EXISTENCE AND REGULARITY OF WEAK SOLUTIONS OF
DEGENERATE PARABOLIC PDE MODELS FOR THE
PRICING OF SECURITY DERIVATIVES

RASOUL BEHBOUDI” AND YOU-LAN ZHU'

Abstract. This work is focused on the solvability of initial-boundary value problems for
degenerate parabolic partial differential equations that arise in the pricing of Asian options, and
on the investigation of differential and certain qualitative properties of solutions of such
equations. The generalized solvability for such models with degeneracy at the boundaries is
proved by employing solutions obtained from finite difference numerical schemes. Furthermore,
the regularity of such solutions is studied.

Introduction:

The price of a discretely sampled Asian option is modeled by a final-value parabolic
partial differential equation on an infinite domain that takes the form ([14]):
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along with a final condition at expiry 7. In this model, 77 = E , Win,t)= E , V=V(S,0)
is the price of option, § is the value of the underlying asset, ¢ is the time, D, is the
dividend rate, g(S,t) is the volatility, r(¢) is the interest rate, and D is a constant related
to the double average Asian option.

From the numerical point of view, the above problem has to be solved on an artificial
finite domain by adding artificial boundary conditions. However, such boundary
conditions may not be appropriate in some cases as they would contribute significantly to
the error of the numerical work.

By introducing new variables, the above formulation can be transformed into an initial-
boundary value problem on a finite domain as follows ([14]):
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Since this new equation degenerates at the two boundaries, the solution values at the
boundaries can be determined exactly by the ordinary differential equations and initial
conditions governing the boundaries. Consequently, in the process of obtaining numerical
solutions, no artificial boundary conditions are needed.

In order to justify the validity of this approach, the existence and the uniqueness of
solutions of such parabolic equations have to be investigated. Note that since the
diffusion coefficient is zero at the boundaries, the usual elliptic arguments do not apply.
In particular, the diffusion operator is not strongly elliptic and its graph norm is not

equivalent to the W,” Sobolev space norm, hence the existence of the solution is not

trivial. On the other hand, once the existence of the solution has been established, the
uniqueness property would quickly follow from Gronwall inequality.

ANALYTIC INVESTIGATION OF THE UNIQUENESS OF SOLUTION:

Degenerate parabolic formulations such as (1)-(3) can be written in the following general
conservative form:

g—b;=%(A(x,t)%j+B(x,t)g—z+C(x,t)u, “4)
0<x<l1, t>0, ®)
u(x,0) = f(x), (6)
A(x,1) 20, A0,1) = A(l,1) =0, 7

and with one of the following boundary characteristics for B(x,?):

B(0,1)=0, B(1,1)<0 (8.a)
B(0,1)=0, B(1,t)>0 (8.b)
B(0,1) <0, B(L,1)<0 (8.c)
B(0,1)<0, B(L,t)>0 (8.d)



For simplicity, we assume that C(x,¢) =0 . Then multiplying both sides of (4) by 2u, we
obtain:

i(uz):2i(Aua—uj+Bi(u2)—2A(a—uj2 <2£(Aua—uj—a—3 u2+i(Bu2)
dt Ox 0x 0x ox)  Ox Ox ) Ox Ox .

Now, integrating with respect to x on the interval[O, 1] , and using (7), we get:

%” u(,0)|” < N|uCn| +BA,0u*1,0) - BO,5)u’(0,1)
S N|uC0)|" + N u* )+ N, u?(0,1),
where

0 B(x,1)
Ox

. N, = max{0, B(1,n},and N, = ~min{0, B(0,1)} .

0<t<T

[-1=1- oy ¥ =, max

0<x<l1, 0<t<T

We will now apply Gronwall inequality for ¢ [] [O,T] to obtain:

|uC, o e ( [A+ ] (N> 0,0+ N, w2 0,0) dr). ©)

It will now follow that the solution is stable with respect to f(x) . Furthermore, if
condition (8.a) holds and f(x)is identically zero, then the solution of (4) is zero, hence
f(x) determines the solution uniquely. Similarly if (8. b) holds, then f(x)and

B(1,7) will uniquely determine the solution. The results for other cases are similar.

Therefore, if a solution exists, then it’s unique for the problem (4)-(7) together with

(1) condition (8.a), and no other condition on u is needed.

(i) condition (8.b), and a boundary condition is needed at x =1.

(ii1))  condition (8.c), and a boundary condition is needed atx =0 .

(iv)  condition (8.d), and boundary conditions are needed atx =0and x =1.

THE NUMERICAL SCHEME AND ITS STABILITY:

For the above problem, several numerical schemes with relatively high rates of
convergence have been constructed, and the stability of numerical solutions have been
established ([8], [10]). In this work, similar numerical scheme will be constructed and the



convergence of the numerical solutions to a function u in the space W21 ((O,T) ;W21 (0, 1))

will be proven. It will then be shown that u is the weak solution of the degenerate
parabolic equation. With uniqueness already known, the existence question is therefore
tackled via a constructive method: As a by-product of the numerical scheme.
Furthermore, some regularity results will also be obtained in the process.

We will mainly focus on problem (4)-(7), (8.b). Problems (4)-(7), (8.a) and (4)-(7), (8.d)
require less work, and the case for problem (4)-(7), (8.c) is similar to that of (4)-(7), (8.b).

L 1 T
Let J and N be positive integers. Let Ax =7, AV :N’ x; = jlx, t" =nlt, j=0,1,....J,

n=0,1,..., N, and let the numerical solution at the point ( JjlAx, nAt) be denoted by U 7 .
For each n, let U" denote the Vector{ Uilosj<J } . For example, U° represents the

initial condition. Also in the space of such grid functions, and for all U"and V", we

define the inner product <U " V"> = iU ;’ Vj" Ax, and let || . || be the induced norm.
i=0

Moreover, letA, ,A_ and A, respectively denote the forward, the backward, and the

u:, -u’
central space difference quotient operators; that is, AU’ = ALK A
,_Ui-Ul, A A . U =u] .
AU = ——— JandA, =— . Similarly, let AU =———= be the time
; Ax ! At

difference quotient.

To obtain second order accuracy at the boundaries, some “uniformity” will be
incorporated into the scheme ([10]). This is done by first choosing a number A such that

0<A <% , A= 2/Ax, and then constructing a function &(x)on [0,1] such that

8(x)=1on [0,4], 8(x)=0on [1-A, 1], with 6(x) being differentiable on (0,1). Thus
6(x)is uniquely extended to a third degree polynomial on[)l - /1] . Choosing A =2 Ax
will ensure that 8(0) = 8(Ax) = 8(2Ax) =1, and 8(1) = 6(1-Ax) = 6(1 -2Ax) =0.

For simplicity, the boundary condition u(1,¢) = constant will be used at x =1 so
that;l—u(l,t) =0. We shall now write the numerical scheme for problem (4)-(7), (8.b) :
t

| X %ejB;”” (38,v; -nv.,) it B 20
AU =4, (a2 avy) +5(1—9j)B;7+”2A0VJ.” + ,

%3,-3?”/2 (3A—an _A—an—l) if Bj™"*<0

j=1,2,,J=1;n=0,1,...N -1,
(10)



no— n+l n —_ _
Vj —Uj +Uj, n,n=0,1...N-1,

+ 1 + n n
AU! = 1a;; AV B (30, -AV"), n=0.1..N-1,
2 4 (1 1)
a(et) =L Ao,
dx

AIU7 :0, n:O,l,...,N_l. (12)

Scheme (10)-(12) is second order accurate, and is stable if B(0,7) = %diA(O, t) ([14]).
X

Therefore, there exists a constant C, such that for any n, n =0,1,..., N -1

o

<q, (13)

(Note: A similar scheme for problem (4)-(7), (8.c) is stable if B(1,¢) < %diA(l,t) )
X

THE STABILITY OF SPACE DIFFERENCE QUOTIENTS:

For eachn, n=0,1,....N —1, letW_].” = U‘;’” —U‘;’, j=0,1,...,J . Then the numerical scheme
(10)-(12) can be written as

(1426 )a v +(1-6))a v, -04,V:, if B 20

A . Y- )ALV
an :?tA"' (A;I_llllzz A_an) +TtB7 v + ' ' l . +1/2

(1+20 )av;+(1-6,)a v, -84 V), if B <0
J=1200 -1
n=0,1,.,N-1

(14)
A + A + n n

W, =7ta3 WA +ztB:: " (3y-aW). n=01..N -1 (15)
W, =0 (16)

Without loss of generality, we may assume that there are indices i and k, i <k, such
that B2 20 forall j<i-lor j2k,and B/"? <0 forall i< j<k—-1.Next, by definition,



Thus multiplying (14) by —(A+A_V_].”)Ax and summing over j, j =1,2,...,J —

multiplying (15) by —(A,V;' ), multiplying (16) by (A V;") , and adding the three results,

we obtain:

n+l 2

where

__ % JZ::(A av)(a, (A avy))ar,

I _% ZB 1/2(_A+A_Vj")((1+29 )AV +(1 9) " jl 5A+V]+1)Ax

j=1

111:% i B (-0,8v7)((1+26)a v +(1-6))A V), -6A V), ) Ax,
=

J-1
v =% FZKB;*“Z (—AA_V")((I+29j)A+Vj”+(1—<9 Jay:, -6, A+V,+1)Ax,

J

At

V= (—AJ/(,")(%a{;“’zAJ/O" + B (30 -AYy )j :

Next, we shall obtain upper bounds for ( 7)-( V):

n+l/2 n+1/2
= % JZE‘(A+A_VJ,")(AI+11/2A Vi AxA/ llsz V JAx

j=1

(7)

(18)

(19)

(20)

21

(22)



Jj=1

j-1/2

Ax Ax

n n n+l/2 n n+l/2 n
DV =DV ANV -A"AY) JAX

ER= Ax ER= Ax

wy i[(/*;““ -Ans) () } N2 {(A}’i‘/f —Ar*“)(AV’n)Z]
= 2

Ar i (A'7+1/2 —2A';+1/2 +An+l/2

=172 i+1/2
a3 ,

L)

a G| (A —2amk v ar?) (a vy ) MA{(AJ’?” -Af*ifi)(AVf)ZJ

o) (ov7) o

2 axY 2
2
) At {(Aln/;uz —AI"H/Z)(AVI”)Z} As il (A;:r11//22 —2A;7+”2 +A7:11//22

oo 6
2

2
Assuming that a(x,?) = d—A(x,t) is Lipschitz continuous with respect to x with Lipschitz
X

g Ax

J

"'g ) (A+an ) (A—V.in ) Ax.

constant C,, expanding A,,, and A, about x =0, expanding A,_,, and A,_, aboutx =1,

|
< —
2

using the inequality

%

Av;

vy

AV]

2
) , and noting that

AV'|=[av"| and AV;" =A.Vy', we obtain:
7C,At T AN n Z_At n+1/2 n\?
1s == a v+ ra (a.v) ~ (avy) (23)

To find upper bounds for /1, 111, and IV, we do a temporary change of notation: For each
n, we denote A,V by Y;. Then (19) will be written as:

I :% lilB;,ﬂ/z (Yj _Yj_l)(—(1+29j)Yj —(l—ej)Yj_l +ngj+1)
=
_ % ;ZIIB;H/ZQJ ’



where

0,=(1-6)r2, -(1+20)v? +36Y Y, -0y, Y, +6YY,,.

The matrix of the quadratic form is:

i \ e
1_61' EQJ 76]
3 1
Q= 26 -(1+26) -6 |-
-1 1
20 3% 0

which can be written as the sum of a negative definite matrix and a pseudo-null matrix
Q, as follows:

-tg Lo o
I 2
1 1 -1
Q,=-56|2 [1 -2 1]+ 26 1 6
1
-1, 1
O 2% Y

Hence for any Y = [Yj_l Y. Y.

J j+l

T , Y'Q,Y <Y'Q,Y . Therefore since B, 20 in II, we

obtain:

II<—ZB"+”2[(1—% j —Y2+ 9Yf+1+9Y Y, HYYJHJ

j=0 j=2

- Sw (120, i -Sar S aee b S ey (v, |

If the same procedure is repeated for /V and a similar procedure for /11, and all results are
put together in (17), inequality (24) will be resulted. In eliminating some of the boundary

terms, we had to make the assumption that: diA(l,t) + B(1,¢t) =20, which is not very severe
X

and, in fact, from the applications point of view, we have: di A,1)=0.
X



2 Mt

1
AU -laor | =calave | -= B (21/02 —2vY +—ij
4 2

(24)

V2
- a2 B _\/E Y,
= C,|p,v o5 [v, Y] 2 [ﬁ vl
2
where C, =C,(C,,C,,C,), and C, and C, are Lipschitz constants (with respect to x) of
functions B(x,t) and 6(x)B(x,t) respectively. Therefore,

a U"“z—\A U”2<CAt‘A vl (25)

+ + = %5 + ’

or,

v < ECEYA yef (26)
1-C.A¢

It follows from (26) that if diu(x,O) UL, ([O, 1]) and Ar < Ci’ then there is a constant
X

5

C, such that for all n, n=0,1,....,N -1,

( Note: A similar appropriate scheme for problem (4)-(7), (8.c) would have stable space

AU"

<C, 27)

difference quotients if diA(O,t) +B(0,1) <0 and Atis chosen appropriately.)
X

The following is a review of the list of constants already used, and a few new constants
that will be used in the sequel:

C, =bound for HU "

. . d .
C, = Lipschitz constant of I A(x,t) with respect to x
X

C, = Lipschitz constant of B(x, ) with respect to x

C, = Lipschitz constant of 8(x)B(x,t) with respect to x
C, =C,(C,.C,,C))
C, =bound for ‘A+U "

(or, |AU"

)
)

) d
C, = Lipschitz constant of A(x,?) with respect to t (or, the bound for d—A(x,t)
t




A(x,1)|)

. ) ) d
C, = Lipschitz constant of A(x,?) with respect to x (or, the bound for d_
X

C, = max {|A(x,t)|}

0<x<1,0<t<T

C,= max {|B(x,t)|}

0<x<l1,0<t<T

2
C, = At

THE STABILITY OF TIME DIFFERENCE QUOTIENTS:

Using the numerical scheme (10)-(12), we multiply (10) by AU AxAr and sum over
jandn, j=1,2,..,J -1, n=0,1,...,N —1; and multiply (11) and (12) respectively by
AU Ax At and AU Ax At and sum over n, n =0,1,...,N —1, to obtain:

2
At =VI+VII+VII +IX + X , (28)
where,
VI = Nz::z;%(A U”)(A (a7 A V"))AxAt, (29)
VIl = ; 11 %B}””z (a07)((1+26)av;+(1-6) Ay, -68,7, ) Aca, (30)
n=0 j=
Vi =Y iB;“/Z (au7)((1+26)av;+(1-6,)v;, -68 V), )Axar, 31)
n=0 j=i
x=S5S %B””” (au;)((1+26) 8,V +(1-6)a v}, -84V, ) Axar, (32)
n=0 j=k
X = NZ_OI(A,US)GaS*“ZAy: B (305 A ))A»Ar - (33)

Similar algebraic manipulations as those in the previous section and an ¢ -inequality type
argument yields:

1 1 & & + n+ 'S n n
VI < 5C7C62T _EZ(Z A,;lﬂl/z (A+U.i 1)2 a A.i+1/2 (A"U-/' )ZJA’

+%cglv_l((s(a+von)2 %(AU ) +£(A_VJ")2+§(A,U7)2)AxAt

10



1 1 1 \ ; 1 & n ]
SEC7C62T+EC9HU°”2+§C8£T((A_Vl ) +(a; )Z)Ax+§c ;((AU AU )AxAt

Considering the fact that |6?(x)| <1 for all x D[O,l] , other terms in (28), are put together as
shown below:

2

=1 i-

VII+VII+IX + X < icm 1 ( (ij” )2 + ‘9(A+Vj”+l)2 + ‘9(A+Vj"_l)2 +§(A,U7 )szxAt

2 3
L o
~

Ve, S aelavi ) elavi ) relove) +S(avi) o
n=0 j=i
e S8 selaw) elomi) welor) + o) Jae
4 n=0 j=k c
+iC10N—1(35(A+V0”)2 +£(A+V1" )2 +%(ArU7)2ijAt
n=0
+%C8N:( e(avy) +%(AtU_;“)2JAxA,,

They are then combined with VI to get:

2
C,C2T+LC,C2 42 CeTC +- (3¢, +10C,,) z At
2 8 8 v

Z\

At<

1
2
We may now choose & = (3C8 + 10C10) , and arrive at the desired conclusion:

N-1

Ar<C,,, (34)

n=0

(c“ = §C7C62T +§cgcﬁ2 +%C8TC62 (3¢, +10c10)j.

With inequalities (13), (27), and (34) at our disposal, we are now in the position to tackle
the question of existence via a constructive method.

QUALITATIVE PROPERTIES OF THE SOLUTION:

In the sequel, we will use the following inner product and the corresponding energy
norm: For all integrable functions u(x,¢) and v(x,?) on[O, 1] X[O,T] , we define:

11



Tl 2 (7 2
<u,v>E = J.O .[Ou vdxdt, and ||u||E = J-O ||u||£a([0,1])dt.
Also for any set S, let x, denote its characteristic function; that is,

@ = 1 if wdS
As 0 if wdS$

We will now consider the degenerate parabolic equation (1) along with an arbitrary initial
condition, such asu(x,0) = f(x), and solve it numerically by the numerical scheme (10)-

(12). Note that since B(0,7) =0 and B(1,¢) =0, then this equation falls into the type with

boundary characteristic (8.a). Therefore scheme (10)-(12) has to be slightly adjusted
accordingly. To obtain a numerical solution, we assigned the following values to the
parameters in the equation: g =0.05, r =0.05, D, =0.1, T =1 unit.. For the initial

condition, f(x)=tanh(x) was chosen. We will next use the numerical solution U j” to

construct Step functions ;(x,t) and Z(x, t) as follows:

_ N-1 J
ren =2 Xp Ui, (un0(0,1]x(0,7],
n=0 j=1
70,0 =U;", tO(ndt,(n+DAt], n=0,1,..,N —1,
r(x,0)=U", x0((=DAx, jAx], j=12,...,J,

7(0,0)=UY,
(D], ={(x.0: x0(( ~DAx, jAx] 1 O(nbr, (n+ DAL, j=1,2,.... 0,0 =0,1,...N ~1}.

_ N-1J-1
(D=2 X U™ (xn0[0,1)x(0.T],
n=0 j=0
ILy=U;", tO(ndt,(n+DA], n=0,1,..,N -1,
1(x,0)=U", xO[jAx,(G+DAx), j=0,1,...,J =1,

11,0)=U°,
[D), ={(x.0): xO[jlx, (j + DAX):r O(nde, (n+1DA]; j =0,1,....J =1;n =0,1,...N =1},

The graph of Z(x, t)is shown below. The graph of ;(x,t) is similar with the difference

that, for each rectangular sub-domain Ax x Az, ;(x,t) attains the solution values at the
larger space corners.

12



The Graph of the Step Function Constructed by Using the Numerical Solution

Numerical Sdution U

t(n)

t(n-1)

. o o]
Space Variable x Time Variable t

We will now derive some qualitative properties of ;(x, t) and Z(x, t): For any fixed n,

2 J
Hr(x )H (o 1] ZX(D] ( ) dx :ZO(U;'H)Z J'XD(DL dx :HUV:HHZ < (Cl)z'

Jj=

.. S 2 2
Similarly, Hl (X’I)HLZ([O,I]) < (Cl) . Therefore, for any tD[O,T] ,

r(x,.) , 1(x,) 0L, ([0.1]).

! r(x,t)HLQ([OJD <C,,and

L) <C,. That s, rand [DL, ((0 T)'L ([O 1])) . In fact,

fromH?(x,t)H oo e, t)” o) di<(C,)’ T, it follows that:
r(x.1) [0 OL, ([0.7]: L, ([0.1])).

That is, there is a constant C,'=C,~/T such that

frsel, e, < 5

13



Thus in the Hilbert space L, ([O,T] ;L ([0, 1])) , inequality (35) gives rise to a

compactness in weak * topology. Since a Hilbert space is reflexive, a weak compactness
follows immediately. To be more precise, let ® = C' ((O,T) :C! (O,l)) be a set of test

functions. Then there exists a sequence {Axi,Ati} such that as {Axi,Atl.} - 0, the

functions ;(x,t) and Z(x, t) respectively converge weakly to some functions r(x,t) and
I(x.0)in L, ([0.7]:L, ([0.1])) : that is, for all g0 ®,

( A}iAllx)le(x, 0,¢x,0) = (rCen,@x0),

( AxliArtI)lﬁO<Z(x, 0,¢x,0) =(1060),@0x60),

(36)

The Graph of the Limit Function [{(x,t) with ux O0=tanh(x)

lixd)

Space Wariable x 0 o

Time “ariable t

We will next utilize the space and the time difference quotients obtained from the
numerical solution to construct step functions r'(x,t), [ '(x,t), r,(x,t),and [ (x,t) as
follows:

r(x 1) = Ei Xy, (BU1), 0 D(0.1]x(0.7], r'(x,0)=D,U" .
n=0 j=0

['(x,0) = fi)([m (avr).  nofo)x(0.7], I'(x0=80°.
n=0 j=1 i

_ N-1 J _

D=2 X, (BU7).  nO(01]x(0.7]. 50.0=AU; .

n=0 j=1

14



-1J-1

L (x,1)= ZZ)([D( M. ogfon)x(0r]. La.n=AU;

n=0 j=0

The functions constructed above, have certain qualitative properties that we will explore.
These properties will play an important role in establishing the existence of the solution
to problem (1), and revealing some of its regularity properties. We will first show that the

above functions belong to the same function spaces as functions ;(x,t) and Z(x, t):

_ N-1J-1 2
Hr'(x’t)u (lo7}2((0.) j J ( Z)Gm (2 U.?”)] dxdt
N-1J 1(A Un+l) I dx j dt
n=0j=0 O(jax,(G+ax]  O(ni, (n+1)Ar]
N-1( J-1
= (Z (a.0) AXjAt— At<(C) T.
n=0\_j=0 =0
Also
_ > 7 e NI 2
r’(x I)HE :J-o .[0( 0zl)((D] (AfU;)j dxdt
n=0 j=
N-1 J
:HZOZ(A,U;?)Z j [

1)Ax, /Ax] D(nht, (n+1)At]

J
N-1 J
Z Ax t= <C,.
n=0\_j=1 n=0

Same respective results also hold for l_'(x,t) and Z(x,t) , hence establishing the existence
of constants C,' (C,"'= C6\/7) and C,' (C,'=,/C,,) such that

rn)| L || <G, (37)
E E
;’(x’t)HES

<C,'. (38)
E

From (37) and (38), it follows that there exist sequences {Axi,Ati} and {Axk ,Atk} such
that as{Axl.,Ati} — 0 and {Axk,Atk} — 0 respectively, the pairs(;'(x,t),l_'(x,t))and

15



(Z(x,t),Z(x,t)) converge weakly to some pairs (r'(x,t),l '(x,t)) and (r,(x,t),l, (x,t)) in

L, ([O,T] ;L ([0, 1])) ; that is, for any L1 P,

(ax.a1) -0
(A

and,

hm <r(x 1), @x, t)> =<l”,(X,l),{ﬂ(XJ)>E

(Ax,Ar) -

(Ax.Ar) -

Lemma 1:

lim <?'(x,t),ga(x,t)> =(r'(x,0),@x, 1),
lim (1 Gen,@n) =(1'0en,@xn),

lim <l (x,1),@Ax, t)> :<l,(X,t),{ﬂ(xJ)>E

(39)

(40)

Let D, and D, denote the generalized derivatives in the space L, ((O,T) ;L (0, 1)) with

respect to x and ¢ respectively. Then (a)!'(x,t) = D, (r(x, t)) ,andr'(x,t) =D, (l(x,t)) . (b)
r.(x,t) =D, (r(x,1)), and,(x,t) =D, (I(x,1)).

Proof (a):

Let ¢Ax,t) J® be any test function with compact support on[O,T] X[O, 1] , and let

@ =@ jAx,nlAt) . Then by summation by parts,

d . - i
<r(x,t) ,Eqa(x,t)>E = (AxlylArrr)lﬁO<r(x,t) n ﬂx,t)>

2

= lim. Hl(

=
1l
[=)
\_
._

! G, @i g
ZXD]U lj(g%#]dxdz

o N-1 - U7+1_U;l_+11 A
Sl | N2 T e

N-1 J

=i [ 1 EE 0 007) g aca

=— lim jjuxz) @x,1)dxdt = jjz(xt) @Ax,1)dxdt

AxAt

—(I'(x.0), @x,1)),
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Similarly, <l(x 0, qa(x t)> ~(r'(x,0),@x,1)),

Proof (b):
d . - i
<r(x,t),5ﬂx, t)>E = (Axl,lArtI)lAO<r(x,t) o ﬂx,t)>
_ N-1 J - (ﬁ;ﬂ _@1
=i, LLZ;X ](hf%—m jdxdf

AxAz J- J-[Niji)(g] ( )j ((Athrano(dq )dxdt
=— lim J-J-r(x 1) @xx,t)dxdt = J.J.’”()”) A x,1)dx drt

AxAr

=(r,(x,1), @x,1)),

Similarly, <l(x,t),%¢(x, t)> ==(I,(x,1), @x,1)),
|

In light of lemma 1 and the previous qualitative observations, it results that the functions
r(x,t)and I(x,t) belong to the Sobolev space W, ((O,T) W, (O, 1)) . Naturally, we will

next want to show that r(x,¢) and [(x,¢) are in fact the same. To do so, we will need the
result of the following corollary:

Corollary 1:
For any fixed n, and for any grid-function V" :{Vj” 0<sj<J } on the interval[O, 1] ,

v

max
0<j<J

v[ <] ve]). @41)

Proof:
For any fixed n on the interval[O, 1] , Let i and j be two indices, each of which are not

n

necessarily unique, such that V" = mm andV" = max . Then without loss of

generality,

17



k+1 k

2
SV (B )ac= v -3 (vy) = v (avy)aceveve, (v )+ (v ) - ()
j=i

j=i+l j=i =i+l

Thus by Cauchy-Schwartz inequality,

(‘/kn )2 < i an A+an A)C+ i an A_an A)C+(‘/i” )2
Jj=i Jj=it+l ) X
J-l J Z|an| Ax
<> |vr|avy o+ Y vr|javy| s+ S——
J=0 J=l 1-0
<[v[lave|+[vlav|+[v] -

This yields the desired result.

Lemma 2:
r(x,t)=1(x,t).

Proof:
We will show that r(x,t) and [(x,¢) are both equal to a third function s(x,#) whose
existence will follow from the following construction: In each rectangle (D]': of the mesh,

let P/ denote the interpolating surface which is linear in both x and 7 directions with

values at the four nodal points equal to those of the numerical solution. The graph below
is that of P/, .

The Graph of P( j+1,n) in a Given Rectangle of the Mesh

U( j+1, n+1)

Numerical Solution U

x
=

¥

AR
=

Space Variable x Time Variable t

18



We will then construct the function E(x, t) on [O,T] X[O, 1] as the collection of all PJ” ’S .

In other words E(x,t) is the linear interpolation of the numerical solution values.
N-1 J

SD=Y Y X Py J=12,0,05n=0,1LN -1,

n=0 j=1
50,0 =U}, tO[nde, (n+ DAY, n=0,1,...,N -1,
s(x,00=U", xO[(j-DAx, jix], j=1,2,...J,
s(Lyy=U7, tO[nbt,(n+1)A], n=0,1,...,N ~1.

The Graph of the Linear Interpolation of Numerical Solution Values

Nunerical SduionU

t(n)

t(n-1)

) o o
Space Variable x Time Variable t

By construction, the function E(x,t) 1s continuous in both x and ¢. It also satisfies the
initial condition of equation (1). It follows from (13), (27), and (41) that there is a
constant C,'=,/2C, (C1 + Cé) such that

max‘U'.’
; J

<C,', 42)
which, in turn, implies that E(x, t) is uniformly bounded:

scen|sc, . 43)

19



-1 -1
Also from (27) we have: J (A+U.’,.’ )2 Ax < (C6 )2, or JZ‘U.’,.’H -U’ "< (Cé)2 Ax . This
j=0 Jj=0
means that for each n and any j, U7, —U7| < C; (Ax)% . Or,
[s et 2,0 =5 (60| < C, (Ax):. (44)

Also, from (34), it results that, in particular and for any n,

[ -v <. (45)

Now, after applying (41) to the vectorU""' —U", and using (27) and (45), we obtain

max |7 -Us[ <[ o (4]a,07 |+ 2|ur]) < G ot (4c, +26,).
J

+2‘

Therefore, there is a constant C,'= \/ VG, (4C6 + 2C1) such that

vt -us|< () (46)
Thus,
[s (.t +00) =5 (60| < G ()¢ 47)

(44) and (47) imply that E(x,t) is Holder-continuous of order %in x and of order iin .

In fact, if we let C;'=max{C,,C; }, then
[s (et A, +00) =5 (x| € G, '((Ax); - (At)ij . (48)

From (43) and (48) it follows that there is a sequence{Axi,Atl.} such that as

{Axi,Ati} — 0, the function E(x,t) converges uniformly to some functions s(x,?):

lim ‘E(x,t) —s(x,0)|=0. (49)

Ar) -0

(

20



Furthermore, from (48) and from the definitions of functions ;(x, t)and l_(x, 1), at any
point (x,t) we have:

s e =r (|G ((Ax); + (At)ij’
1 1 (50)
Fe=Ton) 56, (80" +(an) |

From (49) and (50) it follows that ;(x,t) and l_(x,t) also uniformly converge to s(x,t) as
(Ax,At) - 0. This establishes that r(x,1) = I(x,t) = s(x,1).

From this point on, we will useu (x,¢) for each of the functions s(x,¢), r(x,t), and [(x,?).
It also follows immediately from lemma 2 and the previous results that r'(x,7) =1'(x,?),
and r(x,1) =1 (x,1).

We will next construct the functions E(x,t),a(x,t),;z(x,t),q_l(x,t), and q_z(x,t) as
follows:

o N-1 J V!
mExn= 2 KXo, & (60 0(0.1]x(0,7],
n=0 j=0
m(x,0)=U°, xO((-DAx, jix], j=1,2,..,J,
J

=50 L] eonior]

0
E(x,0)=AO[V«" j x0((j-1)Ax, jAx], j=1,2,...0 1.

_ N-1J-1 V44
my (60 =Y X A (7,] (x,))0(0,1]x(0,77],

n=0 j=0

— VO
mz(x,0)=A+(7’], x0((-DAx, jix], j=0,1,...0 -1.
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_ N-1]-2 &
G0 =2 Xy Do (?’] (x,))0(0,1] (0,77,

n=0 j=0
— VO
ql(x,O)=A++(7’], x0(jbx,(j+1)Ax], j=0,1,....0 =2,
n 1 n n
% _§(3A+vj -AV]).

o N-1 J |48
TRCHEDIW AT {7’] (x,H)0(0,1]x(0.77],

n=0 j=2

— Ve
qz(x,0)=A__{7’], x0((G-DAx, jix], j=2.3,...,7,

J = j-1

AV :%(m_v_;’ -A v,

Similar arguments as those about r, r', r,, [,

', and [/, , and in the same order of

[0, T] L, ([0, 1])) , that they respectively

—_— o~

derivation, would reveal that m, Zl, ;2 UL,
converge to some functions m, m,, m, in this space as the mesh size is shrunk, that
m, and m, are the generalized derivatives of m with respect to x, that E(x,t) also
converges uniformly to the same function that E(x, t) converges to, and that

m(x,t) =s(x,t) =u(x,t) and m,(x,t) =m,(x,t) =r'(x,t) =1"(x,t) =D, (u(x,t)) .

Furthermore, from the definition of operators A,, and A__ it follows that for any grid-

function{V”} , ALV < 2HA+V” <2C,,and HA_ V< ZHA_V" <2C;, hence
A++ (Vn j < CG’
2
) (51
o (L)<
It then follows from (51) that
x|, g o] <c.. (52)

Inequality (52) implies that q_1 and q_2 converge weakly to some respective functions

g, and g,inL, ((O,T);L2 (O,l)) .
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Lemma 3:
q,(x,1) =q,(x,t) =D _(u(x,1)).

Proof:
for any @ x,t) J® with compact support, Let

@x,t) = Z_Z_)nm,#, (x,) 0(0,1]%(0,7], @A x,0) =(x,T) = @0,1) = @1,1) =0,

n=1 j=1

.= _ . . _d@x,t)
so that (A},IAI;I)lAOﬂX,I) =@(x,t). We also note that gi{r%) A,.¢g = gi{r%) A_g = i
Furthermore, since ¢ = ¢’ =0, by Taylor’s expansion, ¢, @, = O(Ax) . Also by (44),

V'=-Vy=0 (Ax)% ,and V' =V =0 (Ax)% . Therefore, we have:

=0 j=2

N1 ) ) n
__AxAr ,[,[Z( (3V 4V./'—1+Vj—2)#—1de‘lt

3
) T 1 vV =3¢ +4¢., — ¢ O(Ax)?
- _ j+l g j+1 2
=~ulim J, L2 (Z( 2 ]@1 0 20 ]}L e [

n=0 j=0

(g ety @xn), = ( Jim 33 Ky 0 j{ A}viﬂrtr)lﬂoii)(m,#dedf

=- lim < @x, 1), m(x, t)> +1im(0(Ax)):—<di¢z(x,t),u(x,t)> :
Ax -0 X

E

We will now state and prove the main result:

Theorem 1:

LetD = (O,T) x (O,l) ,T >0, be a domain, in where, A(x,t)is differentiable in ¢ and twice
differentiable in x, B(x,t) is continuously bounded in 7 and differentiable in x, C(x,1) is
continuous in both x and ¢, and f(x) L, ([O, 1]) . Consider the degenerate parabolic
equation (4)-(7) along with one of the four boundary characteristics (8.a), (8.b), (8.c), and
(8.d). Then there exists a unique solution in W, ((0,T);W21 (0,1)) if

(1) B(x,t)has characteristic (8.a).

(i1) B(x,t)has characteristic (8.b) with B(0,7) = %di A(0,¢) and B(1,1) +diA(1,t) =0,
X x

and a boundary condition is given atx =1.
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(ii1) B(x,t)has characteristic (8.c) with B(1,7) < %di A(l,t) and B(0,1) +diA(0,t) <0,
x x

and a boundary condition is given at x =0.
(iv) B(x,t)has characteristic (8.d) and boundary conditions are given at x =landx =0.

(Note: The requirements that boundary conditions be given at x =1or at x =0 or at both,
are meant to satisfy the uniqueness property.)

Proof:
We will prove the existence and uniqueness for case (ii) as indicated in the theorem. Case
(iii) is similar, and cases (i) and (iv) require less work.

By integration by parts, we must show that for any test function @ x,#) ] ® with compact
support, the function u (x,t) satisfies:

<D,u(x,t),(0(x,t)>E=—<A(x,t)d($x’t),Dxu(x,t)> +<B(x,t)dﬂdx’t),Dxu(x,t)> .
X E X E

(33)
We multiply both sides of scheme (10)-(12) by (d;” Ax At , and sum over j and n,

j=0,1,..,J;n=0,1,...N —1, and take limit as (Ax,At) — 0 to obtain

N-1 J N-1
Wlim O(ZZ(ATU?)@?A}CN] Jim O(Z H, +H, )Atj,

n=0 j=0

where,

H, :%ZA (a2 (avy)) g .
J=

-1 V” i-1 V"
n+l/2 +1 n+l/2 +1
H,=Y 6 B (A 2/] Ax+ 1( 6,)B: (Aj}q Ax
J J=
n J-1

% V!
! j(dmAx+ (1- )B"”’Z(AH 7’}41&
Jj=k

1 1

Since A5"* =0(Ax), A =0(Ax), V' =Vy =0(Ax)2, and V) -V, =O0(Ax)2, by

summation by parts, we obtain:

&.

I\
—

L

+ (1 9 )B;,+1/2 (A

~.
Il
—_
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i S n : SRS an +1
(AXI,IAIZI)EO ZAzUj(d;AXAt __(A}’IAI})EO ZAJ+1/2 A+7 +0 At

n=0\ j=I

N-1[ J-1 V”
+ lim > 8B AL @t At

(Ax,0r) -0 =\ = 2
ST V"
. n+1/2 J +1
+ Jim ) 2(1 6,)B’ A |@ et
n=| j=1
+ lim Y i(l—B)B"”’Z o Y| e
(Av.ar) -0 4] <= e I A
n=| J=i
‘ N-1f J-1 ) v " ‘
+ lim (1-6,) 8| A, L |g™" |Axde + lim
(Ar.ar) -0 £ L= 2 | (&x,A) -0
n J

Hence,

AxAt (J. J. n(xDAx, Z‘)d)“h):_ hArznao{J. ,[ A(x, t)mz(x 1) (thdem]

+ lim (j je(x)B(x 1) m,(x, )@, t)dxdt)

AxAt

+ Jim (j j (1-6(x)) B(x,1) g, (x, A x, t)dxdt)
+ AthI;n ( 1 6?(x) B(x ) qz(x D x, t)dxdt)
+ Jim (j j (1-6(x)) B(x,1) ¢, (x,H@x, t)dxdt)

Therefore,

lim (nen.gtxn). == lim <A(x,t)d¢(x D z)>
(ax 1) =0 dx E

+, A}31A%1H0<0(x)3(x,r) ‘”(;"t ) oo (x0) >E

+ lim <(1 6(x)) B(x z)dm 23 2(x,z)> .
dx E

(Ax,Ar) -0

Or,

(D, u(x,n),@x,1), = —<A(x,t) d“;x’[),
X

dax’t),Dxu(x,t)> .
dx E

D _u(x,t) > + <B(x,t)
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