income to approximately $30K in the age groups above 25 

years. Third important phenomenon is the exponential decrease in the distribution for the eldest 

age group. This distribution is similar to that in the youngest age group. One can assume that in 

some older age group, say above 75 years of age, the PID is equivalent to that in the youngest 

group.  

 The adjustment for nominal GDP per capita effectively reduces the overall population 

density distributions to one line. It is instructive to apply the same procedure to the PIDs in 

various age groups. Because the adjustment might produce different outcome depending on age, 

some principal cases are presented in Figures 1.5.4 through 1.5.6. In the youngest age group, the 

adjustment results in the same pattern as observed for the overall distribution. The only 

difference is higher scattering at large incomes related to low reliability of measurements in this 

age interval. The largest differences between the reduced PDDs are observed in the age groups 

from 45 to 49 years and from 50 to 54 years (Figures 1.5.5 and 1.5.6, respectively). These ages 

are near the critical work experience, Tcr, where the empirical relationship between mean 

personal income and work experience turns from growth to fall. This critical age also changes 

with time as the square root of GDP per capita. So, one can expect the largest disturbance in 
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these PDDs as induced by real economic growth and inflation. In 2002, the critical age was 

somewhere between 50 and 55 years in the USA.  

Having studied some features of the age dependent PIDs, we calculated theoretical 

distributions in the age groups defined by the U.S. Census Bureau. Since the model predicts each 

and every individual income for people of 15 years of age and over, it is a simple aggregating 

procedure to estimate the number of people in any given age and/or income interval. As 

discussed in §1.4, the model takes into account only 841 distinct individual income histories for 

every single year of age and then weights individual incomes using total number of people of the 

same age. People of the same age are effectively divided into 841 equal sub-groups, and the size 

of these sub-groups changes with age and calendar time. For the sake of simplicity we assume 

that all people of the same age have the same birthday and first working day. This makes the 

model a discrete one.  

 Everybody can choose and follow up one of the 841 available trajectories. The person 

may also leap from one trajectory to another. In the case when all income positions in a given 

economy are filled, the change actually must be an exchange. In other words, the leap forces the 

person who occupied before this new position to drop to the trajectory abandoned by the first 

person: the trajectories can be only swapped but not created over the fixed number. Actually, 

much longer swap chains are possible. In any case, population density distribution in any given 

age group is always fixed despite any finite number of exchanges in income trajectories. The 

ratio of personal incomes of two persons of different age but the same L and S depends on 

economic growth during their job careers. 

 As in §1.4, the best fit defining parameters for 1960 are Tcr=26.5 years and α====0.087, 

respectively. After aggregation of individual incomes in 10- and 5-year bins we obtained PDDs 

in all predefined age groups. Figures 1.5.7 through 1.5.10 depict the predicted and observed 

distributions in the age groups from 15 to 24 years, from 25 to 29 years, from 30 to 34 years, and 

from 60 to 64 years in 1998. The year of 1998 has an advantage of simple conversion factor 

between dimensionless units and current units (dollars) equal to 100,000. As has been already 

shown, the other middle age groups have distributions very similar to those for the age groups 

from 30 to 34 years and from 60 to 64 years. 

 In the youngest age group, the curves in Figure 1.5.7 diverge almost everywhere. The 

predicted distribution lies above the actual one. One can explain this observation using the 

factors discussed above: the low resolution in this group, the undercount at higher incomes and 

the absence of adequate income sources in the Census Bureau’s questionnaire (West & 

Robinson, 1999). So, this deviation is expectable and should be resolved somehow in further 

income surveys. We presume that this deviation is induced by some deficiencies in the current 
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design and methodology of the surveys not by the model. However, both distributions are 

characterized by the same index of exponential decay from the zero income bin to the bin 

starting at $40K.  The observed distribution has already an emergent part characterized by the 

Pareto distribution (above $48K) and also has a large number of people with very low income. 

The latter observation is well predicted. Again, the accuracy of enumeration at lower incomes is 

under doubt due to the limitations in the questionnaire. 

 In the middle age groups, evolution of the predicted and observed distribution is 

described with a reasonable accuracy. Here we meet again the low income counting problem. In 

the eldest age group among all presented here (from 60 to 64 years of age), the theoretical curve 

fits the measured one with an excellent precision. Apparently, the CPS covers the elderly 

population with the highest resolution and defines adequate sources of income. This effect will 

be also discussed in §1.9, as related to age dependent Gini coefficient.  In Figure 1.5.10, as with 

the overall PIDs, one can distinguish a sub-critical zone, a zone where the theoretical distribution 

is above the observed and a zone of an opposite behavior. In §1.3, this age group was used for 

calibration of the earning capabilities. 

 The observed  PDDs suffer from lack of resolution in the most important for our model 

age group – from 15 to 24 years of age, where the dynamics of income evolution is the fastest 

and the range of income change in the largest. The range of change is a crucial parameter for the 

reliability of any model; for a zero-wide-range any functional dependence between variables is 

void. One can find a link between measured variables only when they are changing. The 

observed PDD in this age group actually consists of ten very different single year PDDs.  Figure 

1.5.11 displays the predicted evolution of the single year of age PDDs for 1998 starting from 3 

years of work experience. This is the decomposition of an aggregated distribution into single 

year of age distributions.  During the first two years of work the predicted incomes are 

concentrated in the lowermost income bins and are not worth displaying.  

The predicted evolution reveals some important PID features. During the first eight years 

of work, nobody is able to reach the Pareto threshold of $48K. This might be the reason for the 

U.S. Census Bureau to aggregate all the personal incomes between 15 years and 24 years of age. 

Otherwise, there is literally nobody filling the higher income bins in the Pareto distribution 

range.  

There are actually quite a few people starting their job career before reaching the age of 

15 years. There is no official statistics for these people, however, and their overall impact is 

negligible in the PID evolution because they affect only the youngest age group with the 

lowermost incomes.  With age, all these differences in the start year of work should disappear. 
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 In addition to a higher resolution, the predicted PID can be extrapolated years back and 

ahead. Figure 1.5.12 and 1.5.13 display predicted PIDs in 5-year-wide work experience intervals 

for calendar years 1980 and 2002. One can observe that the PIDs span very different ranges of 

income despite the same virtual procedure of counting in $2500 wide intervals.   

In 1980, the predicted distributions span the income interval from $0 to $35K. The Pareto 

threshold was at about $20K according to the increase in nominal GDP per capita by a factor of 

2.9 from 1980 to 2002. Actual distribution, if measured, would be characterized by power law 

above $20K. The actual distribution is also extended to very high incomes well above the level 

of $35K predicted by the model in the sub-critical range. 

 In 2002, the Pareto threshold was at the level of $58K and the predicted distributions 

occupy the whole actual income range of the survey – from $0 to $100K.  One of the effects of 

the observed PID stretching with time is that relatively lower numbers of people occur in the 

predefined income intervals.  This effect results in the observed oscillations in the PIDs. The 

PIDs in 1980 look much smoother than in 2002 due to smoothing effects of the large numbers. 

Oscillations in the predicted PID are only induced by the discrete distribution of the capacity to 

earn money, which was revealed by the model’s calibration procedure. 

The overall personal income distribution in the USA was modelled for the period 

between 1994 and 2002 and an excellent match between the predicted and measured PIDs has 

been found. Defining parameters of the model are obtained and are accurate in prediction of the 

PIDs’ evolution in time. The prediction of the evolution was almost solely based on the 

assumption that critical time, Tcr, and α evolve as the square root of the per capita real GDP.  

 This paragraph addresses a more complicated problem of age structure of the observed 

PIDs. Complexity of the problem is obvious due to the cardinal changes in the PID shape with 

age.  The model, however, meets this new challenge and accurately predicts not only the overall 

behavior of the age-dependent PIDs, but also some fine details. Moreover, the model unveils 

some shortcomings of the income survey methodology and design, which lead to degradation of 

the observations’ accuracy with time.  

 The data on the age-dependent PIDs are obtained from the U.S. Census Bureau web-site. 

Two important features of the data should be mentioned here. Definition of income adopted by 

the Bureau in its questionnaire is very limited and does not comply with broader definitions 

based on consumption or expenditures. This kind definitions better present the production side of 

the income definition adopted in the model.  The main assumption of the model is that personal 

income is exactly equal to the total price of the produced goods and services. This assumption 

effectively balances net expenditures and incomes in the society. Difference between the two 

definitions under discussion is the largest in the lower income zone where pure money earnings 
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sometimes are not the major source of income. Interfamily money transfer also can be of 

importance in this zone. The difference is clear when we compare the observed and predicted 

distributions in this zone. The majority is concentrated in the first income bin from $0 to $2500, 

where also people with total loss are placed. There are some doubts, however, that a person 

without any income can survive for a long period of time. If to consider the real expenditures of 

the person to stay alive as his/her income we effectively have our definition of the personal 

income. At higher incomes, the difference is obviously lower because principal sources of 

income have here some monetary form. It is worth noting also that the net income in the poorest 

group is less than that in the middle and higher income groups and plays only a marginal role in 

the total economic development. 

 The second feature of the data is related to the coverage of the age and income intervals. 

With the PIDs stretching with time over wider and wider income range, smaller and smaller 

number of people is counted in the designed income bins. In the youngest age group, the number 

of people in the predefined income bins changes by almost four orders of magnitude with 

income, i.e. if there are 10,000 people in the lowermost income interval, less than ten people are 

present in the highest measured income bin. Moreover, in some income bins there is nobody 

counted in. These measurements do not present true personal income distribution, but reveals 

only increasing problems in the current survey design. There are two ways to resolve the 

problem: not to publish the data characterized by very high uncertainty or to increase the 

population coverage (number of households) to make the data more accurate and representative.  

 The presented model is a good basis for the development of a new methodology for the 

income distribution measurements and definitions of economic equality/inequality. The model 

predicts the evolution of the PID with economic growth and reveals important future changes. 

For example, the overall economic growth results in longer time necessary to reach higher 

income (in relative terms). This makes young people relatively poorer - a trend which is 

observed in the USA. Further increase of Tcr and decrease of α will accelerate this process in 

near future. Also, people reach the peak personal income later in age, but before the retirement 

age: the former approaching the latter with the overall economic growth. 
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§1.6. Modelling the average and median income dependence on work experience in the 

USA   from 1967 to 2002 

 

This paragraph analyses and models a different slice of the overall data set available from the 

same US Census Bureau web-site (2004b) – the dependence of average income on work 

experience. The average income has been reported since 1967 as one of aggregated measures of 

income distribution.  Due to some major changes in the income survey procedure applied before 

and after 1967 the accuracy of relevant measurements has likely been progressively improved, 

but were accompanied by a significant loss in data compatibility.  

 Unfortunately for the purpose of this paragraph, personal incomes have been averaged 

only in 10-year intervals since the beginning. (After 1994, 5-year intervals were introduced, 

which allowed better resolution of the critical work experience.) Corresponding electronic table 

contains mean personal incomes for male and female separately. Therefore, additional efforts are 

necessary for obtaining gender independent estimates. It is possible because the number of 

people with income is also listed for each gender and each age group. For the youngest age 

group, data are available only from 1974, and for the eldest age group, from 65 to 74, only from 

1987. This difference is induced by major changes in the CPS procedures.  

The electronic table presents both current dollars and chained 2001 dollars estimates. 

Figure 1.6.1 illustrates the dependence of average income on work experience as measured in 

current dollars. Here and below in this paragraph, we use cubic spline to interpolate the 

dependence between discrete readings, which are associated with the central points of work 

experience intervals, i.e. 5, 15, …, 55 years. As discussed before, the centers are not exact points 

related to mean incomes for exponential dependence, but we neglect the difference in 

illustrations. There are two striking features in the curves, better demonstrated in the log-lin 

coordinates: quasi-exponential growth and roll-off of the mean income with work experience, 

and the existence of some critical work experience, Tcr. This critical point divides the curve into 

two branches: a part increasing as a function like (1-exp(-αt)), and an exponentially decreasing 

branch beyond the critical work experience. Historically, this plot was behind the first intuition 

that the character of income distribution is equivalent to several well-known processes in 

geomechanics and physics. The authors have not found any major research addressing this 

crucial empirical finding neither in quantitative nor in qualitative terms. Our search can not 

pretend to be a complete one, but the effect is so clear and prominent that must be a part of each 

and every (micro-) economic theory related to personal income distribution. In our model, the 

dependence of mean income on age allows to empirically estimate two key parameters: the 

dissipation factor, α (and α1), and critical work experience, Tcr. The former defines the rate of 
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growth before Tcr. The later may be directly measured from the curves in Figure 1.6.1. However, 

the width of averaging intervals (10 years) does not provide sufficient age resolution and we use 

the trial-and-error procedure to fit the curves as a whole for the estimation of Tcr.  

 Figure 1.6.2 shows the same average income dependence on work experience expressed 

in chained 2001 dollars. The only visible difference from the curves in Figure 1.6.1 is in the 

amplitude of the overall increase in level. The growth in the real mean income is much smaller 

than in the nominal one and differs between age groups: the mean real income in the age group 

from 25 to 34 years increased by a factor of 1.27 between 1967 and 2001, from 35 to 44 years - 

by 1.40, from 45 to 54 years - by 1.5, and from 55 to 64 - by 1.59.  This is also a big challenge to 

any theory of income distribution to explain such a divergence in growth rates.  

Another important effect to be mentioned and explained consists in a smaller real mean 

income change observed between 1967 and 1991 compared to that between 1991 and 2001, 

despite the fact that real GDP between 1967 and 1991 increased by a factor of 2, and between 

1991 and 2001 only by 1.4. This discrepancy can be simply explained as associated with the 

evolution in the portion of people with income during these years as displayed in Figure 1.6.3. 

There was a strong increase from 0.8 in 1967 to the level around 0.95 in 1980 in all age groups 

except the youngest one. The latter group has an almost constant participation factor near 0.75. 

When corrected for the participation factor the mean income distributions look more consistent 

with the observed monotonic growth in real GDP as displayed in Figure 1.6.4. 

There was a dramatic increase in the number of people with income between 1977 and 

1979. Surprisingly for conventional economic theories, this increase did not cause a proportional 

growth in real GDP during these years. So, the same gross personal income was distributed over 

a larger number of people. The average incomes in all age groups changed proportionally to the 

growth in real GDP. In other words, the level of total income does not depend on any implicit or 

explicit mechanisms of income distribution.  

To address the effect of population without income, Figure 1.6.4 presents a natural mean 

income dependence on work experience, estimated as total income in a given age group divided 

by total population in this age group, while Figures 1.6.1 and 1.6.2, undoubtedly, show biased 

dependencies. Apparently, the portion of people with income is arbitrarily defined by income 

survey procedures and fluctuates with time relative to true number according to the changes in 

the survey questionnaire. We consider as a reliable one the definition of mean income based on 

the concept of personal income presented in §1.3.  In physical terms, our definition is based on 

the full size of a closed (economic) system, and thus, naturally obeys all conservation laws. As 

discussed in Introduction, no definition based on a varying portion of a closed system is valid 

since it is prone to uncontrolled fluctuations. A textbook example here is the gas laws – one 
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would not be able to reveal any link between pressure, temperature and specific volume when 

measuring them in open atmosphere or using randomly changing gas volume.   

 Among all age groups, the largest correction for the people without income has to be 

applied to the youngest one. This group is also the most affected by the procedure of income 

estimate because a larger part of a young person’s income comes from internal, and thus not 

covered by the CPS, sources. Therefore, one can actually expect a higher average income in this 

group when such sources are included. In reality, it is the income from these sources that permits 

the people “without income” to survive.  

 The intra-family sources might be very important for some age groups and individuals, 

but do not substantially change the overall distribution. The income obtained from external 

sources and estimated during the CPS is much larger than that redistributed inside family. 

Because the portion of population without income in smaller, the bias in mean income is larger 

in the youngest age group, and other age groups are characterized by more accurate income 

coverage. All in all, direct measurements of gross income and entire population represent a valid 

object for quantitative analysis and modelling.  

 Figure 1.6.5 displays dimensionless mean income as a function of work experience for 

some selected years between 1967 and 2002. All mean incomes are normalized to the largest 

values among all age groups in relevant calendar years. Therefore, the peak value of the 

normalized functions is always 1.0. The shape of the normalized curves evolves in time with a 

clear tendency of the critical age, Tcr, to grow. However, due to low age resolution it is difficult 

to estimate Tcr accurately. Another feature should be mentioned. The curve for 1981 has an 

unexpected trough in the work experience interval between 30 and 40 years. We interpret this 

strong deviation as measurement error associated with the introduction of new questionnaire in 

1980 and the new population controls after the 1980 decennial census. Such a prominent error in 

the estimation of mean income demonstrates the presence of problems in the CPS and puts the 

expected of uncertainty at a very high level.     

Figure 1.6.6 presents the evolution of normalized mean income in each age group as a 

function of calendar year. Between 1967 and 2001, the peak mean income resides in two age 

groups: from 20 to 29 and from 30 to 39 years of work experience. The intercept occurred in the 

middle 1980s. Unexpectedly, the older group also had some years of superiority during the late 

1960s and early 1970s. We interpret the intercept in 1974 as induced by substantial changes in 

the CPS. An important factor influencing the average income dependence on work experience 

consists in the evolution of the age-dependent portion of gross personal income estimate by the 

CB, in GDP estimated by the BEA, as discussed in §1.9. 
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 From Figure 1.6.6, one can easily estimate where the peak mean income value was or 

will be in various age groups with time. Figures 1.6.7 through 1.6.10 present linear regressions 

of the normalized mean incomes. The obtained linear dependencies are extrapolated in the past 

or in the future before they intercept the unit line. In the youngest age group, the slope estimated 

by the linear regression is -0.004, as displayed in Figure 1.6.7.  It gives the estimated intercept 

time around 1790. When we use the slope of -0.075, as obtained in other age groups, the 

intercept time moves to the beginning of the 20th century. Potentially, people between 15 and 24 

years of age had a dominating income position in the 19th century. One should bear in mind that 

life expectancy a hundred years ago was very low compare to current one in the US.  

 In the age group from 25 to 34 years, the slop is -0.07, as shown in Figure 1.6.8. This 

group was at the top of personal income pyramid until the late 1940s.  The group from 20 to 29 

years had the peak mean income value until the middle 1980s. This was the only transition of 

peak mean income between adjacent age groups covered by the US Census Bureau. During the 

last 20 years, the peak mean income has had a tendency to move towards the group with 40 to 49 

years of work experience. One can predict that this group will take the lead around 2015. It is not 

too far away and will be a good observation validating our concept – the growth in Tcr is driven 

by the size of earning tools, L. Hopefully, one will be able to resolve the critical age with an 

appropriate accuracy by 2015.  

 As discussed in the Chapter 2, the value of critical work experience potentially defines 

the average rate of real economic development. During the last 60 years, the trend of real GDP 

growth or economic potential was exactly equal to the reciprocal value of Tcr. Effectively, if 

mean personal income grows during 50 years from zero to its peak value, one can suppose that 

average annual GDP growth is 1/50 or 2%. The current value of Tcr in the USA is approximately 

40 years. Thus, the current trend in real GDP growth is 2.3%. During the 1950s, when Tcr was 

approximately 25 years, the trend was at the level of 4%. 

Because the averaging intervals are relatively wide (10 years), it is difficult to determine 

the exact value of critical work experience value from a single distribution. The full set of 

curves, however, allows revealing some changes in the critical work experience value. Figure 

1.6.11 demonstrates the evolution of Tcr as a function of real GDP per capita according to 

relationship (1.3.5) for the years between 1950 and 2002. The predicted Tcr was about 25 years in 

the late 1950s, reached the 30 years in the late 1970s, and is currently near the 40-year threshold. 

One has to take into account the difference between the theoretical Tcr predicted for every single 

year of age, and the empirical Tcr obtained from 10-year wide intervals. The latter has a several 

year lag relative to the former.  



 51 

There is another defining parameter one should estimate from the average personal 

income – α1, which varies over time according to (1.3.6). The width of averaging window also 

causes substantial variations in the estimated values of the indices of exponential decay above 

critical work experience. Therefore, it would be difficult to exactly match all the observations of 

mean income in one set of model parameters. Figure 1.6.12 illustrates the difference in 

exponential decay obtained from 10-year and 5-year averaging intervals for the year of 2001. 

The latter intervals demonstrate much faster decay than the former ones. In order to fit the 

observed exponential decay beyond Tcr for the period between 1967 and 2001 we fixed relative 

(i.e. normalized to the peak value) income at the age Ar=60 years to Mr=0.84. These values are 

slightly different from those in §1.3, but are inside the uncertainty associated with the fall of 

individual incomes beyond Tcr. Both sets provide very close trajectories of exponential fall and 

thus very close inputs to the mean income.   

Total input of incomes above the Pareto threshold is completely defined by the factor 

1.33, as discussed in §1.3.  Technically, we calculate individual incomes for a given population, 

select those above the Pareto threshold, sum them up and multiply by 1.33. The result is the total 

income of all persons in the Pareto branch of PID. For the estimation of average income, the 

number of people and their total income is all we need.  

 Now we can predict the evolution of age dependent average income for the years between 

1967 and 2001. Figure 1.6.13 displays some results of the mean income modelling. The observed 

curves are represented by mean incomes corrected for population without income, with the 

largest correction in the youngest group. Because the model calculates mean incomes in internal 

dimensionless units, we had to estimate the scaling factor to fit actual measurements of mean 

income.  This factor has to be constant over years if the definition of personal income does not 

vary over time. Any change in the definition potentially results in relevant change in the portion 

of gross personal income (CB definition) in GDP (BEA definition) as well as in the 

redistribution of the GPI over age groups.  In Figure 1.6.13 the scaling factor is 72. This factor 

has no physical sense and plays no role in the modelling itself. It is only used to compare 

predicted and observed mean income. 

In 1967 and 2001, the observed and predicted curves practically coincide almost over the 

whole range of work experience between 0 and 60 years, except in the youngest age group, 

where the measured value in 1967 is smaller than the predicted one. The underestimation is 

likely induced by caveats in income definition. Supposedly, the overall fit between the 2001 

curves is better because of improving precision of the CPS. A prominent and expected difference 

between the curves for 1967 and 2001 consists in the increase in Tcr. Therefore, the model 

predicts not only the shape of overall and age-dependent PIDs below the Pareto threshold, but 
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also the observed evolution of mean income dependence on work experience.  Again, we would 

like to stress that the prediction over the 35-year period was based on a few simple equations 

using the same set of empirically estimated defining parameters. 

 Figure 1.6.14 presents similar curves for 1974 and 1987, the years of considerable 

changes in CPS procedures. The Figure reveals fluctuations in the scaling factor from 72 in 1967 

and 2001 to 79 in 1974 and 1987.  Other years are also characterized by some variations in the 

scaling factor, but their amplitude is smaller than those observed in the original values of the 

mean income, as shown in Figures 1.6.15 and 1.6.16. The conversion factor for the original 

values varies in the range from 76 for 2001 to 95 for 1974. The conversion factor is 90 for 1967. 

There are two sources of these variations: 1) the fluctuation in the portion of GPI in GDP; 2) the 

change in the portion of people with income. The former will be analyzed in §1.8. Here we are 

more interested in the evolution of the shape of the dependence of mean income on work 

experience. 

 Unexpectedly for our modelling, the original mean incomes are modelled much better 

than the corrected ones. Neglecting the changes in the scaling factor in Figures 1.6.15 and 1.6.16, 

the predicted curves coincide with the measured ones over the whole income range, including the 

youngest age group. One can assume that the CPS provides a good cross section of actual 

personal income distribution, i.e. the shape of the curves, but a biased (under-) estimate of gross 

personal income, i.e. the level of the curve.  The difference between the corrected and original 

mean incomes is the lowermost in the age groups where the portion of people without income is 

negligible, as will be discussed in §1.9.  

 Figures 1.6.17 and 1.6.18 illustrate some results for the years after 1994, when mean 

income readings are available in 5-year age intervals. Both, original and corrected mean income 

values are modelled. Due to higher resolution, the calibration of the decreasing branch is 

different from that used in the modelling of 10-year intervals: at the age of (Ar=) 80 years the 

level of mean income is only (Mr=) 0.45 of the peak value. Overall agreement between the 

curves is good, except two clear outliers in 1994: the observed mean income in the work 

experience groups between 30 and 34 years and between 40 and 44 years. Such outliers are not 

observed in other years between 1994 and 2001 and are likely associated with some changes in 

survey methodology in 1994. In the youngest age group, the predicted value of mean income in 

2001 is slightly higher than the observed one. The original mean income values better fit the 

observations in the youngest group. A positive significant improvement upon the results for 10-

year intervals consists in a much better fit beyond the critical work experience. All in all, the 

model provides an adequate description of actual mean incomes, including the effect of Tcr 

increasing through time.   
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 Direct modelling of the evolution of the Tcr is hindered by the absence of measurements 

with appropriate resolution. True value of Tcr usually resides somewhere between the end points 

of 10-year (5-year after 1994) intervals used in the CPS survey. As an alternative, one can model 

the evolution of (normalized) mean income in each work experience interval, as presented in 

Figure 1.6.6. The evolution should be defined by the growth in real GDP per capita, and thus, in 

Tcr. The evolution is not a mechanical and uniform increase of mean income in each of the age 

groups, but results from myriads of interactions between people of various ages and leads to the 

redistribution of income in favour of the age group with the largest mean income. 

 The evolution of mean income in a given age group over calendar time provides a 

representation equivalent to that used in Figure 1.6.13. Figures 1.6.19 through 1.6.23 display the 

results of modelling for five work experience groups: from the youngest group (from 0 to 9 

years) to the oldest group (from 40 to 49 years). Two observed curves (original and corrected for 

population without income) in all the Figures are drawn in the whole range of available data and 

the predicted curves – between 1960 and 2001. 

 In the youngest age group (Figure 1.6.19), the corrected observed curve and the predicted 

mean income curve diverge considerably in line with the above discussion on the CPS 

questionnaire – the youngest group is the most problematic for measurements and thus for 

modelling. The original mean income values are much closer to the predicted ones. The same is 

valid for the other four groups: original mean income values are better fitted in relative terms. 

After 1980, the predicted and observed curves demonstrate similar downward trends. 

Furthermore, a plateau after 1995 is also a common feature.  

 The interval between 10 and 19 years of work experience, presented in Figure 1.6.20, is 

characterized by a better prediction. The theoretical curve has a slightly smaller slope than both 

empirical curves and no through near 1994, likely related to the changes in the CPS. Considering 

the full range of the change between ~0.65 and ~0.85 the prediction is accurate most of the time. 

As in the youngest age group, neither empirical nor theoretical mean income normalized to the 

peak value among all age groups can reach the unit line. 

 The first group reaching unit is between 20 and 29 years of work experience (Figure 

1.6.21), where empirical Tcr resided at least between 1967 and 1987.   Theoretically, Tcr left the 

group several years earlier – around 1980. As before, the empirical curves demonstrate 

fluctuations of higher amplitude. The predicted curve is smoother because it has no measurement 

errors. It is expected that the empirical curves, both having a small upward segment around 

2000, will continue to evolve along the downward trend driven by increasing GDP per capita and 

Tcr.  
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 The next group between 30 and 39 years, presented in Figure 1.6.22, shows an 

outstanding behavior – all curves stay at unit line almost all the time. It means that the peak 

mean income resides in this age group.  The prediction is excellent, except the period between 

1967 and 1974. Finally, the prediction in the eldest group, depicted in Figure 1.6.23, does not 

contradict the observations, if to take into account the range of overall increase from 0.83 to 

0.88. Again, there is a trough in the empirical curves around 1994.  

 The above comparison of the predicted and observed curves shows an important overall 

agreement of the curves and a considerable divergence during some relatively short time 

intervals for some age groups. For example, there is an almost 10% deep trough between 1980 

and 1990 in the observed mean income curve in the group between 30 and 39 years.  The 

predicted curve does not show such behavior and retains its value close or equal to 1.0.  There 

are also 2% to 4% amplitude variations in the observed curve from that predicted for the group 

between 20 and 29 years. This discrepancy can be partly related to CPS procedures and changes 

in the population estimates related to decennial censuses. The latter can reach several percent in 

some age groups. For example, one can compare two different mean income estimates obtained 

in 2000 and based on two different population estimates – postcensal and intercensal. 

 Thus, there is some concern about the accuracy of the mean income estimates. In fact, in 

order to derive exact mean incomes from the CPS one has to obtain true PID. Any error in the 

high-income end of measured PIDs leads to a large error in the mean income because of larger 

relative input of the high-income population in the net income. The low-income population does 

not add much to total income and usually is relatively better presented in the CPS surveys just 

because it is larger. The problem of people without income can also be resolved by adding 

people with zero incomes because their incomes are almost negligible in any case. There is an 

alternative to mean income.  

 A more accurate quantitative characteristic of income dependence on age is potentially 

median income, i.e. the income which divides personal income distribution into two equal parts.  

Median income is not sensitive to measurement errors at higher incomes – the number of people 

there is too small.  Therefore, median income is closer to low incomes and represents a robust 

characteristic of PID and a good parameter to model. 

 The Census Bureau is a major source of data on median income in the U.S. It provides 

electronic tables since 1974. Figure 1.6.24 illustrates the difference between overall mean and 

median incomes, both expressed in 2001 CPI-U-RS adjusted dollars.  The mean income grows 

much faster than the median one and the curves diverge over time. This divergence between the 

curves implies a faster growth of personal incomes at higher levels: the same portion of people 

above the Pareto threshold gets increasing portion of total personal income. A surprising feature 
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is the presence of several quasi-flat segments in both curves; the longest is the period between 

1974 and 1983 in the median income curve. The growth in real GDP per capita should be 

accompanied by proportional growth in GPI. Thus, the flat segments might be related to the 

decreasing portion of GPI in GDP.  Such effects can be incorporated in our model only in form 

of scaling factor, as shown for mean incomes.  

In this paragraph, we are interested in age dependent measures of personal income. 

Figure 1.6.25 illustrates the effect of smaller growth rate of median income in two most 

important groups with work experience between 20 and 29 years and between 30 and 39 years. 

These are the groups where the critical work experience, Tcr, resides during the last 50 years. In 

the group between 20 and 29 years, the ratio decreases from 0.85 in 1974 to 0.75 in 2002. 

According to the model and following the observed trend, the ratio will continue to fall.  

 Having calculated all individual incomes for all ages one can find the median one without 

additional efforts. Figures 1.6.26 through 1.6.28 present results of the median income modelling. 

The observed and predicted median incomes are in a slightly better agreement than those for the 

mean income corrected for population without income. Since only aggregated income measures 

are available, one cannot correct median income for population without income as easily as mean 

income.  

 In the group between 10 and 19 years of work experience (see Figure 1.6.26), both the 

observed and predicted curves normalized to the peak value among all age groups demonstrate a 

downward trend. Therefore, this group is characterized by a diminishing relative income – 

people are getting poorer relative to the group with maximum median income. The model 

predicts this tendency with a good accuracy, if to treat the through near 1994 as an artificial one 

and associated with the CPS questionnaire.  

 The group between 20 and 29 years (Figure 1.6.27) contained Tcr for a long time. The 

time when the critical work experience left the group is also well predicted. Fluctuations in the 

empirical curve are of higher amplitude, but otherwise are small – around 0.03.  One can expect 

that this group lost the largest median income forever, if the evolution of personal income 

distribution in the US will follow that predicted by our model.  The next age group (Figure 

1.6.28) got the highest median income approximately in 1990. Since then it contains the Tcr . 

Theoretically, the transition should happen around 1985. The difference between the predicted 

and observed curves between 1985 and 1990 is small and lays in the bounds of uncertainty 

associated with the CPS.    

 Our model meets a major problem associated with the accuracy of the mean and median 

income estimates. We model the observed values and obtain empirical estimates of the defining 

parameters, which correspond to the best fit model.  Any measurement errors in the observed 
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values are directly transformed into equivalent errors in the defining parameters. On the other 

hand, the parameters obtained in the previous two paragraphs are the same as obtained from the 

modelling of the mean and median income measured during a relatively long period of time.  

This validates, to some extent, the model and the observations.  Hence, one can conclude that our 

modelling is successful in spite of several problems remaining in the observational and 

modelling parts. Moreover, the model reveals weak points in the current procedure of personal 

income estimation and provides a good foundation for future corrections and improvements. This 

is a standard situation in the natural sciences, where the loop experiment-theory-experiment- … 

is infinite. To transform economics to a form appropriate for joining the club of hard sciences is 

our main goal.   

 The model provides an opportunity to extrapolate the observed behavior into the future 

and thus to test its predictive power. As shown in Chapter 2, the growth rate of real GDP has a 

trend associated with the reciprocal value of Tcr. The trend is near 1.6% between 2002 and 2022. 

We used this value to predict the evolution of the functional dependence of mean income on 

work experience.  Figure 1.6.29 presents curves of real mean income (2001 dollars) with five 

year spacing. The evolution of population during these years is taken from the population 

projections also provided by the Census Bureau. By integrating the curves over work experience 

one obtains an estimate of total real GPI. 

  We failed to find similar personal income data sets in other developed countries. 

Equivalent income distributions would be of crucial importance for validation of the results 

obtained for the US. Fortunately, there exists an alternative income estimate. The UK Inland 

Revenue publishes distributions of taxable income, including mean income as a function of 

working experience for years 1999 through 2002. In order to compare PIDs in the UK and US 

one should scale them to the same currency. Also, for an adequate comparison the largest mean 

incomes over all age groups have to be equal because the critical age experience depends on real 

GDP (=GPI) per capita. For example, the level of real GDP per capita in the UK in 2002 was 

$26,500. The US reached the same level in 1986.  Figure 1.6.30 compares relevant estimates of 

mean income normalized to the peak value among all age groups. The curves practically 

coincide most of the time, except the difference in trends at large work experience likely 

associated with shorter averaging intervals in the UK.  The agreement between the curves is a 

quantitative evidence in favour of our model describing the distribution of personal income and 

its evolution with time. The model can be further validated using appropriate data from different 

developed countries and also the data from future surveys in the US. Both logical and historical 

inferences are useful. 
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 This study uses GDP per capita as an external parameter. The distribution of personal 

income is proved to be a predetermined function of this parameter. One can interpret this 

relationship in opposite direction as well. Personal incomes, as a result of individual efforts to 

earn (or produce) money, represent the driving force of real economic growth expressed in 

monetary units. It is the sum of personal incomes that makes real GDP. So, the growth rate of 

real (and nominal) GDP per capita is unambiguously determined by current distribution of 

personal income, which in turn, depends on age distribution. As demonstrated in this Chapter, 

the shape of mean income dependence on time is controlled by values at two points - the starting 

point of the distribution and Tcr. The latter is defined by GDP per capita and the former is an 

external variable associated with the influx of new people in a given economy. One can expect 

that the number of newcomers somehow influences the growth rate of real GDP per capita. This 

intuition will be quantitatively tested in Chapter 2.  
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§1.7. Modelling high incomes – the Pareto distribution  

 

One of essential features of the PIDs measured in the United States and addressed in our 

microeconomic model is the existence of two inherently different regimes of money earning. 

Both regimes have one-to-one analogues in physics (Dragulesku & Yakovenko, 2001). The first 

regime, referred to as “subcritical”, corresponds to the evolution of income proportional to the 

capacity of a person to earn money, i.e. to the product of the capability to earn money and the 

size of earning means. The capability is an inherent feature of each and every person in a given 

economy arising from numerous interactions between people as economic agents. The capability 

is evenly distributed among 29 ranks as well as the sizes of earning means. As a result, the 

model defines a discrete ranking of the capability to earn money, which accurately describes 

PIDs at low and middle incomes. The portion of population covered by the subcritical regime is 

~90%.   

The second regime is a “supercritical” one. It spans the range of higher incomes 

described by the Pareto law distribution. This regime starts at some relatively large income 

threshold, the Pareto threshold, and supposedly. In physical disciplines, the supercritical regime 

with power law distribution of sizes is an often phenomenon. The mechanisms leading to the 

Pareto law are not well understood or modelled (Lise & Paczuski, 2002) and usually are 

explained by a number of processes known as self-organized-criticality (SOC). We also do not 

understand the mechanisms behind the Pareto law for personal income distribution. Instead, we 

assume that the distribution is purely probabilistic any person in this income interval can reach 

any income with corresponding probability. Individual capability to earn money is not important 

above the Pareto threshold: all people reaching the threshold have equal probability to reach any 

feasible level of income. Thus, the only quantitative requirement for people dreaming to get rich 

is to reach the Pareto threshold.   

A good (and close to our profession) example from hard sciences is the initiation of an 

earthquake.  Share stresses in solid Earth should overcome some critical value in order to start 

fracturing. When fracturing is started, the crack can propagate any distance from the smallest to 

the largest possible. In other words, even such catastrophic earthquake as the one occurred on 

December 26, 2004 at Sumatra started as the smallest crack. Since the frequency distribution of 

earthquake sizes is also described by a power law any small crack obtains a non-zero probability 

to become the largest earthquake when stress overcomes the critical value or threshold. Same is 

valid for personal incomes: every person can reach any possible income level, but first s/he 

needs to reach the Pareto threshold.      
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 As mentioned above, the mechanisms leading to scale free (power law) distributions of 

sizes are studied in more detail in the natural sciences. In economics, the nature of such 

mechanisms is still a big challenge, but one can conclude that the mechanisms work very fast. 

There is no delay between the moment, when some personal income reaches the Pareto 

threshold, and the moment, when the income leaps to its new position in the Pareto distribution. 

The observation behind this conclusion is simple: there is no deficiency in the observed PIDs at 

any income level, i.e. all vacancies arising from various processes are filled at no time. In solid 

Earth, final size of an earthquake is usually reached several seconds after fracturing starts. 

Because the PIDs measured by the Census Bureau undoubtedly reveal the presence of 

Pareto distribution it is possible to directly incorporate this observation into the model with 

relevant empirical parameters. This is the simplest but not the best way to fully use available 

information. Despite the fact that we do not understand the mechanisms driving the Pareto law, 

there are several quantitative problems one can resolve in the framework of our microeconomic 

model. One important task is to accurately determine the Pareto threshold separating the 

subcritical and supercritical regimes. There is a relatively wide transition zone between the 

branches where the subcritical (exponential) and supercritical (power law) distributions 

practically coincide. The model distinguishes the zones by matching various characteristics of 

observed and predicted distributions. 

The portion of people having incomes in the supercritical zone depends on work 

experience. Really, young people have no time to increase income to the Pareto threshold and 

elderly are losing income exponentially in average terms. One could expect the highest density 

of rich population in the mid-age group, i.e. in the work experience interval where Tcr resides. 

Thus, the portion in the Pareto income zone should grow to some critical age and then fall. Such 

complex behavior should be quantitatively predicted by any model of personal income 

distribution. Moreover, such models should also predict the finer changes in the shape of 

personal income distribution evolving over time. This is a good quantitative test of predictive 

power.  

Our model does not rely on any conventional economic theory or approach. It simulates a 

wide range of independent observations of personal income made in the United States. In part, 

these observations are carried out for economic purposes and are based on some definitions 

adapted from the field of theoretical economics. For example, gross domestic income is divided 

into personal and corporate portions, despite the fact that at the end of the day the latter also 

belongs to some selected people. In our framework, this partition is treated as an artificial one. 

Our model includes only variables related to economic system as a whole, because parts of the 

system are prone to random fluctuations.  One can always introduce a formal model which links 
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measured variables and take into account no external meaning of the data. Although our 

quantitative model has no roots in the mainstream economics, its merits have to be assessed by 

predictive power and resolution capabilities.  

The overall PIDs from 1994 to 2001 with two branches are shown in Figure 1.4.6. The 

observed value of the power law exponent obtained by regression analysis is -3.97. The original 

annual distributions of the absolute number, as given by the U.S. Census Bureau, are normalized 

to the total population for corresponding calendar years. The obtained population density 

distributions are adjusted for the growth in nominal GDP per capita and the width of adjusted 

income bins according to the procedure described in §1.4. The normalized and adjusted curves 

demonstrate a high degree of similarity. This effect has been interpreted as the existence of a 

rigid PID structure.  

Several PIDs in various open-end income intervals measured in 1994 are presented in 

Figure 1.7.1 as discrete functions of work experience with 5-year spacing. The curves are 

normalized to the peak value among all age groups in corresponding income intervals and 

illustrate the evolution of PID with increasing low-end threshold. The first interval starts with a 

zero income threshold. This interval also includes those people who are reported in the original 

Census Bureau table as having no income or losses. Second curve corresponds to the PID which 

includes all people with income above $10K, and so on with $10K increment. The last curve 

represents PID for the people with income above $100K. 

The evolution of shape is remarkable. The first curve has its peak in the first work 

experience interval – between 0 and 9 years. As a rule, young people entering the US economy 

have very low income between $0 and $10K during the starting 10 years. Many of them stay in 

this interval forever. With increasing low-end threshold, the curves are gradually transforming 

into a bell-like (uni-modal) shape, with the peak value moving towards the work experience 

group between 30 and 39 years. As expected for a distribution governed by a power law, the 

curves with low-end threshold above $60K practically coincide, i.e. they are scale free.  This 

observation also confirms the assumption that all high-income positions, even with the highest 

possible incomes, are filled momentarily. Otherwise, it would not be possible for the youngest 

age group to be characterized by a scale free distribution.  

The portion of the observed PID described by Pareto distribution seems to be the 

simplest one. Really, the observed behavior of the PID at higher incomes obeys a simple law and 

should not change in time, at least theoretically. The total number of people with income in the 

zone controlled by the power law develops with time as a linear function of nominal GDP per 

capita and population growth. This theoretical conclusion is confirmed by observations. Figure 

1.7.2 depicts the number of people with income above $100,000 normalized to relevant working 
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age population for the period between 1994 and 2001. The normalization is necessary to 

eliminate of the effect of growing working age population. The linear regression line 

demonstrates that our assumption is correct. In 2001, around 3% of working age population had 

incomes above $100K, and this portion will grow over time.  

Figure 1.7.3 presents the number of people who reached $100K income as a function of 

work experience for selected years between 1994 and 2002. The numbers are normalized to total 

population in corresponding age group. There was no significant change in the shape of the 

curves over time, considering the accuracy of the CPS. Hence, the observed PIDs are fixed in 

relative terms at higher incomes confirming the existence of a rigid hierarchy of personal 

incomes independent on age. Is our microeconomic model capable to predict this observation?  

 The best-fit personal income distributions in the high income zone in the United States 

are obtained using the model with the following defining parameters: the start year is 1960, 

TBcrB(1960)=26.5 years, α=0.087, ΛBminB(1960)=1.0B Band Σ BminB(1960)=1.0, and initial value of the 

Pareto threshold MBP(1960)=0.43. We also use varying index α1 with defining parameters Ar=80 

years and Mr=0.45, as obtained in §1.6 for the period between 1994 and 2001.  

Figure 1.7.4 compares predicted and observed number of people with income above the 

Pareto threshold in 1994 and 2002. Apparently, this number depends on work experience. In the 

youngest age group, one cannot expect too many rich people. Overall, the predicted values 

confirm this assumption. In the age groups well above the critical work experience, TBcrB, the 

number of people with high incomes is also decreasing with age, in absolute and relative terms. 

The portion of people above the Pareto threshold has a peak near TBcrB. It is worth noting again 

that the predicted curves better match the observed ones in age intervals where personal income 

has an adequate definition and the portion of people without income is the smallest.   

In Figure 1.7.4, the Pareto threshold is evolving in time as real GDP per capita. Initial 

dimensionless Pareto threshold is 0.43 in 1960. In accordance with GDP growth, the threshold 

reaches the level of 0.829 in 1994 and 0.953 in 2002. The predicted curve is slightly lower than 

the observed one in 1994, but the curves for 2002 are in excellent agreement.  

The discrepancy between the theoretical and observed curves might be induced in part by 

the uncertainty in income measurements.  The resolution of income distribution is fixed at 

$2500, what also affects the amplitude of the discrepancy. One can only use discrete data with 

$2500 step. Effectively, one cannot distinguish between $50,000 and $52,499 – both values are 

inside the same income interval.  The Pareto threshold increased in nominal terms from $43.5K 

in 1994 to $57.6K in 2002, i.e. only by ~$14000. For example, we used the income interval 

above $42.5K to present the actual distribution and obviously overestimated the total number of 

people in any work experience interval, because all the people with incomes between $42.5K 
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and $43.5K were counted in. In the model, the income and time resolution of income 

distributions is not limited. For practical purposes, we fixed the resolutions to $1K and 1 year. 

All in all, the most important result of the comparison in Figure 1.7.4 is that the shape of 

the observed curves is accurately predicted over the whole range of work experience. This 

demonstrates the adequacy of our model in describing the underlying physical and social 

processes governing the principal features of the Pareto distribution.  

Since the power law defines a scale free size distribution any threshold above the Pareto 

one should provide equivalent curves. The reason to increase the threshold far above the MP is to 

avoid the uncertainty in the estimation of the Pareto threshold. There is a transition zone between 

the sub- and supercritical regimes of income earning and the former might introduce a bias in the 

quantitative estimates of the latter near the boundary.   Figure 1.7.5 presents the portion people 

who reached $100K (current dollars) as a function of work experience in 1994 and 2001. The 

predicted curves are in a good agreement with the observed ones in shape and level. Again, there 

is a slight difference in the initial parts of the theoretical and actual distributions. More people 

are counted in the very first work experience group in comparison with the predicted values. 

Despite a minor influence of this observation on the overall distribution in terms of the total 

income, one can argue that this difference is due to a wrong estimate of dissipation factor, α, 

used in the model. This factor defines the time constant in (1.3.3’) and the rate of income growth 

at the initial part of individual income trajectory is the most sensitive to the factor.   

We have no convincing quantitative explanation for the observed discrepancy, but should 

mention that actual start point of work experience for some people is well below 15 years of age 

and the accuracy of measurements at higher incomes for the youngest group is definitely low.  

Also, the resolution of income data is very low: the width of the first interval is 10 years. A data 

set with a finer resolution could help to reveal the reason for the discrepancy. 

Figure 1.7.6 depicts theoretical curves of population density (income) distribution above 

the Pareto threshold as a function of work experience for selected years between 1980 and 2002. 

The curves are normalized to total population in the Pareto income zone for corresponding years 

and present a clear picture of the evolution during the modelled period.  In the beginning of the 

1980s, when effective dissipation factor, α/ΛBminB was as large as 0.08, the work experience 

needed to reach the (normalized and dimensionless) Pareto threshold of 0.43 was lower and 

people with the highest capabilities, S, easily attained this level in the first 10 to 20 years of 

work.  This corresponds to an almost linear growth in the number of people reaching the 

threshold in the first decade of work. With increasing ΛBminB, effective dissipation factor was 

decreasing and the time needed to reach the threshold was growing. The start segment of the 

curves became smoother and the fastest growth migrated from the first to the second decade of 
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work experience. Accordingly, the peak value has been shifting to larger work experiences. The 

usage of actual age pyramid introduced visible disturbances in the curves.  

 So, the model predicts the exact number of people reaching the Pareto threshold 

depending on work experience. Relevant population density distribution also evolves over time 

in a manner predicted by the model.  The model can be also used to predict the future 

development if projections of population structure and GDP per capita are available. Figure 1.7.7 

presents such a prediction for selected years between 2002 and 2023 based on the population 

projection published by the Census Bureau and the growth trend of real GDP per capita 

estimated as ~1.6% per year. This prediction is possible because there is no random or 

deterministic process which leads to observed features of power law distributions except the 

process of the personal income growth to the level of the Pareto threshold. In fact, if any other 

process does exist and adds (subtracts) sufficient number of people to that observed above the 

Pareto threshold, the agreement between the predicted and measured curves would be destroyed. 

 The model explicitly states that when all positions in the Pareto distribution are 

occupied there is no opportunity to create a new one with equivalent properties and occupy it. 

All positions are enumerated. Individuals may swap their positions, however. When a person has 

a low capability to earn money, there is no way to get rich because s/he cannot reach the 

threshold with that capability. If this person has high capability but small earning means, s/he is 

likely capable to change the means to a bigger one and reach the Pareto threshold.  Theoretically, 

an exchange of capability between two people is not prohibited, but the ranking is rigid and it is 

difficult to imagine somebody to overcome the system of external evaluation, which put her/him 

to current rank. 

 When one’s personal income reached ~$57,000 in 2005, it was a good start to obtain a 

higher income with the probability inversely proportional to the income cubed, as defined by the 

empirical exponent in actual Pareto distribution (see Figure 1.4.6). In §§1.8-1.9, we discuss the 

Pareto law index in detail, because its variation affects the estimation of Gini coefficient.  In this 

paragraph, we are focused on the model, not on empirical findings.  

 Because the observed PIDs in the United States have demonstrated their rigidity over a 

long period one can conclude that just few people can ever reach the Pareto threshold and have a 

non-zero probability to become rich. The majority, about 90%, is below the Pareto threshold 

forever and it gets income exactly proportional to personal capability to earn money.  

 We developed the concept of personal income distribution and relevant quantitative 

model during the period between 2003 and 2004. The development included standard trial-and-

error procedures with empirical assessment of defining parameters based on contemporaneous 

data. The period covered by the measurements of PID at high incomes was limited to 1994. 
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Later, the Census Bureau opened an access to PIDs for the whole period since 1947. These PIDs 

were given in form of scanned images of original CPS reports, what required some additional 

time and efforts to digitize them for usage in quantitative analysis. Therefore, these new PIDs 

served as an independent source of information, which allowed validating and testing the 

predictive power of the model. Really, all defining parameters of the model were estimated using 

data in a short time interval, and the future and past evolution was predicted beyond the interval.  

Figure 1.7.8 illustrates the predictive power. The observed and theoretical curves for the year of 

1980 are in an excellent agreement over the whole range of work experience. The fluctuations in 

the measured curve are likely associated with measurement errors. In the following two 

paragraphs, the model is extended to a wider time interval between 1947 and 2006 and all 

characteristics of personal income distribution in the United Stated modelled in §§1.4-1.7 are 

also available. Hence, it is instructive to further test the predictive power of the model together 

with the estimate of income inequality as expressed by the Gini coefficient.    

 This is a good place to briefly speculate on the difference between capitalism and 

socialism as economic systems. Because this discussion is fully qualitative, it has no impact on 

our model and may be skipped by readers without any loss of consistency. In the first 

approximation, the socialist system is based on a theoretical assumption that personal income is 

proportional to the time necessary to produce some goods or service using some capability to 

produce varying among workers. This is the principle of socialism - to obtain income exactly 

proportional to the price of produced goods. The price is determined by (economic or political) 

authority according to some rules developed to balance inputs of time and productivity of 

population. As we have seen above, this assumption also works precisely in the capitalist 

economic system for the overwhelming majority of population. Ninety per cent of the population 

of 15 years of age and above gets personal incomes exactly proportional to their capability to 

produce income, as described by the microeconomic model.  When extended to the whole 

population, this rule limits personal incomes of those ten per cent of the population, which has 

incomes above the Pareto threshold. In the socialist system, they would obtain incomes 

according to theoretical values, as determined by the model. Capitalism, however, has some 

extra feature. These ten per cent of the population have personal income not proportional to the 

capability. Fortunately for capitalism, their incomes are described by a power law distribution, 

which is extended to incomes of several million dollars and above. These people actually 

produce some additional income (and thus, GDP), exceeding the theoretical value by ~35%. In 

other words, they produce 45% of gross income, GPI.  If they would produce in the subcritical 

regime, i.e. in the regime realized in the socialist economic system, their input would be only 

34% of GPI. After simple calculations, one can conclude that capitalism has an advantage of 
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personal income distributed by the Pareto law, which increases gross personal income or GDP 

by at least 20% compared to that in socialism. In the long run, this excess provides progressively 

increasing additional GDP. Hence, developed capitalist countries have been growing at a higher 

rate than socialist ones because of the presence of rich people. This might be a fundamental 

feature of capitalism.    
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§1.8. Modelling Gini coefficient for personal incomes in the USA between 1947 and 2005 

 

The microeconomic model developed is previous paragraphs describes personal income 

distribution in the United States and its evolution through time. This model is based on the 

prediction of each and every individual income for the population of 15 years of age and over. It 

accurately predicts the overall PID, the average income dependence on work experience, the 

evolution of PIDs in narrow age groups, and the number of people and age dependence in the 

income zone described by the Pareto distribution. The model also provides quantitative 

predictions for these variables beyond the years where corresponding data are available. Having 

a complete and precise description of the US PID evolution one can compute the evolution of the 

Gini coefficient. This makes the Gini coefficient only of secondary importance. 

The purpose of this paragraph is to accurately estimate the Gini coefficients associated 

with the personal income distributions provided by the US Census Bureau and to model the 

evolution of these coefficients between 1947 and 2005, i.e. during the period of continuous PID 

measurements. An extended analysis of the PIDs has been carried out and the discrepancy 

between observed and predicted Gini coefficients is interpreted in terms of the changing 

accuracy and methodology, including income definitions, used in the CPS during the studied 

period. 

 The Gini coefficient, Gi, is a standard measure of income inequality. By definition, Gi is 

the ratio of the area between the Lorenz curve related to a given PID and the uniform (perfect) 

distribution line, and the area under the uniform distribution line. The Lorenz curve, Y=F(X), is 

defined as a function of the percentage Y of the total income obtained by the bottom X of people 

with income. Having measured values of individual incomes for all people with income and 

ranking them in increasing order one can precisely calculate corresponding Gini coefficient. It is 

also possible to include in the consideration those people who do not report nonzero income 

according to contemporary income definition. In reality, there are some difficulties potentially 

affecting the accuracy of the PID estimates and the uncertainty of associated Gini coefficients. 

 The US Census Bureau has been measuring personal income distribution in the USA 

since 1947 in annual current population surveys. Methodology of the measurements and sample 

size has been varying with time (US CB, 2002). Therefore, one has to bear in mind potential 

incompatibility of the CPS results obtained in different years. Changes in income definitions, 

sample coverage and routine processing influences the estimation of various derivatives of the 

PIDs, for example, measures of inequality. Moreover, such changes in procedures and definition 

are likely accompanied by some real changes in true PIDs - the latter changes are hardly 
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distinguished from the former ones. The true PID is the distribution of incomes when all sources 

of personal income are included. 

There are two principal effects of the changing income definitions on the measured PIDs. 

First, the number of people with income critically depends on definition of income near zero 

value. Due to a high concentration of people in the low-income range of the measured PIDs in 

the USA the number of people without income is prone to large variations dependent on 

introduction of new or exclusion of old sources of income in the CPS questionnaires. In addition, 

it is difficult to give accurate definitions to numerous potential sources of annual incomes near 

$1, and even more difficult to distinguish between $1 and $2 per annum. Due to high uncertainty 

and low resolution of the current CPS methodology in the low-income end it is practically 

impossible to measure true PIDs. Thus, the measured PIDs represent only a varying portion of 

the true PIDs, the latter being the actual object for our modelling. (Here we assume that the gross 

personal income is an exactly measured (true) variable and its distribution among people is fixed 

and can be also exactly measured. In this sense, true PID and Gini coefficient do exist and, 

theoretically, can be measured.)  This variation creates some problems for the modelling and 

interpretation of results. 

Figure 1.8.1 demonstrates the evolution of the ratio of the number of people with income 

to the working age population. There is a significant increase in this ratio: from the lowermost 

value of 0.64 in 1947 to the highest 0.93 in 1988. The ratio has been slightly decreasing since 

1989 - to 0.89 in 2005. Such fluctuations should definitely introduce a significant bias in the 

estimates of Gini coefficient – people without income bring a large increase in the coefficient, if 

included. Therefore, when estimating the Gini coefficient one has to consider both cases – all 

population of working age and the portion with income. The true PID and Gini coefficient has to 

be somewhere between these two limiting cases. Considering the entire working age population, 

including persons without income according to contemporary definitions, one significantly 

overestimates the Gini coefficient. This effect is especially high in the beginning of the studied 

period. When only people with income are included, the Gini coefficient is obviously 

underestimated because zero income, quantitatively, is also income. With time, these two 

estimates have to converge as the portion of population without income decreases. 

Second effect of the revisions to income definition and CPS procedures is related to the 

change in the portion of gross personal income in GDP. The introduction of new sources of 

income in the CPS questionnaires should result in an increase in the estimated GPI. Figure 1.8.1 

depicts the evolution of the GPI portion in the US GDP: from 0.76 in 1951 to 0.86 in 2001. A 

significant and fast drop in the portion is observed between 2001 and 2005 – from 0.86 to 0.82. 
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The net change in the GPI portion between 1947 and 2005 is smaller than the change in the share 

of population with income. 

A fundamental assumption of the model for the evolution of individual incomes 

presented in §1.3 is that all people older than 14 years have nonzero annual income and 

contribute to GPI, which is equivalent to gross domestic income and GDP under our framework. 

This assumption allows modelling the evolution of PID using real GDP per capita, which 

completely determines the time histories of the model defining parameters. The actually 

measured PIDs are associated with a changing portion of GDP.  

 In addition to the principal difficulties associated with definitions and procedures there 

are some technical problems for the estimation of Gini coefficient as created by the 

representation of relevant data and the resolution of the measured PIDs. The US Bureau of the 

Census has been publishing the numbers of people enumerated in income bins of varying width. 

There were only 14 bins, including the open-end one for the highest incomes, in 1947 and 48 

bins in 2005.  

In the absence of information on each and every individual income, the Gini coefficient 

can be calculated by some approximating relation. For example, if (Xi,Yi) are the values obtained 

from the CPS, with the Xi indexed in increasing order (Xi-1 < Xi ), where Xi is the cumulated 

proportion of the population variable, and Yi is the cumulated proportion of the income variable, 

then the Lorenz curve can be approximated on each interval as a straight line between 

consecutive points, and  

 

Gia=1 - (Xi – Xi-1)(Yi -1 + Yi),  i=1, … , n    (1.8.1)  

 

is the resulting approximation for Gi.  One can also approximate the Lorenz curve using 

exponential function and a power law, where appropriate, for the interpolation of the underlying 

PID, as discussed in   §1.4.  

The choice of an appropriate function for the interpolation reveals an important pitfall of 

the CPS - the usage of the same income bins for representation of data counted during relatively 

long period of time. The growth rate of nominal GDP in the USA was high - more and more 

people obtained incomes above the upper limit in the CPS income reports and found themselves 

in the group " $MAX and over". So, the coverage of the populations below and above the Pareto 

threshold, also proportionally growing with time, was significantly different. This variation in 

the coverage might potentially result in a better or worse overall resolution and corresponding 

bias in the estimation of Gini coefficients. 
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The US Census Bureau provides several versions of the PIDs between 1947 and 2005. In 

some reports, there are presented the tables containing counts in year-specific income bins 

expressed in current dollars. Some reports give PIDs using CPI-U adjusted (constant) and/or 

current dollars but in the same income bins for all years staring from 1947 to the year of the 

report issuance. Figure 1.8.2 shows some selected original PIDs normalized to the total 

population (15 years of age and above) for corresponding years and additionally divided by the 

widths of corresponding income bins. These curves are population (or probability) density 

functions, pdf, and show the number of people in $1-wide bin for a given income level. Such a 

representation allows a direct comparison of the PIDs because they are independent on 

population size and reduced to the same income bins. As before, we associate the population 

density with mean income in given bins.  

These “mean” densities obtained for bins of varying width might be a poor approximation 

for the densities at the edges of the bins. The wider is the bin the poorer is the approximation. It 

is worth noting that such a representation naturally excludes the open-end high-income bin 

because there is no width and mean income associated with this bin. 

The PIDs between 1947 and 1987, shown in Figure 1.8.2a, are obtained using the same 

ten income bins as defined by the following boundaries expressed in current dollars: $0, $2000, 

$4000, $6000, $8000, $10000, $12500, $15000, $20000, $25000, and above $25000. The latter 

open-end bin is not shown in the Figure because it does not have finite width for normalization 

of the PID reading in this bin. Thus only nine bins describe the PIDs between 1947 and 1987.  

Figure 1.8.2a illustrates the problems of resolution with constant income bins. The PID 

for 1947 (and also for the years between 1948 and 1950) does not contain any reading for 

incomes above $9000. This is due to the absence of people reporting such incomes in 

corresponding CPS population samples, but not because of the absence of such people at all. The 

best resolution (among the PIDs shown in the Figure) at high incomes, i.e. in the Pareto zone, is 

observed in 1957 – there were seven bins covering the zone. At the same time, there are only two 

bins covering the low-income zone in 1957. For the PID in 1987, the Pareto threshold is larger 

than $25000, and the PID contains only one reading in the Pareto zone corresponding to the 

open-end bin, and this reading is not shown in the Figure. Obviously, this PID provides the best 

resolution in the low-income portion of the distribution – nine bins. Therefore, the constant bins 

fail to provide a uniform description of the PIDs between 1947 and 1987 and the estimation of 

Gini coefficient can be severely biased. 

The PIDs between 1947 and 2005 presented in Figure 1.8.2b are characterized by income 

bins which are better adjusted to the observed PIDs. These bins cover both low and high incomes 

better than in Figure 1.8.2a, with a varying resolution, however. As mentioned in §1.4, the years 
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after 1994 are characterized by the highest resolution and the narrowest income bins of $2500 

between $0 and $10000. Because of the increasing number of people with incomes over 

$100,000, three $50000-wide bins were introduced in 2000, covering incomes up to $250,000, 

extra to those provided by standard CPS reports. These wide bins allow a more accurate 

representation of the Pareto distribution and corresponding Gini coefficient. 

As we have found in §1.4, the PIDs between 1994 and 2002 practically collapse to one 

curve, when normalized to the working age population and nominal GDP per capita. This 

observation demonstrates a fundamental property of the personal income distribution in the USA 

– it is characterized by a fixed hierarchy of incomes, which changes very slowly over time as 

induced by the evolution of age structure and real GDP per capita.  

The PIDs measured for the years before 1994 allow to validate this property and to 

extend the presence of such a fixed hierarchy in the PIDs by 47 years back in the past (and 3 

years ahead). There is a problem related to the normalization factor, however. The years between 

1994 and 2002 are characterized by the constancy of the portion of the GPI in the GDP and the 

population with income in the working age population, as Figure 1.8.1 demonstrates.  

This is not the case for the years before 1980, however. As a consequence, when 

normalizing to nominal GDP, one has to replace it with nominal GPI in order to accurately 

represent the evolution of the PIDs after 1947. Such a procedure should compensate the 

difference in the evolution of the GDP and GPI - less sources of personal income were 

considered in the earlier years and income scale was effectively biased down. Figure 1.8.3 

displays the cumulative growth in the nominal GDP and GPI between 1947 and 2005 as reduced 

to the total working age population and the population with income. The curves diverge with 

time. The increasing deviation permits a more robust choice of an appropriate variable for a 

normalization, which we expect to be able to convert all PIDs for the years between 1947 and 

2005 into one curve. Figure 1.8.4 depicts the PID for 2005 normalized to the four variables in 

Figure 1.8.3. One can clearly distinguish between the resulting normalized PIDs in the low- and 

high-income zones. 

Figures 1.8.5 and 1.8.6 display some results of the normalization of the measured PIDs to 

the measured nominal GPI, as reduced to the people with income. For the period between 1947 

and 1987 (Figure 1.8.5), where the PIDs were measured in the same bins, the normalized PIDs 

practically collapse to one curve with only minor deviations likely associated with measurement 

errors. For the period between 1947 and 2005, where a progressively higher resolution is 

available with the widths of income bins decreasing in relative terms, the normalized PIDs for 

population with income (Figure 1.8.6a) are also very close. Narrower bins result in higher 

fluctuations due to measurement errors, however. At the same time, the normalized PIDs for the 
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entire working age population demonstrate a larger divergence with time because the 

normalization is associated with the nominal GPI reduced only to the population with income. 

So, the choice of normalization basis must correspond to the variable under consideration.  

Overall, the normalized PIDs in Figures 1.8.5 and 1.8.6a are close. This observation 

extends the presence of a fixed hierarchy of personal incomes, as expressed by the portion of 

population having a given portion of gross personal income, to the years between 1947 and 1993, 

and beyond 2002. Therefore, one may expect only a slight variation in the Gini coefficient 

related to the PIDs measured since 1947. The presence of the hierarchy also represents a strong 

argument in favour of our model for the evolution of individual and aggregated income. 

Having studied some principal properties of the PIDs for the years between 1947 and 

2005, one can start a direct estimation of the Gini coefficient using (1.8.1). However, there are 

several technical problems related to the discrete representation to be first resolved. The PIDs 

provide only the estimates of total population but not the total income in given income bins. 

Only for the years after 2000, the mean income is determined for every bin allowing for an 

accurate estimate of cumulative income. No mean incomes are reported for the previous years, 

however. 

When replacing true mean incomes with central points of corresponding bins, one 

introduces a slight bias in the estimate of Gini coefficient, as Figure 1.8.7 shows. Thus we need 

more reliable estimates of mean incomes. The best choice would be to approximate the observed 

PIDs in the low-income zone by exponential function, to determine corresponding exponent 

index for each year, and to calculate the Gini coefficient for in this approximation. This 

procedure might potentially provide a good estimate of the Gini coefficient if corresponding 

population estimates in given income bins are accurate. Unfortunately, the accuracy is 

inhomogeneous over the bins of varying width and the advantages of the exponential 

approximation might disappear, as Figure 1.8.8 demonstrates. Therefore, we use a different 

approach in the low-income zone. 

The mean income estimates are available between 2000 and 2005 and it is easy find their 

average distance from central points of relevant bins. Figure 1.8.9 presents such deviations and 

corresponding regression line (mean deviation) for 2001 and 2005. The average dimensionless 

distance, i.e. the difference in $ divided by the bin width in $ ($2500 for the years between 2000 

and 2005), is -0.12. Thus, in the following estimations of the Gini coefficient we use the mean 

income values corrected for this deviation from the centers of bins in the low-income zone. 

In the high-income zone, a power low approximation is a natural choice for the PIDs, as 

demonstrated in Figures 1.8.5 and 1.8.6. Theoretically, the cumulative distribution function, 

CDF, of the Pareto distribution is defined by the following relationship: 
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CDF(x) = 1 - (xm /x)k 

 

for all x>xm, where k is the Pareto index. Then, the probability density function, pdf, is defined as 

 

pdf(x) = kxmk/xk+1      (1.8.2) 

 

The functional dependence of the probability density function on income allows an exact 

calculation of the population in any income bin, total and average income in this bin, and the 

input of the bin to relevant Gini coefficient because the pdf exactly defines the Lorenz curve. 

Thus, if populations are enumerated in a predefined set of income bins then relevant Lorenz 

curve can be easily retrieved using a known value of the Pareto index, k. Therefore, we use 

(1.8.2) in the following estimation of empirical Gini coefficients in the Pareto zone. As described 

in §1.3, the Pareto threshold (in current dollars) evolves proportionally to nominal GPI per 

capita. Such an evolution provides the rigid shape of the normalized PIDs because it retains 

unchanged the relative income level, where the transition from the low- to high-income zone 

occurs. 

Now we are ready to estimate the Gini coefficient for the measured PIDs using the 

corrected mean incomes in the low-income zone and the power law approximation in the high-

income zone. To begin with, we compare our estimates of Gi with those reported by the US 

Census Bureau, as shown in Figure 1.8.10. For the years between 1994 and 1997, the curves are 

very close. In 1998, a sudden drop by ~0.01 in the CB curve is not repeated by the estimated one. 

There is no clear reason for the drop – macroeconomic or that related to the CPS procedures. It is 

likely that there was some change in the Census Bureau’s approach to the estimation of Gini 

coefficient in 1998. After 1998, the curves continue to slightly diverge, but move in sync 

otherwise. The difference between the curves reaches 0.01 in 2005. Overall, our estimates of Gi 

seem to be consistent with the CB’s ones. This observation partly validates the Gini estimation 

procedure we have developed.  

Figure 1.8.11 presents the estimates of Gi for the PIDs in current dollars, which do not 

include people without income. There are “crude” estimates of Gi obtained for the populations 

counted in the same income bins between 1947 and 1987. A “fine” PID is available from the 

year specific bins for the period between 1947 and 2005. Despite corresponding income bins in 

the second case also were used several years in a raw, the overall resolution of the PIDs is higher 

and Gi estimates are of a lower uncertainty. Two curves in Figure 1.8.11b present the evolution 

of Gi for the two sets of PIDs – crude and fine ones. In 1947, the curves are spaced by 0.1. When 
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approaching 1970, they slowly converge. Between 1974 and 1984, the curves are hardly 

distinguished. In 1985, a new period of divergence starts. The observed discrepancy between the 

curves is related to the coverage of the PIDs by corresponding sets of income bins. 

Figure 1.8.11a illustrates the difference between two Lorenz curves for 1947. The crude 

set of bins does not resolve the Lorenz curve well and relevant Gini coefficient is highly 

underestimated as compared to that estimated from the fine set. For the years between 1974 and 

1984, both sets provide a compatible resolution (the number of bins is 10 and 18, respectively) 

and the estimates converge. 

In fact, the Gini curve associated with the fine PIDs hovers around 0.51 between 1960 

and 2005 despite the increase in the GPI/GDP ratio and the portion of people with income during 

this period (see Figure 1.8.1). This is a crucial observation because of the active discussion on 

the increasing inequality in the USA as presented by the Gini coefficient for households. 

Supposedly, the increasing Gini for households reflects some changes in their composition, i.e. 

social but not economic processes defined by the distribution of personal incomes. 

Between 1947 and 1960, the fine Gi-curve monotonically grows from 0.45 to 0.50. This 

growth may be associated with the increasing resolution in corresponding PIDs. One can expect 

a further increase in the estimates of Gini coefficient when a finer grid is used. The possibility of 

a slight increase in the estimates of Gi associated with the inclusion of new (and true) income 

sources is also not excluded. All in all, the Gini coefficient for the true PIDs is likely to be higher 

than that predicted using the fine PIDs for population with income. 

 In the absence of the true PIDs, it is possible to carry out an estimate for the limit case – 

to include all people without income in the first income bin with zero width, i.e. from $0 to $0. It 

is difficult to believe that a person without income might potentially survive. However, current 

income definitions do not cover the sources, which bring actual personal incomes of people 

“without income”. In any case, the inclusion of these people in the PIDs creates a problem for 

the Gini coefficient estimation. Figure 1.8.12b presents two time series of Gini estimates for the 

crude and fine bin sets. In 1947, the difference is 0.05 what can be explained by the properties of 

corresponding Lorenz curves, as Figure 1.8.12a depicts. Then, the curves converge and intersect 

in 1971. Between 1971 and 1984, the curves are very close and diverge again since 1985. These 

observations are similar to those associated with the PIDs for the population with income. The 

only difference is that the curves for the PIDs with total working age population undergo an 

expected decrease with time according to the decreasing portion of population without income. 

Therefore, the Gini curves associated with the total working age population and with its portion 

having nonzero income should converge over time. When the portion with income reaches 1.0, 
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i.e. everybody has a nonzero income, the curves will become identical. So, where is our 

prediction of Gi(t) relative to the empirical curves? 

In the model, the evolution of personal incomes is defined by a number of parameters, 

which we have determined empirically in previous paragraphs. For the estimation of Gini 

coefficient a crucial parameter is the Pareto law index, k, which defines how “thick” is the PID 

tail in the high-income zone. There are two independent techniques for the estimation of k.  

First, for a Pareto distribution with index k and minimum value, xm, the mean value is 

 

xav  = (k+1)xm/k. 

 

Therefore, the measured average incomes for the open-end income bins provide valuable 

information on corresponding Pareto indices: k=xm/(xav-xm). Figure 1.8.13 presents the estimates 

of index k for the years between 2000 and 2005. These values allow multiple estimates using the 

increasing number of people with incomes above $250,000, $200,000, $150,000, and $100,000 – 

all in the Pareto zone. For example, the average income for people with incomes above $100,000 

in 2005 is $176,068 and xav for people with incomes over $250,000 is $470,616. Corresponding 

Pareto indices are 1.31 and 1.13, respectively. The latter estimate is obtained using the average 

incomes for male and female separately, as presented by the Census Bureau. In 2005, there were 

10,896,000 people with income above $100,000 and only 1,334,000 above $250,000. Bearing in 

mind that the population estimates are also obtained using only a relatively small population 

sample (~80,000 households), one can consider the Pareto index for the population with income 

over $250,000 as less reliable than the former value. Also, the average income in the open-end 

bin may be slightly shifted up due to the effect of few super-rich people, who do not obey the 

Pareto distribution. Such a deviation from the power law distribution is also often in the natural 

sciences and usually considered as statistical fluctuation related to the under-representation in 

any finite subset of infinite distribution. For example, catastrophic earthquakes may not obey the 

Gutenberg-Richter frequency-magnitude relation. According to Figure 1.8.13, k=1.3 is our best 

choice. 

Second method is a direct estimation of k using a linear regression technique in the Pareto 

income zone. For such a regression, we represent the probability density functions in the log-log 

coordinates, as shown in Figure 1.8.14. The slope of the regression line is -3.36. Therefore, the 

Pareto index is k=3.36-2=1.36, i.e. consistent with the results obtained by the first method. 

Figure 1.8.15 demonstrates the effect of k on the Gini coefficient predicted by our model. 

Obviously, lower k values create “thicker” tails in corresponding PIDs, i.e. more people with 

higher incomes, and larger Gi values. The effect of k on Gini is a nonlinear one and the 
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difference of 0.3 units in the index results in the Gini coefficient difference of 0.01 to 0.015. One 

should not neglect such a difference when comparing predicted and measured Gini coefficients. 

Another parameter of the model, which critically depends on the Pareto index, is the 

effective increase in income production in the model relative to that in the sub-Pareto income 

zone (see §1.3 for details). Figure 1.8.16 depicts the dependence of the corresponding ratio on k. 

As obtained previously, the empirical value of 1.33 exactly corresponds to k=1.35. This ratio is 

very sensitive to k, and the effect is also slightly nonlinear. 

Having estimated the empirical parameters defining the model and the age structure of 

the US population between 1947 and 2005 one can predict the evolution of Gini coefficient (for 

personal incomes) during the studied period. Figure 1.8.17 compares the measured and predicted 

Gini coefficients. The predicted curve is in a good agreement with that obtained using the PIDs 

for the persons with income. The latter curve lies below the former one during the entire period. 

The empirical Gini coefficient for the PIDs including all working age population is always above 

the predicted curve. Hence, the predicted curve always takes the place just between the empirical 

ones and the latter two likely will converge to the predicted curve in the future, when accurate 

definitions of income are introduced. 

This is an expected result of the modelling – neither of income definitions given by the 

Census Bureau can provide an adequate description of the true personal income distribution and, 

thus, all of them fail to predict the true Gini coefficient. The usage of biased Gini values may 

lead (and leads!) to economic misinterpretation and social confusion. The Gini coefficient for 

personal incomes in the USA underwent a slight increase between 1947 (0.5346) and 1962 

(0.5378), and then has been monotonically decreasing to the current value of 0.524. There was 

no significant increase in income inequality in the USA during the last 60 years, as expressed by 

the Gini coefficient for personal incomes predicted by our model. 

There are several simple, but meaningful findings related to the estimation of the 

empirical Gini coefficients. First and most important consists in the fact that the estimates of 

Gini coefficient critically depend on definition of income. The inclusion of new income sources 

in the CPS has resulted in a large change in the number of people with income and also in the 

ratio of GPI and GDP. The current set of definitions is far from the true PIDs. 

Second, the Gini coefficient associated with the entire population of 15 years of age and 

over and that associated with people with nonzero income converge with time as the portion of 

people without income decreases. The true Gini coefficient has to be somewhere between these 

two estimates. Thus, the empirical estimates can not be considered as reliable for the purposes of 

economics as a theory. 
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Third, the resolution of the empirical PIDs directly influences the estimates of Gini 

coefficient. A higher resolution guarantees a smaller variation in Gini coefficient over time. Poor 

resolution leads to a negative bias in the Gini estimates. 

Fourth, the empirical PIDs collapse to one curve when normalized to the cumulative 

growth in nominal GPI for the studied period between 1947 and 2005. The remaining differences 

in the PIDs are well reflected in the changes of Gini coefficient obtained using the population 

with income.  

The model predicts the unchanged (normalized) PIDs and Gini coefficient between 1947 

and 2005. Some weak changes in the PIDs and Gini are related to economic growth and the 

changes in the age structure of American population. The decreasing portion of young and thus 

relatively low-paid people in the working age population effectively leads to a decrease in the 

Gini coefficient. The increasing portion of the population older than the critical age Tcr (55 years 

in 2005) results in an increase in the portion of relatively poor people because of the exponential 

decrease of personal income (including average one) with age. As a net result of these effects, 

the empirical Gini coefficient has a minimum of 0.5238 in 1990 and then starts to grow again, 

reaching 0.5266 in 2005. 

Such defining model parameters as the Pareto law index (1.35) and the ratio of the 

efficiency of money earning in the Pareto zone relative to that predicted by the model (1.33) are 

well calibrated by the empirical PIDs and Gini coefficient. Our microeconomic model is very 

sensitive to these parameters. 

The empirical Gini curves converge to the predicted one. Asymptotically, the empirical 

curves should collapse to the theoretical one when all the working age population will obtained 

an appropriate definition of their incomes. This convergence should be seen more clearly in the 

age dependent PIDs, where the portion of population without income decreases with work 

experience. For example, in the age group between 45 and 54 years this portion increased from 

0.78 in 1960 to 0.94 in 2005. Hence, the portion was consistently larger and changed less than 

that for the working age population. One can expect a lower difference between the two 

empirical estimates and a better prediction. 

The Gini coefficient is a crude and secondary measure of inequality for economics as a 

science. It could be useful for social and political discussions as a relative and operational 

measure without any specific meaning of its absolute value. What is important and has a primary 

significance for scientific models are the PIDs, which demonstrate a fixed hierarchy during a 

very long period between 1947 and 2005. (It is very unlikely that this hierarchy will be destroyed 

in the near future.) The shape and the evolution of the measured PIDs are well predicted for the 

whole period between 1947 and 2005. 
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The Census Bureau focuses its attention on the Gini coefficients related to the 

measurements of income inequality at a family and household level. Corresponding coefficients 

change over time and are presented as evidence in favour of the increasing economic inequality 

in the United States. Our estimates of the Gini coefficient for the PIDs, both empirical and 

theoretical, demonstrate that the inequality is not changing so dramatically. Therefore the Gini 

coefficient associated with households should be affected primarily by some changes in their 

structure.  
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§1.9. Modelling the evolution of age-dependent Gini coefficient between 1965 and 2006 

 

Understanding and modelling of the age-dependent personal income distribution deserves special 

attention. Dramatic changes in the shape of PID are observed with age. In §1.5, we successfully 

modelled the age-dependent PIDs in the United States for the period between 1994 and 2002. 

Our microeconomic model quantitatively describes the evolution (with age and over time) of 

each and every personal income as a function of individual capacity to earn money and real 

economic growth. The sum of all personal incomes predicted by the model builds a 

macroeconomic model. The modelling of the age-dependent PIDs was not accompanied by an 

explicit estimation of the level of income inequality. 

 Slight changes observed in the overall PIDs and the evolution of the Gini is related to 

economic growth and changes in the age structure. We have also demonstrated that empirical 

estimates of Gini coefficient converge to theoretical ones when all working age population has 

income. We have suggested that such convergence might be clearly observed in age-dependent 

PIDs since the portion of population without income decreases with age. 

The age-dependent PID in the youngest group is characterized by large differences from 

the overall PIDs. Obviously, all individuals start with zero income and the initial part of personal 

income time history is close to exponential growth. In the mid-age groups, PIDs are similar to 

the overall PID. In the eldest age group, PID is also different and is closer to that in the youngest 

group. Accordingly, the Gini coefficient undergoes a substantial change from the youngest to the 

oldest age groups. 

The purpose of this paragraph is to present accurate estimates of Gini coefficients 

associated with the age-dependent PIDs published by the US Census Bureau. We also model the 

evolution of Gini in various age groups between 1967 and 2005, i.e. during the period where the 

estimates of total personal income in each of these age groups are available.  

The portion of population with income varies over age and time. These variations might 

affect the estimation of Gini coefficient associated with personal incomes, as demonstrated in 

§1.8. In the youngest age group between 15 (14 before 1987) and 24 years of age, only from 

65% to 80% reported some income, as presented in Figure 1.9.1. Corresponding curve has a peak 

in 1979. Since then, the portion of people with income in this age group has been decreasing. 

This effect, obviously, needs a thorough examination and might be induced by the appearance of 

some new actual sources of income, which were not included in the contemporary CPS 

questionnaires. An increasing level of intra-family income redistribution is a potential 

mechanism to consider. 
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Figure 1.9.1 demonstrates that the portion of people with income increases with age 

before reaching its peak and then falls again. In 2005, the largest portion of around 98% was 

measured in the group between 55 and 64 years of age. This observation is consistent with the 

fact that the critical work experience, Tcr, in our model was moved in this age group. Between 

1967 and 1977, the curves for all age groups, except the youngest one, were converging; and 

after 1979 the scatter was almost constant. An important observation is the presence of a step in 

all time histories (except the youngest one) between 1977 and 1979. According to the Census 

Bureau, this step is related to the introduction of new income definitions and significant changes 

to the CPS methodology. In average, this step is of 10 percentage points. For example, the 

portion of population with income in the working age population as a whole jumped from 83% 

in 1977 to 92% in 1979. One can expect that further elaboration of income definition will finally 

result in the 100% participation in income distribution. There should be no persons without 

income. 

For people of 44 years of age and above, the portion with income is more than 95%. 

Therefore, in corresponding age groups, the difference between the Gini coefficient associated 

with people having income and that associated with the working age population as a whole has 

to be the smallest among all age groups. These age groups provide the best opportunity to test 

our model because almost everybody has some reported income, which might be biased by 

inaccurate definition, however.  

The procedure of Gini coefficient estimation is detailed in §1.8. The main amendment 

consists in the dependence of index k on age, as Figure 1.9.2 demonstrates. The evolution of the 

Pareto law index (slope) with age is as follows: k=-1.91 for the age group between 25 and 34 

years; k=-1.48 between 35 and 44; k=-1.38 between 45 and 54; k=-1.14 in the age group between 

55 and 64. It is clear that k declines with age. Obviously, smaller index k corresponds to a larger 

population density at higher incomes and a larger Gini coefficient. The decrease in k deserves a 

special study because it should be inherently linked to some age-dependent dynamic processes 

above the Pareto threshold. We limit our analysis by the empirical findings, however.  

The declining k is a specific feature of the age-dependent PIDs which should be 

incorporated in our model. In §1.8, we found that k=-1.35 for the population of 15 years of age 

and over, i.e. within the range of its change with age. It is not excluded, however, that the age-

dependent and overall k might also undergo some changes over time. The latter index may vary 

just because of the changing age pyramid, i.e. varying input of various ages to the net k. For the 

empirical estimates of the Gini coefficients carried out below, the observed variation in this 

index plays insignificant role because we use actual income distributions. For theoretical 
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estimates, the Gini coefficient might be overestimated for the youngest age group and 

underestimated in the oldest age group when one uses k=-1.35 everywhere. 

As mentioned before, the Census Bureau presents two versions of PID – for total working 

age population and for that with reported income. We have calculated empirical Gini in several 

(fixed) age groups between 1967 and 2005. Figure 1.9.3 displays its evolution in all groups 

except in the youngest one. The latter group is characterized by severe variations in methodology 

and definition of income. This makes it impossible to distinguish actual and artificial features in 

the evolution of Gi. The curves associated with all people aged in given ranges are marked “all”, 

and those including only people with incomes – “w/income”. The major revision to income 

definition between 1977 and 1979, which dramatically increased the portion of people with 

income, induced sharp decrease in the curves named “all”, and opposite changes in the curves 

“w/income”. For obvious reasons, the Gini coefficients for people with income are 

systematically lower than those for the entire population. The curves in Figure 1.9.3 have to be 

predicted by our model. 

Before 1977, the portion of population without income was big enough to introduce a 

significant bias in the estimates of Gini coefficient. It was overestimated for the entire population 

and was underestimated for the population with income. Same effect is observed for the age-

dependent Gini. Before 1977, one can observe large changes over time. After 1977, all curves 

are approximately horizontal, with only a slight decline. Hence, one can expect large deviation 

between these empirical curves and theoretical ones before 1977. 

The accuracy of theoretical estimates of Gini coefficient is related to the quality of PIDs' 

prediction. Figure 1.9.3 demonstrates that the Gini coefficients for the age groups over 34 years 

vary in a narrow range. This observation presumes that underlying PIDs are very similar. We 

have already demonstrated that the PIDs for the entire working age population (with income) for 

the years between 1967 and 2005 collapse practically to one curve when normalized to 

populations and nominal GPI (instead of GDP). Real GDP drives two key parameters in our 

model: critical work experience, Tcr, and the size of earning tools, Λ(t). However, when GPI is 

not equal to GDP (the equality is assumed in the model) one should use the former variable for 

the normalization of the PIDs. The GPI/GDP ratio has been varying through time since the start 

of the CPS.  

Figure 1.9.4 (similar to Figure 1.8.3) presents the evolution of various measures of mean 

income (i.e. GPI per capita) using: GDP; GPI reported by the BEA; and GPI reported by the 

Census Bureau, as estimated in the annual CPS. Two population estimates are used for 

calculations of these mean values – total working age population (all) and people reporting 
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income (with income). According to current income definitions, the GPI reported by the BEA is 

larger than that estimated by the CB because the former includes additional sources of income.  

In the case of age-dependent PIDs, one should separately estimate total personal income 

in each age group. Accordingly, Figure 1.9.5 presents the evolution of mean personal income in 

various age groups. There are two cases shown: for all people of given age (including those with 

no income) and for people who reported income. (By definition, mean personal income is the 

ratio of total personal income and relevant population.) One can observe significant differences 

between the youngest people and those in the groups with the largest mean income. These 

curves, obtained from the estimates provided by the Census Bureau, are used to normalize 

relevant age dependent PIDs. 

 Before normalizing the age-dependent PIDs to total income and population one needs to 

reduce them to the same units of measurements; originally, the PIDs are obtained in income bins 

of varying width. For example, Figure 1.9.6a displays the PIDs for the age group between 35 and 

44 years in 1967 and 2005. Income bins are not uniform in 1967 creating local troughs and 

peaks. In 2005, income bins are uniform between $0 and $100,000. Obviously, the number of 

people in a given bin depends on its width and position in the distribution. As discussed early in 

this Chapter, a reasonable way to reduce these inhomogeneous distributions to the same units is 

to divide the number of people in a given bin by its width. This mathematical operation defines 

population density, i.e. the number of people per $1 at a given income level. Figure 1.9.6b 

depicts the PIDs (shown in Figure 1.9.6a) normalized to the width of relevant income bins. The 

troughs and peaks are essentially smoothed in the density curves. It is likely that the true 

population density distribution can be represented by an exponent undergoing a smooth 

transformation into a power law function near the Pareto threshold. 

Finally, we have population density curves, which are defined in the same units. To 

reduce the curves to one dimensionless scale, we normalize them to the total population and to 

the increase in total personal income over years in relevant age intervals, as defined in Figure 

1.9.5. We expect that the normalized curves should collapse to one within the bounds of 

uncertainty related to measurement errors. Figure 1.9.7 displays the normalized PIDs in various 

age groups for years 1967, 1993, and 2005. There is no significant difference between the curves 

except that in the age group between 15 and 24 years of age, where the data are available only 

since 1974. Unfortunately, we have to exclude the latter age group from the modelling due to 

very high uncertainty in income measurements. It is likely that any conclusion drawn from this 

group would be severely biased. The overall PIDs are also presented and match the expectation.  

Apparently, the similarity between the normalized PIDs results in practically constant 

Gini coefficients in all age groups between 1967 and 2005. On the other hand, this similarity 
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supports our basic assumption that relative distribution of personal income has not been 

changing over time not only overall, as shown in §1.4, but also for any given age above 15 years. 

One can conclude that there exist internal (economic, social, etc.) forces, which always return 

personal income distribution to its fixed shape. In other words, PID is an invariant in the US 

economy. This is an observation, not an assumption.  

Comparison of observed and predicted Gini coefficients 

To obtain theoretical estimates of the age-deponent Gini coefficients we start with the 

modelling of corresponding PIDs. Following our analysis of the observed age-dependent PIDs in 

Section 2 we have predicted PIDs in the same age groups. The model is characterized by a 

resolution of 1 year of age and 1 year in calendar time. Therefore, we have to aggregate all 

personal incomes in the age groups predefined by the Census Bureau. The start year of the model 

is 1967 with the following defining parameters: α0=0.071; Tcr(1967)=32.0 years; 

MP(1967)=0.43. Index k is taken for given age groups from the empirical estimates in Figure 

1.9.2. Other parameters are the same as in §1.8. The age distribution was reported by the Census 

Bureau, and thus, is prone to future revisions. For selected age groups, such revisions may reach 

several percentage points. This might result in slight deviations in the predicted Gini coefficients.   

 Figure 1.9.8 depicts predicted and observed PIDs for the age groups between 24 and 35 

years of age, between 45 and 54 years of age, and for the entire population over 15 years of age. 

For the narrow age groups, the PIDs measured in 1993 were chosen, and for the whole working 

age population the year of 2005 was modelled. Corresponding indices are those estimated 

empirically and are as follows: k=-1.91; k=-1.38, and k=-1.35. These values precisely fit the 

slope in relevant PIDs’ above the Pareto threshold. In the low-income zone, the best fit is 

observed for the whole population. This is likely the result of a better resolution in the entire 

population curve at lower incomes in 2005. In 1993, the resolution at low incomes was poor. 

This was one of the reasons for new questionnaire and methodology introduced in 1994. The 

number of income bins underwent a dramatic increase from 23 (including the open-end one for 

the highest incomes) to 42. All in all, the observed and modelled PIDs demonstrate very good 

similarity. 

 The microeconomic model predicts the evolution of each and every personal income. 

Therefore, it allows the prediction of an exact Gini coefficient for a given set of defining 

parameters because the construction of an exact Lorenz curve is possible. The empirical Gini 

coefficients were obtained separately for the whole working age population and for people with 

income. These empirical coefficients provide only some estimates of the range, where the true 

age-dependent Gini coefficients are likely to reside.   
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Figure 1.9.9 presents the evolution of the observed and predicted Gini coefficient in four 

age groups and for the whole population over 15 years of age. For the sake of simplicity, we 

have predicted Gi using the same index k=-1.35 for all ages. In the age group between 25 and 34 

years of age, the predicted curve is close to that obtained for the entire population in this group. 

Because actual index is k=-1.91, there is a slight overestimation of the predicted coefficient, but 

it still resides between the empirical curves. Since 1994, the predicted curve has been deviating 

from the curve for the whole population and approaching that for population with income. This 

might be an effect of a higher resolution related to the introduction of new income bins.  

In the age group between 35 and 44 years of age, the empirical curves are closer to each 

other. The predicted curve stays between them, but much close to the curve for population with 

income. In the age group between 45 and 54, where theoretical  index k is close to actual one, the 

predicted curve reproduces the decline in both empirical curves observed after 1983 and lays 

much close to the empirical curve for population with income. This is likely that the true Gini 

coefficient in this age group is consistent with the predicted one. In the age group between 55 

and 64, the predicted curve is also close to that for the working age population, but still between 

the empirical curves. As expected, the level of income inequality in this age group is larger than 

in any other age group.  

It is worth noting that the gap between the empirical Gini curves is between 0.02 and 

0.03. The gap between the predicted and the closest empirical curve is usually less than 0.01. 

This is less than the uncertainty of the estimation of Gini coefficient as related to the discrete 

representation of the observed PIDs.  

In all age groups, the level of personal income inequality, as expressed by Gini 

coefficient, has been decreasing (with small local peaks) since 1967. This empirical and 

theoretical observation is especially important for the age groups above 45 years, where the 

portion of population with income is close to 100%.  

The predicted and measured curves demonstrate that the true Gini coefficient is definitely 

age dependent. Figure 1.9.10 displays two empirical curves of Gini dependence on age obtained 

in this study for 1967 and 2005, two theoretical curves predicted by our model for the same 

years, and a curve reported by the Census Bureau. Due to low resolution and large measurement 

errors in the youngest and oldest age groups we limit our illustration to the age between 25 and 

65. In this range, all curves are very close.  However, the CB’s curve goes beyond the limits and 

demonstrates that there is a turning point at the age between 65 and 70. Our model supports this 

observation and the average income for people above the critical age, Tcr, falls exponentially 

with age. This fast decay is also reflected in a severe drop in the number of people with income 

above the Pareto threshold and corresponding decrease in Gini coefficient.   
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This study was primarily carried out for validation of the microeconomic model defining 

the evolution of personal incomes in the United States. In previous paragraphs, we have revealed 

some problems with income definition, which did not allow a comprehensive description of the 

overall PID. The most important problem was that a large portion of population did not report 

any income. Another problem is a poor resolution before 1977.  

In the model, everyone is assigned a non-zero income. This discrepancy may results in a 

significant deviation between observed and predicted Gini coefficients. The age-dependent PIDs 

allow overcoming this discrepancy because the portion of population without income is very low 

(~2%) for ages over 45 years. Therefore, one could assume a more precise prediction of the Gini 

coefficient in these age groups. This paragraph confirms the assumption: the evolution of Gini 

coefficient for the years with a good PID resolution was accurately (<0.005) predicted.   
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§1.10. Inequality estimates: Census Bureau vs. Internal Revenue Service 

 
 

In previous paragraphs, we have found that PID in the United States has not been significantly 

changing in relative terms since 1947. As a consequence, the Gini coefficient has been varying in 

a very narrow range around 0.51. Hence, the inequality in personal incomes has not been 

growing, as many economists report using income estimates from the Internal Revenue Service. 

We suppose that the estimates made by the Census Bureau are valid because they are consistent 

through time and well described by our microeconomic model which also demonstrates its high 

predictive power in geomechanics. 

Then a natural question arises. What is the problem with the IRS based measures of 

income, which result in changing inequality as expressed by the Gini coefficient? This paragraph 

develops a simple answer - these inequality measures are based on income definitions allowing 

floating low-end income threshold. In other words, the portion of population used by the IRS for 

the estimation of income inequality fluctuates randomly or according to some predetermined 

rule. 

The effect of changing population basis due to numerous revisions to income definition is 

also observed in the CB’s income data. The portion of people with income severely changes over 

time, as discussed in §1.2. It was increasing in the 1960s and 1970s due to a strong growth in 

women's participation rate. It has been falling since 1990, however. When people without 

income are included in calculations of income inequality, the Gini coefficient actually has been 

intensively falling since 1947 due to a strong growth of the portion of people with income. So, 

one can conclude that the driving force behind the increasing personal income inequality, as 

reported by the IRS, likely consist in biased measurements and inconsistent definitions. 

It is of principle importance for the current study that despite the changing income 

definition and corresponding population basis the estimates of income inequality were not 

changing in the group with non-zero income. This observation contradicts the changing 

inequality as obtained from the IRS data. Only quantitative analysis can resolve this conflict. The 

resolution of the conflict is the purpose of this paper. Because the results showing increasing 

inequality are quantitative, it is feasible to exactly show the reasons for the observed 

contradiction and indicate caveats in the Krugman's approach. 

Original (real gross) income distributions are reported by the IRS. Table 1.10.1 provides 

the numbers of people in predefined income bins (in chained 1990 dollars) for 1990 and 2004. 

Also listed are widths of income bins, which are used below for calculations of population 

densities, and centers of income intervals (see §1.4 for details of the normalization procedure). 
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These income bins are fixed over time and not adjusted for the growth of real economy and the 

increase in working age population.  The lowermost income bin contains zero income and net 

losses. The highest income bin includes those income reports, which exceed $10,000,000. This is 

an open-end income bin without the estimate of average income. Fortunately, only several 

thousand people have incomes above $10,000,000. First thousands is not the number which 

could influence the overall income inequality estimate. Moreover, these richest people also 

distributed according to the Pareto law, i.e. measured and estimated total income in this bin 

should not differ much.  

The IRS income tables provide a basis for current estimates of economic inequality in the 

USA. Conventional conclusion about income inequality is very consistent among economists – 

the inequality has been rising during the last 20 years. At first glance, this conclusion is 

quantitatively correct, but we will argue that it is wrong due to potential inaccuracy in 

methodology and unacceptable misinterpretation of quantitative results. 

Figure 1.10.1 compares income distributions for 1990 and 2004 listed in Table 1.10.1. 

Since the income bins presented in the Table are of increasing width one can observed some 

spikes in the distributions. These spikes are, obviously, related to those income bins, which are 

wider than their predecessor. For example, the bin between $25,000 and $30,000 ($5000-wide) is 

followed by the bin between $30,000 and $40,000, ($10000-wide). Therefore, one can expect a 

larger number of people in the latter bin than in the former one. This effect is clearly observed in 

Figure 1.10.1, where the enumerated populations are assigned to the centers of corresponding 

income bins. Here and below, we prefer to use the log-log coordinates in order to present highly 

changing population (and population density) distributions in the range of income spanning 

seven orders of magnitude. The lowest income bin, corresponding to zero and negative (loss) 

reported incomes, is artificially associated with $1 income. The bin with incomes above 

$10,000,000 is not shown because of the absence of mean income estimate in this bin.      

 One can easily derive an obvious conclusion from Figure 1.10.1- there are more people 

with lower, middle and high incomes in 2004 than in 1990. This is a mechanical result of 

increasing population – more and more people get income as working age population is growing.  

One should normalize the curves to total population (with reported income) in given 

years in order to obtain population independent results. In addition to this normalization one can 

use population density instead of original population estimates in width changing bins. Income 

bin width would not be a problem for constant widths. Therefore, when the measured 

populations are normalized to corresponding income bin widths one obtains density of 

population as a function of income, i.e. the number of people per $1 bin. As before, we assign 

the obtained population densities to the centers of corresponding bins. The assignment of the 
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density readings to the centers can potentially to disturb the observed curves when income bins 

are very wide and income distribution is described by a power law.  

 Figure 1.10.2 depicts the population density curves obtained after the normalization of 

the curves in Figure 1.10.1 to the number of people with (IRS reported) income, which includes 

also the people without income and those with incomes above $10,000,000. The normalized 

valued are divided by widths of corresponding income bins. At higher incomes, both curves 

accurately follow the Pareto law distributions, which are represented by straight lines in the log-

log coordinates. The most prominent features of the obtained curves are the increasing deviation 

between them staring from $62,500 (1990 dollars) and the fact that they are practically 

indistinguishable below this income threshold. As a rule, modern studies of increasing income 

inequality find their conclusions in these population density curves. Seemingly, the curves 

demonstrate that the portion of population with higher incomes has been growing since 1990 and 

as a consequence the inequality has been increasing.  

 This is not the end of the story, however.  There is one question left. What is the effect of 

increasing gross personal income on the observed population density distribution? Actually, total 

personal income grew from $3.41E+12 to $4.70E+12 (1990 dollars) between 1990 and 2004. So, 

larger gross personal income is a possible reason for the increased number of people with higher 

incomes. Then the same level of population density at lower incomes might be an artifact 

associated with inaccurate measurements at very low incomes or exclusion of some categories of 

income from the IRS definition. This may be a big problem for the compatibility of estimates 

over time, as the Census Bureau discusses in methodological documents. 

What does really happen when dimensionless income distribution is used instead of that 

obtained in absolute income values? Two curves in Figure 1.10.3 represent those in Figure 

1.10.1, which are additionally normalized to the gross personal income reported by the IRS. 

Income scales in 1990 and 2004 are also normalized to these incomes and represent now 

dimensionless portions of total income. As a result, the widths of the income bins in 1990 and 

2004 also became different since relevant income scales were compressed by different factors. 

Also, the centers of the original income bins which were the same in 1990 and 2004 are now 

shifted relative to each other.  

The curves in Figure 1.10.3 represent population density as a function of dimensionless 

income and practically coincide at higher incomes and diverge at low incomes. (There is a 

deviation at very high incomes, but it is much smaller than in Figure 1.10.2 and hardly can affect 

the estimate of Gini coefficient.) Therefore, density of population at higher incomes, as 

measured in dimensionless portions of total income, is practically the same in 1990 and 2004, 

considering the efficiency of the IRS work and possible measurement errors. All in all, rich 
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people have the same (within the uncertainty of income measurements) portion of gross personal 

income. In relative terms, these high-income people in 2004 are not richer than in 1990.  

In the low income zone, the distributions are diverging with time. There are several 

explanations of this observation. First, this is the results of some real (objective) processes of 

income redistribution between rich, middle class and poor people in the US. This is a common 

opinion in economic literature and media. Because of the changes in the measured personal 

income distributions one needs some driving force explaining the process. Second reason for the 

changing distribution is not related to increasing income inequality but is associated with lower 

(and varying) accuracy of income measurements at smaller incomes (possibly driven by 

definitions).  

In the case of actual income redistribution process, one can expect some consistency 

between measures of income inequality provided by different agencies. For example, the 

inequality estimates provided by the US Census Bureau, which include many taxable income 

sources and some extra sources as well, would be expected to confirm the IRS results. This is not 

the case, however, as shown in §1.8.  

So, there is a conflict between quantitative estimates based on the IRS and Census 

Bureau data sets. Which measure is a more reliable one? Let’s consider two aspects of relevant 

income distributions – population basis and total personal income reported by the IRS and 

Census Bureau. It is likely that larger portions of working age population and real GDP 

potentially provide more reliable estimates of inequality.  

Figure 1.10.4 presents the evolution of the portion of working age population with 

income as reported by the IRS and Census Bureau between 1990 and 2004. The number of 

people with IRS reported income is about 113,000,000 in 1990 and 132,000,000 in 2004. The 

Census Bureau reported ~181,000,000 in 1990 and 205,000,000 in 2004 from total working age 

population of ~194,000,000 in 1990 and ~230,000,000 in 2004. Corresponding portions are 0.93 

and 0.58 in 1990, and 0.89 and 0.57 in 2004, respectively. Therefore, the CB surveys cover a 

larger portion of population with income measurements.  

Moreover, the surveys include taxable incomes as a subset of all measured incomes.  

Figure 1.10.5 illustrates the differences in income definitions between the IRS and CB.  Gross 

personal income measured by the CB is ~70% of real GDP – falling from 73% in 1990 to 67% in 

2004.  At the same time, the IRS reports only from 58% of real GDP in 1990 to 54% in 2004. It 

is also important that the IRS curve is of a higher volatility. This observation is potentially 

related to changes in (taxable) income definition.  

Apparently, the IRS covers a smaller portion of population and gross personal income 

than the Census Bureau. Basically, the IRS reports some income subset relative to the Census 
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Bureau. Therefore, the observed difference between economic inequality estimates based on IRS 

and Census Bureau data is likely results from lower reliability of the IRS estimate. IRS income 

reports cannot provide a consistent measure of personal income.   
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§1.11. Conclusion 
 

This Chapter is very important for understanding the behavior of a developed economy as a 

physical system.  In classical mechanics, there exist several well-known invariants, i.e. a 

property of a closed system, which does not change under certain transformations. The invariants 

facilitate quantitative description of very sophisticated mechanical systems. One of famous 

invariants is associated with the fundamental law of energy conservation. No process in a closed 

physical system can violate this law and all individual components of the total energy must sum 

up to its constant value, whatever happens.  

No economy can be considered as a completely closed system because it is usually 

exposed to such external forces as weather, export-import, and immigration, and internal 

processes like demographic booms and declines.  Nevertheless, there is a quantitative parameter 

in the US economy, which could be treated as an invariant characterizing the economy as a 

whole.  This is the personal income distribution, as it measured by the US Census Bureau in the 

Annual Social and Economic Supplement to the Current Population Survey. 

 This observation goes beyond the representation of the distribution in econophysics, 

where standard methods and models of statistical physics are used (Dragulesku and Yakovenko, 

2001). It is exciting to interpret economic variables in terms of “temperature” and “energy”. 

However, it does not add much to the understanding of internal and external forces driving the 

process of personal income distribution and evolution. Econophysics provides rather a 

convenient interpolation of quantitative observations than a “first principle” model.  

On the contrary, we have developed a model which is based on “first principles”, as 

presented in §1.3.  It does not approximate or interpolate observed data at each time step, but 

accurately predicts the dependence of all defining parameters on real GDP per capita and age 

structure.  An essential feature of the model is its simplicity: there is only one first order ordinary 

differential equation completely defining individual, but irrelevant to personalities, income 

trajectories. Also, the model has deep roots in natural sciences that suggest that economic 

activity is just a natural process governed by laws inherently following physical laws. 

Economics often considers human behavior as unpredictable and even stochastic. A good 

analogue of such a system in physics is an ensemble of gas particles in a box. Nobody can 

predict the trajectory for a given particle. One can predict, however, the most probable number 

of particles in a given energy range and such macro parameters as temperature and pressure. 

Similarly, our model can exactly predict the number of people in a given income range, but does 

not predict their names.  
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The orthodox economics treats economic systems as chaotic heaps of unshaped bricks: 

external or internal perturbations induce unexpected and random reactions such as avalanches in 

stock market, inflation creep, swells of economic bubbles, and troughs of recession. There is a 

term invented to express the nature of these unpredictable phenomena – “exogenous stochastic 

shocks”. This is the core component of economic development – stochastic but inevitable 

fluctuations. As a part of the mainstream economics, the economics of personal incomes follows 

this tradition and presumes the existence of some stochastic exogenous forces driving the 

changes in the distribution of income and related inequality. As a consequence, the trends 

observed in the distribution and inequality are treated as intrinsically stochastic ones.  

Our concept denies that the evolution of personal income distribution, in particular, and 

developed economies as a whole is stochastic. We have found that the observed variations in the 

shape of PID in the US are small and entirely related to the changes in age structure and real 

GDP growth. In other words, the PID has an almost infinite rigidity to any other external of 

internal disturbances, at least to those occurred since 1947.   Otherwise, the model would not fit 

the observations.   

As a thought experiment, imagine a rigid construction like a concrete building. How does 

it react to various external forces like wind, changing atmospheric pressure, elastic waves from 

earthquakes, etc.? It needs no technical knowledge to conclude that such rigid systems always 

react in a consolidated way, i.e. internal bonds cause various parts of the system to interact and 

create counterforce balancing the disturbance and preserving the integrity. Otherwise, the system 

would collapse, as often happens when the amplitude of external forces exceeds relevant 

strength.  

How does react the rigid system of personal incomes to internal and external forces? It is 

observed a cooperative reaction retaining the hierarchy of incomes! In other words, both real 

economic growth and inflation do not disturb the PID, in relative terms. A counter question can 

be raised then. Since people are the only source of economic growth, how the variations in 

macroeconomic variables are possible? One could explain a constant growth rate in per capita 

values as a result of some permanent onward motion or translation in technical terms. Really, a 

rigidly structured society where relative changes in the number of income positions are 

prohibited should produce a constant flow of economic efforts through relevant economy and 

should advance at a constant pace.   

If the internal human structure of a developed economy can not be the source of the 

observed fluctuations in economic growth, what is the driving force? The answer is obvious - the 

changes in boundary conditions, i.e. primarily the changes in the number of young people joining 

the economy.  Chapters 2 through 6 present quantitative evidences in favour of this assumption.  
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 Chapter 1 evidences that personal income distribution in the US can be exactly predicted 

by our model together with the time history of the PID, as observed since 1947. Step by step, we 

modelled various aggregate and fine quantitative features from the overall distribution to the age-

dependent Gini coefficient. At each step, we consistently extended the data set of personal 

income or/and the length of the studied period. A special attention has been paid to the Pareto 

law at the highest incomes.  

In §1.4, we have revealed the rigid hierarchy of personal incomes as a whole.  In order to 

prove the existence of the fixed income structure, we had to normalize the PIDs measured by the 

Census Bureau to corresponding gross personal income and total working age population. The 

normalized overall PIDs between 1994 and 2002 are shown to collapse to one curve unveiling 

the underlying hierarchy. This fixed hierarchy defines the first ever economic invariant. Taking 

the classical mechanics as an example, one might construct an economic theory around such an 

invariant, with intrinsic links expressed in equations similar to homonymic relationships of 

mechanics.  

First and most important conclusion is that the existence of the invariant PID evidences 

that the US economy is a physical system and the evolution of economic state, as defined by 

some measured variables like GPI or GDP, obeys some strict laws. Second, there exist economic 

variables linked by deterministic relations which can be expressed mathematically. This would 

characterize economics as a hard science with all the arsenal of ideas and methods developed in 

physics to be potentially applicable. Third, it builds a bridge between micro- and macro levels, 

the latter being a simple aggregation of the former, as in thermodynamics. It would mean that 

there is no macro-variable, whose behavior is not completely determined by the quantitative 

properties of micro-objects. And those macro-variables which cannot be reduced to micro-level 

are void.  

In §1.5, we have validated the microeconomic model by demonstrating accurate 

predictions of the shape and evolution of PIDs in various age groups.   The change in the shape 

over age is so dynamic that provides a very good resolution of relevant time history: from 

practically exponential fall in the youngest and eldest age groups to a piecewise function in the 

mid-age groups. All these features have been successfully modelled during the relatively short 

period between 1994 and 2002. For the age-dependent modelling we have used the same 

defining parameters as those for the overall PIDs. This is the best quantitative test and validation 

of the model – one can accurately predict beyond the set of data formally used for the estimation 

of empirical parameters and coefficients.   
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Therefore, the microeconomic model quantitatively describes the evolution (with age and 

over time) of each and every personal income as a function of three measurable parameters: the 

capacity to earn money, the size of earning means, and real GDP per capita.  

In §1.6, we have modelled two aggregate variables – the mean and median income and 

their dependence of on work experience. For these variables, quantitative estimates are available 

from 1967. So, we extended the modelled period by 27 years back in the past compared to the 

previous paragraphs. The entire period since 1967 was described by a model with the defining 

parameters obtained for a shorter period and different data set.  In this paragraph, we have also 

introduced a new feature to model - the PID at higher incomes is approximated by the Pareto 

law.  

Disappointedly, a trouble has come from the side of income definition and methodology 

of the CPS.  Our modelling has met significant difficulties related to the changes in the portion 

of gross personal income in GDP. Significant revisions to the CPS and the population estimates 

after decennial censuses create artificial steps in the GPI and, thus, in mean and median income.  

The latter income represents a more robust variable due to lower sensitivity to higher incomes. 

As a result, its dynamics is relatively better predicted by the model. Overall, the dependence of 

mean and median on work experience and the evolution of the dependence with time both 

validate the model in logical and historical sense.   

Paragraph 1.7 addresses a different type of problem, which is a consequence of the self-

organized similarity (SOC) reining at higher incomes. The Pareto distribution of incomes, being 

a manifestation of the SOC, starts at a relatively high level of income and controls only ~10 

percent of working age population.  Internal mechanisms of the Pareto distribution are beyond 

the scope of the microeconomic model and we use its properties as measured.  This might be a 

challenge for both economics and physics. Our model has successfully predicted the time history 

of the portion of people in the Pareto distribution as a function of work experience. Basically, the 

age groups with low mean income are characterized by lower portions than those with high mean 

income. And again, the microeconomic model has shown its capability to accurately predict the 

sought variables, and thus the overall input of high incomes.  

This is a good place for a short speculation. What does the Pareto law says us about rich 

people? Is there any quantitative characteristic or property, which is definitely necessary for a 

person to become rich? Under our framework the answer for the second question is “no”. One 

really needs to have a job with a large size of earning means and a high capability to earn money. 

Supposedly, the latter is more important because it is more difficult to change personality than 

job. But even these two factors do not guarantee the highest income in the top 1 per cent. To get 

the highest income one needs a property, which is not trained – good luck, as described by the 
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Pareto laws as a probability function. Therefore, there is no individual quality making people 

super-rich. As a result, the choice is random and there is no fairness in the process. This 

conclusion does not deny the possibility of many rich people emerging from some tight group. 

For example, many Russian oligarchs have similar backgrounds. Such backgrounds were not 

associated with the desire of super- high incomes, however.  

By definition, income inequality is a derivative from PID. Therefore, having an accurate 

PID one should not meet any difficulty to quantitatively predict income inequality.  In §1.8, we 

have modelled the evolution of Gini coefficient for the overall PID since 1947. So, we have 

extended the modelled period by another twenty years. No further extension into the past is 

possible because of the absence of measurements before 1947 and the model has finally covered 

the entire period with CPS income reports.  

The modelling has unveiled severe problems with the resolution of the CPS – there were 

too wide income bins for the estimation of the Gini coefficient. However, relevant overall PIDs 

evidence that the fixed income hierarchy has been observed from the very beginning of the CPS. 

There is no reason to assume that the hierarchy will fail in the near future because it has its roots 

in the ranking of people’s capability to earn money. This feature is a solid one since it has come 

from centuries of economic interactions between human beings as economic agents. It should not 

fade away as a modern pop melody.  

There are several important findings related to the estimation of empirical Gini 

coefficients associated with the US income distribution: 

1. These estimates of Gini coefficient critically depend on definition of income.  

2. The Gini coefficient associated with the whole population 15 years of age and over and 

that associated only with people with income converge with time as the portion of people 

without income decreases. 

3. Resolution of the measured PIDs (i.e. a proportional coverage of population with income 

bins) and interpolation of the PIDs inside these bins influences the estimates of Gini 

coefficient. 

4. The empirical PIDs practically collapse to one curve when normalized to the cumulative 

growth in nominal Gross Personal Income (GPI) for the studied period between 1967 and 

2005. 

Slight changes observed in these PIDs and the evolution of Gi-values are related to real 

economic growth and changes in the age structure. We have also demonstrated that the empirical 

estimates of Gini coefficient converge to theoretical ones when all individuals in working age 

population have income. Such convergence might be clearly observed in age-dependent PIDs, 

since the portion of population without income decreases with age. 
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Paragraph 1.9 has supported general findings of the previous paragraph and also has 

extended them to the data in various age groups. Both PIDs and Gini coefficients are 

successfully modelled for the years after 1965. The lower limit comes from the availability of the 

age-dependent gross personal income, which is necessary for the normalization of the PIDs.   

As expected, the gap between the Gini coefficient associated with the entire working 

population in a given age interval and that associated with people reporting income converge 

with the decreasing portion of people without income. The true Gini coefficient had to be 

somewhere between these two estimates. In the group between 45 and 54 years of age, this 

portion is approximately 3% and the gap (in Gini coefficient) is less than 0.02.  As the overall 

PIDs, the empirical age-dependent (density) PIDs collapse to practically one curve when 

normalized to cumulative growth in personal income and total population for the period between 

1967 and 2005.  

In all age groups, the model predicts slightly decreasing Gini coefficients between 1967 

and 2005. The overall Gi is approximately constant, however and minor changes are related to 

real economic growth and the changes in age structure. 

The Pareto law index, k, undergoes significant changes over age: increases from the 

youngest age to approximately 67 years of age, and then drops. Such an evolution could be 

expected but its actual behavior deserves a deeper study.  

The age-dependent PIDs demonstrate a fixed hierarchy during a very long period 

between 1967 and 2005. The shape and the evolution of the measured PIDs are well predicted 

for the whole period. This allows exact prediction of Gini coefficient and other measures of 

inequality, which are defined by personal income distribution.  

In §1.10, we have discussed the observation related to the increase in economic inequality 

in the United States, which contradicts our model. We have demonstrated quantitatively that the 

estimates of income inequality associated with the Internal Revenue Service are not reliable. The 

principal problem of the IRS estimates is an intrinsic one to almost all income studies, which 

base their approaches on varying portions of a system as a whole. From physics, it is well-known 

that parts of a closed system are always characterized by high volatility of measured parameters 

and no relationship revealed for a part works for the system as a whole. In the case of the IRS, 

the problem is the loose boundary associated with highly volatile incomes of people in the low-

end of income distribution. The loose definition of boundary condition and the volatility related 

to measurement errors, changes in definitions and/or improper reporting must result in the 

observed changes in income inequality.  When the entire working population is considered no 

changes in income inequality are observed, as the case for the age group between 45 and 54 

years of age evidences.  
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There is also a professional discussion and active area of economic research around the 

idea of the influence of income inequality on real economic growth. Overall, relevant results are 

controversial. Under our framework, the answer is obvious – income inequality is a secondary 

effect of the ranking in the capability to earn money. In turn, the ranking has come from the 

history of economic, social, psychological, etc. links between people. These links is the force 

shaping current income distribution. On the other hand, variations in the growth rate of real 

economic growth are inherently related to demographic variables through the rigid PID.  In that 

sense, the US economic system is a self-consistent one and is driven internally by the PID, and 

externally by demography.    

What our model can propose for other developed and many developing countries? This is 

a crucial question for our model to be further validated by empirical data.  The only obstacle on 

this road is the absence of reliable data. When and where such data will become available, we 

will continue the modelling.  

Summarizing all findings and discussions in one sentence we would like to conclude that 

the developed microeconomic model accurately describes the shape of the US PID and predicts 

its evolution during the past sixty years.   
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Tables 
 

Table 1.4.1. GDP growth rates from 1950 to 2002  

year 

current 

dollar GDP 

growth rate 

real GDP 

growth 

rate 

per capita  

current dollar  

GDP growth 

rate 

per capita 

real GDP 

growth rate 

per capita current 

dollar GDP growth 

rate. age above 15 

per capita real 

GDP growth 

rate. age above 

15 

1950 1.099 1.087 1.077 1.065 1.085 1.073 

1951 1.155 1.077 1.135 1.059 1.144 1.067 

1952 1.056 1.038 1.038 1.021 1.046 1.028 

1953 1.059 1.046 1.041 1.029 1.049 1.036 

1954 1.003 0.993 0.985 0.976 0.992 0.983 

1955 1.090 1.071 1.071 1.053 1.079 1.060 

1956 1.055 1.019 1.036 1.001 1.043 1.008 

1957 1.054 1.020 1.035 1.002 1.041 1.007 

1958 1.013 0.990 0.996 0.974 0.999 0.977 

1959 1.084 1.071 1.066 1.053 1.070 1.057 

1960 1.039 1.025 1.023 1.009 1.027 1.012 

1961 1.035 1.023 1.018 1.006 1.022 1.011 

1962 1.075 1.061 1.059 1.044 1.054 1.040 

1963 1.055 1.044 1.040 1.029 1.038 1.027 

1964 1.074 1.058 1.059 1.043 1.057 1.041 

1965 1.084 1.064 1.070 1.051 1.067 1.048 

1966 1.096 1.065 1.083 1.053 1.078 1.048 

1967 1.057 1.025 1.045 1.014 1.039 1.008 

1968 1.093 1.048 1.082 1.038 1.075 1.031 

1969 1.082 1.031 1.071 1.021 1.064 1.014 

1970 1.055 1.002 1.043 0.990 1.035 0.983 

1971 1.085 1.034 1.072 1.021 1.065 1.014 

1972 1.099 1.053 1.087 1.042 1.078 1.033 

1973 1.117 1.058 1.106 1.048 1.096 1.038 
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1974 1.085 0.995 1.075 0.986 1.065 0.977 

1975 1.092 0.998 1.081 0.988 1.072 0.980 

1976 1.114 1.053 1.104 1.043 1.094 1.034 

1977 1.113 1.046 1.102 1.036 1.093 1.028 

1978 1.130 1.056 1.118 1.045 1.110 1.037 

1979 1.117 1.032 1.105 1.020 1.098 1.014 

1980 1.088 0.998 1.081 0.991 1.078 0.988 

1981 1.121 1.025 1.112 1.017 1.109 1.014 

1982 1.040 0.981 1.031 0.971 1.028 0.969 

1983 1.087 1.045 1.076 1.036 1.074 1.033 

1984 1.112 1.072 1.102 1.062 1.100 1.060 

1985 1.073 1.041 1.064 1.032 1.061 1.030 

1986 1.057 1.035 1.048 1.025 1.045 1.023 

1987 1.062 1.034 1.053 1.025 1.051 1.023 

1988 1.077 1.041 1.067 1.032 1.067 1.032 

1989 1.075 1.035 1.065 1.026 1.066 1.027 

1990 1.058 1.019 1.048 1.009 1.049 1.010 

1991 1.033 0.998 1.023 0.988 1.025 0.990 

1992 1.057 1.033 1.045 1.021 1.046 1.023 

1993 1.050 1.027 1.039 1.015 1.039 1.016 

1994 1.062 1.040 1.052 1.030 1.052 1.030 

1995 1.046 1.025 1.036 1.015 1.036 1.015 

1996 1.057 1.037 1.047 1.027 1.045 1.026 

1997 1.062 1.045 1.052 1.035 1.051 1.034 

1998 1.053 1.042 1.043 1.032 1.041 1.030 

1999 1.060 1.044 1.050 1.035 1.049 1.034 

2000 1.059 1.037 1.048 1.026 1.046 1.024 

2001 1.032 1.008 0.998 0.974 0.997 0.974 

2002 1.035 1.019 1.024 1.008 1.022 1.006 

Total 

increase 35.69 5.67 18.94 3.01 17.55 2.79 
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Table 1.10.1. Personal income distribution according to the IRS 
 

Income bin Width Center 1990 2004 
No adjusted gross income   [1] 904876 1854886 
$1 under $5,000 5000 2500 16478272 17039057 
$5,000 under $10,000 5000 7500 14952855 17211889 
$10,000 under $15,000 5000 12500 13922750 15889660 
$15,000 under $20,000 5000 17500 11543228 13056490 
$20,000 under $25,000 5000 22500 9572317 10990767 
$25,000 under $30,000 5000 27500 7838225 8567162 
$30,000 under $40,000 10000 32500 12282786 13309262 
$40,000 under $50,000 10000 35000 8837067 9928723 
$50,000 under $75,000 25000 62500 10944102 13635393 
$75,000 under $100,000 25000 87500 3276142 4934480 
$100,000 under $200,000 100000 150000 2329562 4213077 
$200,000 under $500,000 300000 350000 644027 1211221 
$500,000 under $1,000,000 500000 750000 130252 240876 
$1,000,000 under $1,500,000 500000 1250000 29060 61800 
$1,500,000 under $2,000,000 500000 1750000 11581 26977 
$2,000,000 under $5,000,000 3000000 3500000 15331 39047 
$5,000,000 under $10,000,000 5000000 7500000 3184 9625 
$10,000,000 or more >10000000   1522 5651 
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Figure 1.3.1. Approximation by two exponential functions of the normalized mean income 
dependence on work experience in the USA in 2002. 
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Figure 1.3.2. Evolution of personal income for various combinations of earning means size, L, 
and personal capability to earn money, S. The (dimensionless) Pareto distribution threshold is 
0.43. Only people with high S and L can eventually reach the threshold.  The duration of period 
needed to reach the maximum potential income depends on L. Compare cases 30x2 and 2x30. 
Because of smaller L=2, the first person reaches maximum much faster than the second person 
with the means of size 30.  
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Figure 1.3.3. Comparison of the theoretical PID with integer S and L distributed evenly between 
2 and 30 and those observed for the years 1994, 1997, and 2001. 
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Figure 1.3.4. Evolution of personal income for various dissipation factors . The earning means 
size L29=30/30, and personal capability to earn money S29=30/30. The Pareto distribution 
threshold is 0.43. The duration of period needed to reach maximum income depends on : larger 
 corresponds to shorter time needed to reach the threshold. 
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Figure 1.3.5. Time needed to reach the Pareto threshold as a function of effective dissipation 
factor . The earning means size L29=30/30, and personal capability to earn money S29=30/30.  
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Figure 1.3.6. Peak income value (Si

2/900) reached by a person with a capability to earn money 
Si. The size of earning means is constrained to be the same Li=Si. The Pareto distribution 
threshold is 0.43. Nobody with both Si and Li below 20 can reach the threshold. Approximately 
10 per cent of total population can eventually reach the Pareto threshold. 
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Figure 1.3.7. Comparison of the observed and predicted personal income distributions for the 
year 1999 – a portion of population with income below a given value.   The curves diverge at 
income of $54K – the Pareto threshold.  
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Figure 1.3.8. Comparison of the observed and predicted cumulative personal income 
distributions for 1999 – a portion of total income received by population with income below a 
given value. The ratio of the observed cumulative income of the population above the Pareto 
threshold (0.450 – intercept of the vertical line and the solid curve) and the corresponding 
theoretical value (0.333 – intercept of the vertical line) and is equal to 1.35. This value is 
considered as an effective increase of the average capacity to earn money for people above the 
Pareto threshold.   
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Figure 1.4.1. Personal income (current dollars) distributions in the USA from 1994 to 2002. Odd 
years are skipped for the sake of clarity. Absolute number (thousands) of people with income in 
$10K bins are shown. Notice the lin-log coordinates. 
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Figure 1.4.2. Selected personal income distributions normalized to relevant midyear 
populations. Notice the log-log coordinates.  
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Figure 1.4.3.  Selected population density distributions corrected for GDP deflator 
measured by the BEA.  
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Figure 1.4.4. Personal income distribution corrected for the growth in nominal GDP.  
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Figure 1.4.5. PDDs corrected for the growth in nominal GDP per capita. Notice the log-
log coordinates.  
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Figure 1.4.6.  Personal income density distributions below and above the Pareto threshold 
for years between 1994 and 2001. The distributions are adjusted for the nominal per capita 
GDP growth. A power law regression demonstrates that the adjusted distributions 
practically coincide.  
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Figure 1.4.7. Population estimates for the calendar years of 1950, 1960, 1970, 1980, 1990, 
and 2001 (The US Census Bureau (2004b)). 
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Figure 1.4.8. Normalized population estimates for the calendar years of 1950, 1960, 1970, 
1980, 1990, and 2001. 
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Figure 1.4.9.  The evolution of predicted personal income distribution between 1960 and 
2002.  
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Figure 1.4.10. Comparison of predicted and observed personal income distributions for 
1994. The Pareto threshold is between $35K and $45K.  
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Figure 1.4.11. Comparison of predicted and observed personal income distributions for the 
year of 1998. The Pareto threshold is between $45K and $55K.  
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Figure  1.4.12. Comparison of predicted and observed personal income distributions for 
the year of 2001. The Pareto threshold is between $55K and $65K.  
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Figure 1.5.1. Personal income distribution in various age groups: from 15 to 24 years (5 – 
central point of corresponding work experience interval from 0 to 9 years), from 25 to 29 
years (12.5), …, from 70 to 74 years (57.5). In the first age group (5) - from 0 to 9 years of 
work experience, an exponential decrease in observed.  
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Figure 1.5.2. Population density vs. personal income in age groups: from 15 to 24 years  
(5 – central point of corresponding work experience interval from 0 to 9 years), from 25 to 
29 years (12.5), …, from 70 to 74 years (57.5). In the first age group an almost 
exponential decrease in observed.  
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Figure 1.5.3. Population density vs. personal income in the age group from 15 to 24 years. 
The index of exponential regression function increases with time from -0.125 to -0.095.  
 



 124 

 
 
 

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 20 40 60 80 100

income, 1000$

po
pu

la
tio

n 
de

ns
ity

1994

1996

1998

2000

2002

 
Figure 1.5.4. Population density distribution in the age group from 15 to 24 years adjusted 
for the per capita nominal GDP growth. A strong scattering at the highest incomes is 
induced by lack or resolution power of the current ASEC due to undercoverage of the 
population. Population density drops by three orders of magnitude with income increase 
from $5,000 to $45,000.  
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Figure 1.5.5. Population density distribution in the age group from 45 to 49 years adjusted 
for the per capita nominal GDP growth.  
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Figure 1.5.6. Population density distribution in the age group from 50 to 54 years adjusted 
for the per capita nominal GDP growth.  
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Figure 1.5.7. Comparison of predicted and measured personal income distributions in the 
age group from 15 to 24 years. The actual distribution is characterized by an emergent 
Pareto part and lies almost everywhere below the predicted curve. The difference is 
associated with a poor procedure of the income survey which does not take into account 
money redistribution.  
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Figure 1.5.8. Comparison of predicted and measured personal income distributions in the 
age group from 25 to 29 years. The actual distribution is characterized by the presence of 
a part with well established Pareto distribution. The difference between the curves at low 
incomes is associated with a poor procedure of the income survey. 
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Figure 1.5.9. Comparison of predicted and measured personal income distributions in the 
age group from 30 to 34 years. The difference between the curves at low incomes is 
associated with poor procedure of the income survey. 
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Figure 1.5.10. Comparison of predicted and measured personal income distributions in the 
age group from 60 to 64 years.  Both distributions are quasi-exponential.  
 
 
 



 131 

1.0E+00

1.0E+01

1.0E+02

1.0E+03

0 10 20 30 40 50

income, $1000

#
3
4
5
6
7
8
9
10

Figure 1.5.11. Evolution of the predicted personal income distribution (absolute number of 
people) in single-year-of-age intervals between 3 and 10 years of work experience.   
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Figure 1.5.12 Evolution of the predicted personal income distribution (absolute number of 
people) in 1980.   
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Figure 1.5.13. Evolution of the predicted personal income distribution (absolute number of 
people) in 2002. 
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Figure 1.6.1. Mean personal income (current dollars) as a function of work experience for 
selected years between 1967 and 2001.  
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Figure 1.6.2. Mean personal income (chained 2001 dollars) as a function of work 
experience for selected years from 1967 to 2001.  
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Figure 1.6.3. Evolution of the portion of population with income in various age groups: all – 
above 14 years of age, 20 – from 15 to 24 years of age, 30 – from 25 to 34 years, 40 – from 35 to 
44 years, 50 – from 45 to 54 years, 60 – from 55 to 64 years. In the group between 16 and 24 
years of age, the portion has been falling since 1979. Notice the break in the distributions 
between 1977 and 1979 induced by large revisions implemented in 1980 – “Questionnaire 
expanded to show 27 possible values from 51 possible sources of income.” The participation 
factor in other age groups increased from 0.82-0.85 to 0.92-0.99.  
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Figure 1.6.4. Mean personal income (chained 2001 dollars) as a function of work 
experience for years from 1967 to 2001. The mean income readings are corrected for the 
number of people without income. 
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Figure 1.6.5. Normalized mean personal income as a function of work experience for 
years from 1967 to 2001.  
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Figure 1.6.6. Mean income in various age groups (5 – from 0 to 9 years, 15 – from 10 to 
19 years, …, 55 – from 50 to 59 years of work experience) normalized to the peak value in 
corresponding years.  
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Figure 1.6.7. Mean income in the age group from 15 to 24 years normalized to the peak 
value in corresponding years as a function of calendar year from 1967 to 2001. Linear 
regression indicates that this age group could contain the peak value in the last quarter of 
18th century.  If the slope of -0.075, as obtained for the older age groups, is used the group 
could have the peak value near the end of the 19th century.  
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Figure 1.6.8. Evolution of mean income in the age group from 25 to 34 years normalized 
to the peak value in corresponding years. The slope is -0.075. This age group reached the 
peak value between 1940 and 1950.  
 



 142 

 

y = -0.0074x + 15.606

0.6

0.8

1

1.2

1985 1990 1995 2000 2005

calendar year

re
la

tiv
e 

m
ea

n 
in

co
m

e

20-29

 
 Figure 1.6.9. evolution of mean income in the age group from 35 to 44 years normalized 
to the peak value in  corresponding years. The slope is -0.074. This age group reached the 
peak value in 1986.  
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Figure 1.6.10.  Evolution of mean income in the age group from 55 to 64 years normalized 
to the peak value in corresponding years. The slope is +0.011. This age group will reach 
the peak value in around 2015.  
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Figure 1.6.11. Critical work experience as a function of calendar year as calculated from 
the growth rate of real GDP per capita using relationship 1.3.5. Tcr was about 25 in the late 
1950s, reached the 30 year level in the late 1970s, and is currently near the 40-year 
threshold.  
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Figure 1.6.12. Comparison of the mean income dependence on work experience as 
obtained in 10-year and 5-year wide intervals for the year of 2001. The distributions have 
quite different asymptotic decay above Tcr. 
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Figure 1.6.13. Comparison of observed and predicted mean income dependence on work 
experience in 1967 and 2001. The observed mean incomes are corrected for the population 
without income. Averaging is accomplished in 10-year intervals of work experience.   The 
factor used to scale the predicted values is 72 in 1967 and 2001.` 
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Figure 1.6.14. Comparison of observed and predicted mean personal income dependence 
on work experience in 1974 and 1987 (the years of major changes in CPS procedures). 
The observed mean incomes are corrected for the population without income. Averaging 
is accomplished in 10-year intervals of work experience.  The factor used to covert the 
predicted values is the same in 1987 and 1974 - 79. This value is different from that used 
in 2001 and 1967. 
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Figure 1.6.15. Comparison of observed and predicted mean personal income dependence 
on work experience in 1967 and 2001. The observed mean incomes are as in the original 
tables. Averaging is accomplished in 10-year intervals of work experience.  The factor 
used to covert the predicted values is 76 in 2001 and 90 in 1967.   
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Figure 1.6.16. Comparison of observed and predicted mean personal income dependence 
on work experience in 1974 and 1987. The factor used to covert the predicted values is 80 
in 1987 and 95 in 1974.   
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Figure 1.6.17. Comparison of observed and predicted mean personal income dependence 
on work experience in 1994 and 2001. The observed mean incomes are corrected for the 
population without income. Averaging is accomplished in 5-year intervals (except the 
first, which is 10-year interval) of work experience. The boundary condition for the mean 
income at the age of 67 years is 0.45.   
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Figure 1.6.18. Comparison of actual and predicted mean personal income dependence on 
work experience in 1994 and 2001. The observed mean incomes are as in the original. 
Averaging is accomplished in 5-year intervals (except the first one) of work experience. 
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Figure 1.6.19. Evolution of observed (original and corrected for the population without 
income) and predicted average income value in the work experience group from 0 to 9 
years normalized to the peak average income over all work experience groups. 
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Figure 1.6.20. Evolution of observed and predicted average income value in the work 
experience group from 10 to 19 years normalized to the peak average income over all 
work experience groups. 
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Figure 1.6.21. Evolution of observed and predicted average income value in the work 
experience group from 20 to 29 years normalized to the peak average income over all 
work experience groups. 
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Figure 1.6.22. Evolution of observed and predicted average income value in the work 
experience group from 30 to 39 years normalized to the peak average income over all 
work experience groups. 
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Figure 1.6.23. Evolution of observed and predicted average income value in the work 
experience group from 40 to 49 years, normalized to the peak average income over all 
work experience groups. 
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Figure 1.6.24. Evolution of observed overall mean and median income (in 2001 CPI-U-RS 
adjusted dollars) in the USA between 1974 and 2001. 
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Figure 1.6.25. Ratio of median and mean income in work experience groups from 20 to 29 
years and from 30 to 39 years. A decrease in the ratio in both groups is observed from 
1974 to 2002. 
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Figure 1.6.26. Evolution of observed and predicted median income in the work experience 
group from 10 to 19 years, normalized to the peak average income over all groups. 
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Figure 1.6.27. Evolution of observed and predicted median income in the group from 20 
to 29 years, normalized to the peak average income over all groups. 
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Figure 1.6.28. Evolution of observed and predicted median income in the group from 30 
to 39 years, normalized to the peak average income over all the work experience groups. 
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Figure 1.6.29. Evolution of the mean income distribution. The growth rate of per capita 
real GDP is 1.6% per year. Population projections provided by the US Census Bureau are 
used.  
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Figure 1.6.30. Mean individual taxable income in the UK (current prices) in 2002 and 
average income distribution in the US in 1986 
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Figure 1.7.1. Evolution personal income distribution in 1994 for incomes above a number of 
thresholds: >$0K (all personal incomes), >$10K, …, >$100K, each normalized to relevant peak 
value among all age groups. The normalized distributions for income above $60K are similar. 
Thus the underlying size distribution is scale free.    
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Figure 1.7.2. The evolution of the number of people with income above $100K normalized to 
relevant working age population. A linear increase with nominal GDP growth is expected.  
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Figure 1.7.3. Normalized personal income distribution for incomes above $100K as a function of 
work experience. The curves are shown for even years from 1994 to 2002.  
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Figure 1.7.4. Comparison of observed and predicted dependence on work experience of the 
number of people with income above the Pareto threshold.  
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Figure 1.7.5. Comparison of observed and predicted dependence on work experience of the 
number of people with income above $100,000 (current dollars). All curves are normalized to 
the peak value in 2001. 
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Figure 1.7.6. Evolution of population density distribution for people with income above the 
Pareto threshold for calendar years 1980 through 2002. Notice the increase in time needed to 
reach the Pareto threshold from 1980 to 2002. This is the result of the decrease in effective 
dissipation factor, α/L, with increasing size of earning means, L.  
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Figure 1.7.7. Evolution of normalized population density distribution for people with income 
above the Pareto threshold for selected calendar years between 2002 and 2023. The growth rate 
of real GDP per capita is set to 0.016 per year. Population projections are obtained from U.S. 
Census Bureau.   
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Figure 1.7.8. Observed and predicted number for people with income above the Pareto threshold 
in 1980.  
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Figure 1.8.1. Ratio of nominal gross personal income, GPI, and nominal GDP for the same year, 
and the portion of the US working age population with income, as reported by the US Census 
Bureau.  
 
   
 



 173 

a) 

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E+02 1.0E+03 1.0E+04 1.0E+05

income, $

pd
f

1987

1967

1977

1947

1957

 



 174 

 
b)  

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06
income, $

pd
f

1947

1957

1967

1977

1987

1995

2005

 
Figure 1.8.2. PIDs for selected years measured in current dollars: a) – for the years between 1947 
and 1987 in constant income bins; b) – for the years between 1947 to 2005 in varying income 
bins. The PIDs are normalized to the total population and reduced to width of corresponding 
income bins.  
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Figure 1.8.3. Cumulative growth of the nominal GDP per capita and nominal GPI per capita 
reduced to different population groups.  
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Figure 1.8.4. The PID for 2005 reduced to the cumulative growth between 1947 and 2005 of the 
four variables presented in Figure 1.8.3.  
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Figure 1.8.5. PIDs for some selected years between 1947 and 1987. The income scale is reduced 
by the cumulative growth of the nominal GPI per capita since 1947, as obtained for people with 
income. Notice consistent behavior of the PIDs between 1947 and 1987. One can expect an 
approximately constant true Gini coefficient for the years before 1987.   
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Figure 1.8.6. PIDs for some selected years between 1947 and 2005: a) – for people with income 
and b) – for the working age population as a whole. The income axis is reduced by the 
cumulative growth in the nominal GPI per capita since 1947, as obtained for people with income.  
Notice the deviation between the curves for 1957 and 2005 at higher incomes, which likely 
manifests measurement errors induced by income definition.  
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Figure 1.8.7. Comparison of Gini coefficients with average income values and centers of income 
bins. The curve with the average values also has three additional income bins between $100,000 
and $250,000. 
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Figure 1.8.8. Approximation of the PIDs by exponential functions – a) between 1947 and 1987; 
and b) between 1947 and 2005. Obtained indices are very close, but scattering is larger in the 
second case, which might be of a higher resolution.   
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Figure 1.8.9. Relative deviation of the average value in income bins, Xav, from the central point 
of the bin, Xc : (Xav-Xc)/dX, where dX is the width of corresponding bin. The CPS reports for 
2001 and 2005 are compared.  
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Figure 1.8.10. Comparison of the Gini coefficient reported by the US Census Bureau for the 
years between 1994 and 2005 with that estimated in this study. Obviously, the US CB changed 
the procedure for the estimation of Gini coefficient in 1998.  
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Figure 1.8.11. a) Comparison of two Lorenz curves for 1947 associated with the crude and fine 
PIDs. b) Comparison of two estimates of Gini coefficient between 1947 and 2005 using the 
crude and fine PIDs. Both coefficients are obtained for population with income.  
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Figure 1.8.12. a) Comparison of two Lorenz curves for 1947 associated with the crude and fine 
PIDs.  b) Comparison of two estimates of the Gini coefficient between 1947 and 2005 using the 
crude and fine PIDs. Both coefficients are obtained for the working age population as a whole.  
The observed change in the actual PIDs is not well described by the fixed income bins. 
Nevertheless, the years between 1970 and 1983 are characterized by a good agreement between 
the curves.   
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Figure 1.8.13. Estimates of index k obtained from the average values of income in the Pareto 
income zone – above $100000, $150000, $200000, and $250000 for the years between 2000 and 
2005.  
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Figure 1.8.14. Linear regression of the probability density functions in the Pareto zone (the log-
log coordinates). The Pareto index is (k=) 1.36. This estimate is consistent with that obtained 
using the average values above $100000 in Figure 1.8.13.   
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Figure 1.8.15. Dependence of the predicted Gini coefficient on the Pareto index, k. Lower k 
values correspond to “thicker” tails in the PIDs and larger Gini values. The effect of k on Gini is 
nonlinear. 
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Figure 1.8.16.  Dependence of the effective increase in income production (extra income) in the 
model relative to that in the sub-Pareto income zone. Theoretical value is 1.33 and corresponds 
to k=1.35. The effect of k on the ratio is nonlinear. 
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Figure 1.8.17. Comparison of the estimated and predicted Gini coefficients. The predicted curve 
lies between the two estimated curves, which converge as the portion of population without 
income drops. One can consider the predicted curve as representing the true Gini coefficient for 
the period between 1947 and 2005. 
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Figure 1.9.1. Evolution of the portion of population with income in various age groups: all – 
above 15 years of age, 20 – from 16 to 24 years of age, 30 – from 25 to 34 years, 40 – from 35 to 
44 years, 50 – from 45 to 54 years, 60 – from 55 to 64 years. In the group between 16 and 24 
years of age, the portion has been falling since 1979. Notice the break in the distributions 
between 1977 and 1979 induced by large revisions implemented in 1980 – “Questionnaire 
expanded to show 27 possible values from 51 possible sources of income.” 
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Figure 1.9.2. Evolution of the Pareto law index (slope) with age: k=-1.91 for the age group 
between 25 and 34 years, k=-1.48 between 35 and 44, k=-1.38 between 45 and 54, and k=-1.14 in 
the age group between 55 and 64.  
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Figure 1.9.3. Evolution of the estimated Gini coefficient for personal incomes in various age 
groups between 1967 and 2005. There are two versions in each age group - first includes all 
people aged in given range (all), and second includes only those with nonzero income 
(w/income). Obviously, the Gini coefficients for people with income are systematically lower 
than those including all population with given ages. 
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Figure 1.9.4. Evolution of various measures of the overall mean income: using GDP; GPI 
reported by the BEA; and GPI reported by the Census Bureau as estimated in annual CPS. Two 
population estimates are used for calculations of the mean values – total working age population 
(all) and people reporting income (with income). According to current income definitions the 
GPI-BEA is larger than the GPI-CB because the former includes additional sources of income. 
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Figure 1.9.5. Evolution of mean income (normalized to that in 1967) in various age groups as 
estimated using: a) total working age population; b) only people with income. The curves are 
used to normalize corresponding PIDs. 
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Figure 1.9.6. Comparison of a) original; and b) normalized personal income distribution (in 
current dollars) in the age group between 35 and 44 years in 1967 and 2005. Original 
distributions published by the Census Bureau are normalized to the width of relevant income 
bins in order to obtain population density distribution. Income bins are not uniform in 1967 
creating local troughs and peaks. In 2005, income bins are uniform between $0 and $100,000. 
Three $50,000-wide bins above $100,000 are not shown. More people and larger GPI in 2005 
are observed. 
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b) 25 to 34 
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c) 45 to 54 
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d) 55 to 64 
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e) 15 years of age and over 
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Figure 1.9.7. PIDs in various age groups for people with income normalized to the increase in 
total income and total population in given group. Years 1967, 1993, and 2005 are presented. 
There is no significant difference between the curves except in the age group between (14) 15 
and 24 years of age. 
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b) from 45 to 54 years of age 
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c) over 15 years of age 
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Figure 1.9.8. Comparison of measured and predicted PIDs in some age groups. High incomes are 
describes by a power law with k=-1.91; k=-1.38; and k=-1.35, respectively. 
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Figure 1.9.9. Comparison of predicted and empirical Gini coefficient in various age groups for 
the period between 1967 and 2005. In all cases k=-1.35. 
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Figure 1.9.10. Comparison of Gini coefficient dependence on age, as estimated by the U.S. 
Census Bureau and in this study from personal income distributions in 1967 and 2005 (curves 
marked – actual). The Gini coefficients predicted by our model for 1967 and 2005 are also 
shown. 
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Figure 1.10.1. Comparison of the taxable income distribution reported by the IRS in 1990 and 
2004.  Income bins are characterized by increasing width. Enumerated populations are assigned 
to the centers of corresponding bins. Notice the log-log coordinates. The lowest income bin 
corresponds to zero and negative (loss) reported incomes, i.e. to people without positive income. 
The bin with incomes above $10,000,000 is not shown because of the absence of mean income 
estimate.      
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Figure 1.10.2. The readings in Figure 1.10.1 are normalized to total population with income and 
divided by width of corresponding income bins. Resulting population density distributions are 
plotted as a function of income. The first (zero width) and the last (open-ended) income bins are 
not presented. The curves almost coincide below $62.500 and then diverge with increasing 
income. Seemingly, income inequality increased as the number of people with higher incomes 
grew faster than that with low incomes.  
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Figure 1.10.3.  The curves in Figure 1.10.2 are additionally normalized to gross personal income, 
i.e. to $4.70E+12 in 2004 and $3.41E+12 in 1990. Relevant income scales are also normalized to 
these incomes and represent dimensionless portions of total income. As a result, widths of the 
income bins also become different since the incomes scale in 2004 and 1990 are contracted by 
different factors. In turn, the centers of the same original income bins in 1990 and 2004 are 
shifted against each other. Effectively, the curves in Figure 1.10.2 are contracted by different 
factors and shifted against each other.  

The curves now represent density of population as a function of dimensionless income. 
They practically coincide at high incomes and diverge at low incomes. Therefore, density of 
population at higher incomes, as measured in dimensionless portions of total income, is 
practically the same in 1990 and 2004. In the low-income range, density of population is 
relatively higher is 2004.   
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Figure 1.10.4. Portion of working age population with income, as reported by the Census Bureau 
and IRS.  The former provides a more reliable definition of income with smaller variations over 
time and larger portion of working age population with income. Because of very high sensitivity 
of the number of low income persons to corresponding definition of income the IRS is likely not 
able to provide a reliable estimate. About 40 percent of working age population is beyond the 
IRS definition of income.  
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Figure 1.10.5. Gross personal income normalized to real GDP. According to the IRS, only about 
a half of GDP is transformed into personal income. The CB reports about 70% of real GDP as 
personal incomes. Volatility of the IRS estimates is very high.   
 
 
 
 
  
 
 


