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Abstract

We introduce the quantum fractional Hadamard transform with continuous variables. It is
found that the corresponding quantum fractional Hadamard operator can be decomposed into
a single-mode fractional operator and two single-mode squeezing operators. This is extended to
the entangled case by using the bipartite entangled state representation. The new transformation
presents more flexibility to represent signals in the fractional Hadamard domain with extra
freedom provided by an angle and two-squeezing parameters.
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1 Introduction

Fractional Fourier transform (FrFT) is a generalization of the ordinary Fourier transform, which
has been used in signal processing and image manipulations [1, 2]. The concept of the FrFT was
originally described by Condon [3] and was later introduced for signal processing by Namias [4] as
a Fourier transform of fractional order. The 1-dimension FrFT of α-order is defined in Refs.[5, 6] as

g (x′) =

√

ei(
π
2 −α)

2π sinα

∫

e−
i(x′2+x2)

2 tan α
+ ixx′

sinα f (x) dx. (1)

The usual Fourier transform is a special case with order α = π/2. On the other hand, many orthog-
onal transform have been successfully used in signal processing, such as discrete cosine transform
[7], discrete Hartley transform [8] and Hadamard transform.

Hadamard transform is not only an important tool in classical signal processing, but also is of
great importance for quantum computation applications [9]. This transform, used to go from the
position basis |x〉 to the momentum basis, is defined as [10, 11]

F |x〉 = 1√
πσ

∫ ∞

−∞
e2ixy/σ

2 |y〉dy, (2)

where σ is the scale length (also makes the expression in the exponential dimensionless), |x〉 and |y〉
are the eigenvector of coordinate operator X. In Ref.[12], the explicit form of F has been derived by
using the technique of integration within an ordered product (IWOP) of operators [13, 14, 15], and it
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is found that it can be decomposed into a single-mode squeezing operator and a position-momentum

mutual transform operator, i.e., F =S−1
1 (−1)iπa

†a/2. In addition, the two-mode Hadamard trans-
form with continuous variables is also introduced by using the bipartite entangled state represen-
tation, whose Hadamard operator involves a two-mode squeezing operator and a mutual transform
operator.

In this paper, we shall introduce the continuous fractional Hadamard transform (CFrHT), which is
a generalization of the usual Hadamard transform in Eq.(2). The development of the CFrHT is based
upon the same spirit of continuous fractional Fourier transform (CFrFT). Then the CFrHT operator
(CFrHTO) is derived by using the IWOP technique, and its properties are analyzed. It is found that

the CFrHTO can be decomposed into a single-mode fractional operator eiαa
†a and two single-mode

squeezing operators. On the other hand, since the publication of the paper of Einstein, Podolsky
and Rosen (EPR) in 1935 [16], arguing the incompleteness of quantum mechanics, the conception
of entanglement has become more and more fascinating and important as it plays a central role in
quantum imformation and quantum computation, we also shall introduce the two-mode CFrHO in
bipartite entangled state representation, which turns out to involve the two fractional operators and
two two-mode squeezing operators.

Our work is arranged as follows. In section 2, for the single-mode case, the normally ordered
fractional Hadamard operator is derived by using the IWOP technique. The properties of fractional
Hadamard operator is discussed in section 3, such as the unitarity, the decomposition of the CFrHO
and its transform relation. Then the single-mode case is extended to two-mode case in section 4 and
some similar discussions to singled-mode case are presented. Section 5 is devoted to exploring the
measurements for the output states from the CFrHT. Conclusions are involved in the last section.

2 Normally Ordered Fractional Hadamard Operator

In this section, we first introduce the continuous fractional Hadamard transform (CFrHT), i.e.,

Hα (µ, ν) |x〉 =

√

ei(
π
2 −α)

2πµν sinα

∫ ∞

−∞
exp

{

−i

(

x2/µ2 + y2/ν2
)

2 tanα
+

ixy

µν sinα

}

|y〉 dy, (3)

where µ, ν are the scale length (also make the expression in the exponential dimensionless), α is
an angle, and Hα (µ, ν) is called the CFrHT operator (CFrHO). In particular, when α = π/2 and
µ = ν = σ/

√
2, Eq.(3) just reduces to Eq.(2).

In order to find the explicit expression of the CFrHO, multiplying Eq.(3) by the bra
∫

dx 〈x| from
the rights in two-side, where |y〉 and |x〉 are coordinate eigenvectors, X |x〉 = x |x〉, and

|x〉 = π−1/4 exp

{

−x2

2
+
√
2xa† − a†2

2

}

|0〉 , (4)

we can recast the CFrHO Hα (µ, ν) into the following integral form,

Hα (µ, ν) =

√

ei(
π
2 −α)

2πµν sinα

∫ ∞

−∞
exp

{

−i

(

x2/µ2 + y2/ν2
)

2 tanα
+

ixy

µν sinα

}

|y〉 〈x| dxdy. (5)

Then using the vacuum projector’s normal ordering form |0〉 〈0| =: e−a†a : (where the symbol : :
denotes the normally ordering) and the IWOP technique to directly perform the integration, we

2



finally obtain

Hα (µ, ν) =
1

π

√

ei(
π
2 −α)

2µν sinα

∫ ∞

−∞
: exp

{

− A

2µ2
x2 +

√
2xa+

ixy

µν sinα

− B

2ν2
y2 +

√
2ya† −

(

a† + a
)2

2

}

: dxdy

=

√

2µνei(
π
2 −α)

u sinα
exp

{(

ν2A

u
− 1

2

)

a†2
}

× exp

{

a†a ln
i2µν

u sinα

}

exp

{(

µ2B

u
− 1

2

)

a2
}

, (6)

where we have set A = i cotα+µ2, B = i cotα+ν2, u = csc2 α+AB,and used the operator identity
in the last step of Eq.(6),

exp
{

fa†a
}

=: exp
{(

ef − 1
)

a†a
}

: , (7)

Eq.(6) is the normally ordered form of the CFrHO. In particular, when α = π/2 and µ = ν = σ/
√
2,

leading to A = B = σ2/2, u = 1 + σ4/4, then Eq.(6) becomes

Hπ/2

(

σ/
√
2, σ/

√
2
)

=
2σ√
σ4 + 4

exp

{

σ4 − 4

σ4 + 4

a†2

2

}

× exp

{

a†a ln
4iσ2

σ4 + 4

}

exp

{

σ4 − 4

σ4 + 4

a2

2

}

, (8)

which is just the result Eq.(7) in Ref.[12].

3 Properties of Fractional Hadamard Operator

From Eq.(5) one can see that the CFrHO is a unitary one, i.e., Hα (µ, ν)H†
α (µ, ν) = H†

α (µ, ν)Hα (µ, ν) =
1. In fact, uisng Eq.(5) and the orthogonality of coordinate state, 〈x′ |x〉 = δ (x− x′), we have

Hα (µ, ν)H†
α (µ, ν) =

1

2πµν sinα

∫ ∞

−∞
exp

{

i

(

y′2 − y2
)

2ν2 tanα
+ ix

y − y′

µν sinα

}

|y〉 〈y′| dxdydy′

=
1

µν sinα

∫ ∞

−∞
δ

(

y − y′

µν sinα

)

exp

{

i

(

y′2 − y2
)

2ν2 tanα

}

|y〉 〈y′| dydy′

=

∫ ∞

−∞
|y〉 〈y| dy = H†

α (µ, ν)Hα (µ, ν) = 1. (9)

In order to see clearly its transform relation under the CFrHO, next we examine its decomposition.
Performing the change of variables, x/µ → x, y/ν → y, we can be recast Eq.(5) into the following
form,

Hα (µ, ν) =

√

µνei(
π
2 −α)

2π sinα

∫ ∞

−∞
exp

{

−i

(

x2 + y2
)

2 tanα
+

ixy

sinα

}

|νy〉 〈µx| dxdy. (10)

By noticing that the single-mode squeezing operator S1 [17] has its natural expression in coordinate
representation [13], i.e.,

S1 (µ) =
1√
µ

∫ ∞

−∞
dx

∣

∣

∣

∣

x

µ

〉

〈x| , (11)
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which leads to |νy〉 = 1√
ν
S−1
1 (ν) |y〉 , 〈µx| = 1√

µ 〈x|S1 (µ) , so Eq.(10) can be decomposed into

Hα (µ, ν) = S−1
1 (ν)FαS1 (µ) = S−1

1 (ν) eiαa
†aS1 (µ) , (12)

where Fα is given by

Fα ≡

√

ei(
π
2 −α)

2π sinα

∫ ∞

−∞
e−

i(x2+y2)
2 tan α + ixy

sinα |y〉 〈x| dxdy = eiαa
†a, (13)

this integral result can be obtained by using a similar way to deriving Eq.(6). Thus we see that the
CFrHO can be decomposed as a fractional operator and two-single-mode squeezing operators.

Using the decomposition of the CFrHO in Eq.(12), and noticing that S1 (µ)XS−1
1 (µ) = µX,

S1 (µ)PS−1
1 (µ) = P/µ, and eiαa

†aae−iαa†a = ae−iα, which leads to

eiαa
†aXe−iαa†a = X cosα+ P sinα, eiαa

†aPe−iαa†a = P cosα−X sinα, (14)

thus we have

Hα (µ, ν)XH†
α (µ, ν) = µS−1

1 (ν) (X cosα+ P sinα)S1 (ν)

=
µ

ν
X cosα+ µνP sinα, (15)

Hα (µ, ν)PH†
α (µ, ν) =

ν

µ
P cosα− X

µν
sinα, (16)

from which we see that the CFrHO plays the role of combining the coordinate operator X and
momentum operator P in a certain way (15)-(16), i.e., including the squeezing and the rotation. In
paticular, when α = π

2 , Eqs.(15)-(16) become

Hπ
2
(µ, ν)XH†

π
2
(µ, ν) = µνP, Hπ

2
(µ, ν)PH†

π
2
(µ, ν) = −X

µν
, (17)

i.e., the mutual exchanging of coordinate-momentum operators.

On the other hand, there is a most important feature of the FrFT is that the FrFT obeys the
additivity rule, i.e., two successive FrFT of order α and β makes up the FrFT of order α+ β. Then
a question naturally arises: Is the two successive CFrHOs still a CFrHO? To answer this question,
we examine the direct product Hα (µ, ν)⊗Hβ (µ

′, ν′). Using Eq.(12) it is easily seen that when µ =
ν′ there is an additivity of operator as follows

Hα (µ, ν)⊗Hβ (µ
′, µ) = S−1

1 (ν) eiαa
†aS1 (µ)S

−1
1 (µ) eiβa

†aS1 (µ
′)

= Hα+β (µ
′, ν) , (18)

which can be seen as the additivity property of the CFrHOs. Here it should be pointed out that
the condition of additivitive operator for the CFrHOs is that the parameter µ of the prior cascade
operator should be equal to the parameter ν′ of the next one, i.e., µ = ν′. This can be clearly seen
from the viewpoint of classical optics transform.

4 Two-mode CFrHT

Next, we shall extend the single-mode CFrHT to two-mode case by using the entangled state repre-
sentation [18],

|η〉 = exp

{

−1

2
|η|2 + ηa†1 − η∗a†2 + a†1a

†
2

}

|00〉 , (19)
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where |η = η1 + iη2〉 is the common eigenvector of two-particle’s relative coordinate X1 −X2 and
total momentum P1 + P2,

(X1 −X2) |η〉 =
√
2η1 |η〉 , (P1 + P2) |η〉 =

√
2η2 |η〉 , (20)

and |η〉 possesses the completeness and the orthogonality,
∫ ∞

−∞

d
2η

π
|η〉 〈η| = 1, 〈η| η′〉 = πδ (η − η′) δ (η∗ − η′∗) . (21)

In a similar way to introducing Eq.(3), we examine the following transform,

HC
α (µ, ν) |η〉 = ei(

π
2 −α)

2µν sinα

∫

d
2η′

π
e−

i(|η′|2/ν2+|η|2/µ2)
2 tan α +

i(η′∗η+η∗η′)
2µν sinα |η′〉 . (22)

Using Eq.(21), one can see that HC
α (µ, ν) is a unitary operator, i.e., HC

α

[

HC
α

]†
=

[

HC
α

]† HC
α = 1.

Here we should emphasize that, the exponential item in the right hand side of Eq.(22) can be
decomposed into a direct product of two exponential items in the right hand side of Eq.(3), but |η〉
is an entangled state (not the direct product of two single-mode coordinate states, which can be seen
clearly from its Schmidt decomposition [19]), thus this is a nontrivial extension from single-mode
case to two-mode case.

Performing a similar procedure to single-mode case, i.e., noticing that the two-mode squeezing
operator has its natural expression in the entangled state representation,

S2 (µ) = exp
[(

a†1a
†
2 − a1a2

)

lnµ
]

=
1

µ

∫

d2η

π

∣

∣

∣

∣

η

µ

〉

〈η| , (23)

which leads to 1
ν

∣

∣

∣

η′

ν

〉

= S2 (ν) |η′〉 , 1
µ

∣

∣

∣

η
µ

〉

= S2 (µ) |η〉 , then using the completeness of |η〉 and

|00〉 〈00| =: e−a†a−b†b : and the orthogonality in Eq.(21) we can further decompose the operator
HC

α (µ, ν) into the following form,

HC
α (µ, ν) = S†

2 (ν)FC
α S2 (µ) = S†

2 (ν) exp
{

iα
(

a†1a1 + a†2a2
)}

S2 (µ) , (24)

where the operatror FC
α is given by

FC
α =

ei(
π
2 −α)

2 sinα

∫

d
2η′d2η

µ2ν2π
e−

i(|η′|2/ν2+|η|2/µ2)
2 tan α +

i(η′∗η+η∗η′)
2µν sinα

∣

∣

∣

∣

η′

ν

〉〈

η

µ

∣

∣

∣

∣

= exp
{

iα
(

a†1a1 + a†2a2
)}

. (25)

Thus we see that the two-mode CFrHO can be decomposed into the form in Eq.(24), i.e., two
fractional operators and two two-mode squeezing operators.

This is a convient expression for further deriving the transforms and the condition of additivitive
operator. In fact, using Eqs.(24), (14) and Eqs.(20), (21) leading to

S2 (µ) (X1 −X2)S
†
2 (µ) = µ (X1 −X2) , S2 (µ) (P1 + P2)S

†
2 (µ) = µ (P1 + P2) , (26)

S2 (µ) (X1 +X2)S
†
2 (µ) =

1

µ
(X1 +X2) , S2 (µ) (P1 − P2)S

†
2 (µ) =

1

µ
(P1 − P2) , (27)

we have

HC
α (X1 −X2)

[

HC
α

]†
= µS†

2 (ν)FC
α (X1 −X2)

[

FC
α

]†
S2 (ν)

= µS†
2 (ν) ((X1 −X2) cosα+ (P1 − P2) sinα)S2 (ν)

=
µ

ν
(X1 −X2) cosα+ µν (P1 − P2) sinα, (28)

HC
α (X1 +X2)

[

HC
α

]†
=

ν

µ
(X1 +X2) cosα+

1

µν
(P1 + P2) sinα, (29)
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and

HC
α (P1 − P2)

[

HC
α

]†
=

ν

µ
(P1 − P2) cosα− 1

µν
(X1 −X2) sinα, (30)

HC
α (P1 + P2)

[

HC
α

]†
=

µ

ν
(P1 + P2) cosα− µν (X1 +X2) sinα. (31)

From Eqs.(28)-(31) it is easy to see that when α = π/2, the role ofHC
π/2 is just exchanging (X1 −X2)

and (P1 − P2), (X1 +X2) and (P1 + P2) ; while for α = π, HC
π can be seen as an identity operator.

In addition, from the decomposition (24) one can see that the direct productHC
α (µ, ν)⊗HC

β (µ′, ν′)
satisfies the additivity rule when µ = ν′, i.e.,

HC
α (µ, ν)⊗HC

β (µ′, ν′) = HC
α+β (µ

′, ν) . (32)

5 Measurements for the output states from the CFrHT

The measurement for quantum state plays an important role in quantum computation and quantum
imfromation. When a quantum state |f〉 is transformed by the CFrHO, then what is the measurement
result with continuous orthogonal basis? For single-mode case, the output state from the CFrHT
is |g〉out = Hα (µ, ν) |f〉. The measurement basis is choosen as a coordiante eigenvector, then the
measurement result is given by

〈x |g〉out = 〈x| Hα (µ, ν) |f〉

=

∫ ∞

−∞
dx′ 〈x| Hα (µ, ν) |x′〉 〈x′ |f〉

=

√

ei(
π
2 −α)

2πµν sinα

∫ ∞

−∞
f (x′) e−

i(x′2/µ2+x2/ν2)
2 tan α + ix′x

µν sinα dx′, (33)

which just corresponds to a generalized fractional Fourier transform of wave function f (x′) = 〈x′ |f〉 .
For two-mode case, the measurement result by two-mode entangled state Bell basis is

〈η′ |g〉out = 〈η′| HC
α (µ, ν) |f〉

=

∫ ∞

−∞

d
2η

π
〈η′| HC

α (µ, ν) |η〉 〈η |f〉

=
ei(

π
2 −α)

2µν sinα

∫ ∞

−∞

d
2η

π
e−

i(|η′|2/ν2+|η|2/µ2)
2 tan α +

i(η′∗η+η∗η′)
2µν sinα f (η) , (34)

which is just a generalized complex fractional Fourier transform, and the wave function f (η) is the
projection of quantum state |f〉 on 〈η|. From Eqs.(33) and (34) we can clearly see that the generalized
FrFT of the wavefunction for any quantum state |f〉 in coordinate/entangled state corresponds to
the wavefunction of Hadamard-transformed (Hα (µ, ν) |f〉) in coordinate/entangled state. In other
words, the generalized FrFT of wavefunction is just the matrix element of CFrHO in 〈x| (〈η′|) and
|f〉.

6 Conclusion

Based on quantum Hadamard transform, we have introduced the quantum fractional Hadamard
transform with continuous variables. It is found that the corresponding quantum fractional Hadamard

operator can be decomposed into a single-mode fractional operator eiαa
†a and two single-mode

squeezing operators. The two-mode fractional Hadamard transform is also introduced by using
the bipartite entangled state representation. It is shown that the corresponding transform opera-
tror involves two single-mode fractional operators and two two-mode squeezing operators. For any
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quantum state vector |f〉, the measurement results for the transformed quantum state (for instance
|g〉out = Hα (µ, ν) |f〉) by continuous coordinate state |x〉 (or bipartite entangled state |η〉) just corre-
sponds to a generalized (complex) fractional Fourier transform. In addition, the new transformation
gives us more flexibility to represent signals in the fractional Hadamard domain with extra freedom
provided by an angle, and two-squeezing parameters. For more discussions about the optical trans-
forms in the context of quantum optics and the discrete fractional Hadmard transform, we refer to
Refs.[20, 21, 22].
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