
ar
X

iv
:1

01
0.

01
09

v1
  [

qu
an

t-
ph

] 
 1

 O
ct

 2
01

0

Spin Squeezing, Negative Correlations, and Concurrence in the Quantum Kicked Top

Model

Xiaoqian Wang,1, 2 Jian Ma,2 Lijun Song,3 Xihe Zhang,1 and Xiaoguang Wang2, ∗

1Department of Physics, Changchun University of Science and Technology, Changchun 130022, P. R. China
2Zhejiang Institute of Modern Physics, Department of Physics,

Zhejiang University, Hangzhou 310027 P. R. China
3School of Science, Changchun University, Changchun 130022, P. R. China

We study spin squeezing, negative correlations, and concurrence in the quantum kicked top model.
We prove that the spin squeezing and negative correlations are equivalent for spin systems with
only symmetric Dicke states populated. We numerically analyze spin squeezing parameters and
concurrence in this model, and find that the maximal spin squeezing direction, which refers to the
minimal pairwise correlation direction, is strongly influenced by quantum chaos. Entanglement (spin
squeezing) sudden death and sudden birth occur alternatively for the periodic and quasi-periodic
cases, while only entanglement (spin squeezing) sudden death is found for the chaotic case.
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I. INTRODUCTION

Quantum entanglement is one of the central concepts
in quantum information theory, and can be viewed as a
physical resource for quantum information [1–3]. Charac-
terizing entanglement is still an open question for many-
body system, however, for two-qubit case, the problem
is solved by using concurrence which is defined by Woot-
ters [4, 5]. In Refs. [2, 3, 6–15], it was found that spin
squeezing has a close relation with entanglement, and
spin squeezing parameters can be used as entanglement
witnesses. The definitions of spin squeezing parameters
are not unique, and the most popular parameters are
ξ2KU , given by Kitagawa and Ueda [6], and ξ2W , given by
Wineland et al [11]. The parameter ξ2KU was shown to
be related to pairwise correlations and concurrence [6–
10], while the parameter ξ2W is related to many-body
entanglement [10, 11]. There is another spin squeezing
parameter proposed by Sørensen et al [13] as a measure
of many-body entanglement which can be considered as
a generalization of parameter ξ2W [10]. Recently, a new
spin squeezing parameter ξ2T was proposed, and it was
found that if ξ2T < 1, the system is entangled [7, 12].

Reference [9] found that spin squeezing parameter ξ2KU

has close relation with pairwise correlation. Here, we
consider the following pairwise correlation

Ci~n,j~n = 〈σi~nσj~n〉 − 〈σi~n〉 〈σj~n〉 , (1)

in the ~n direction, where σi~n = ~σi · ~n, with ~σi being the
Pauli matrix of the i-th qubit and ~n being the normalized
direction vector. The above definition can be rewritten
as

Ci~n,j~n = ~nC~nT , (2)

∗Electronic address: xgwang@zimp.zju.edu.cn

where C is the pairwise correlation matrix whose ele-
ments are given by

Ciα,jβ = 〈σiασjβ〉 − 〈σiα〉 〈σjβ〉 , α, β = x, y, z. (3)

In Ref. [9], it was found that, if the system has ex-
change symmetry, the pairwise correlation and the spin
squeezing parameter ξ2KU have the following relation,

C~n⊥,~n⊥
=

ξ2KU − 1

N − 1
, (4)

where indices i, j were omitted due to exchange sym-
metry, ~n⊥ is the direction which is perpendicular to the
mean spin direction ~n, and N is the number of qubits.
In this paper, we find that the parameter ξ2T is related
to the minimal pairwise correlation for systems with only
symmetric Dicke states populated [17, 18]. The relation
is given by

Cmin = min
~n

C~n,~n =
ξ2T − 1

N − 1
, (5)

where the minimization is over arbitrary direction ~n.
Thus, for systems with only symmetric Dicke states pop-
ulated, negative correlations (Cmin < 0) are equivalent to
the spin squeezing

(

ξ2T < 1
)

.
Many works have been devoted to understand

spin squeezing, quantum entanglement, and quantum
chaos [13, 16, 19–29]. Here, quantum chaos [30–32]
mainly focuses on the researches of quantum characteris-
tics of a quantum system whose classical correspondence
exhibits chaos. In Refs. [28, 29], the authors used the pa-
rameter ξ2KU as an efficient signature of quantum chaos.
They also studied the relations between ξ2KU and con-
currence, and found that ξ2KU does not match concur-
rence well. In this paper, we use the new spin squeez-
ing parameter ξ2T to characterize quantum chaos, and
study the dynamical evolutions of concurrence and spin
squeezing parameters ξ2KU and ξ2T . The quantum kicked
top (QKT) model [24, 25, 28, 33–35] is a typical model
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that exhibits quantum chaos, and its chaotic behaviors
were demonstrated experimentally by using linear en-
tropy [36]. In this paper we find that the concurrence
decreases abruptly and non-smoothly to zero in a finite
time in the QKT model, and this phenomenon is called
entanglement sudden death (ESD) [37], which has been
widely studied both theoretically [38–50] and experimen-
tally [42, 46] in decoherence dynamics. Similar to the
definition of ESD, there is entanglement sudden birth
(ESB) [51–55], which is a sudden feature in the temporal
creation of entanglement in a dissipative evolution of in-
teracting qubits. In Ref. [7], the authors found that spin
squeezing sudden death (SSSD) may occur due to deco-
herence. In this paper, we want to study these sudden
features of entanglement and spin squeezing in the QKT
model.

This paper is organized as follows. In Sec. II, we first
introduce the definitions of spin squeezing parameters,
negative correlations, and concurrence, then give the re-
lationship between the spin squeezing parameter ξ2T and
the minimal pairwise correlation Cmin. In Sec. III, we
introduce the QKT model and its classical correspon-
dence. In Sec. IV, we analyze the quantum chaos of the
QKT model by means of the dynamics of spin squeezing
and entanglement. In Sec. V, we study the influences of
chaos on ESD, ESB, SSSD and spin squeezing sudden
birth (SSSB). The conclusions are given in Sec.VI.

II. SPIN SQUEEZING, NEGATIVE

CORRELATIONS, AND CONCURRENCE

A. Definitions of Spin squeezing parameters

The spin squeezing parameters are useful tools to de-
tect the quantum entanglement [6, 11–15]. Here, we con-
sider an ensemble of N spin-1/2 particles described by
the collective angular momentum operators

Jα =
1

2

N
∑

k=1

σkα, α = x, y, z. (6)

The Dicke states can be expressed as Jn
+|1〉

⊗N , where |1〉
is the spin down state and J± = Jx ± iJy. We mainly
study the following two types of spin squeezing parame-
ters ξ2KU and ξ2T . The parameter ξ2KU is defined as [6]

ξ2KU =
4 (△J~n⊥

)
2

min

N
, (7)

where ~n⊥ denotes the direction which is perpendicular

to the mean spin direction ~n =
〈

~J
〉

/
∣

∣ ~J
∣

∣, and (△J~n⊥
)
2

min

is the minimal value of the variance (∆J)
2
in the ~n⊥-

direction. The spin squeezing parameter ξ2KU can be

written in an explicit form as [16]

ξ2KU =
2

N

[

〈J2
~n1

+ J2
~n2
〉

−
√

(〈J2
~n1

− J2
~n2
〉)2 + 〈[J~n1

, J~n2
]+〉2

]

, (8)

where ~n1 and ~n2 are two orthogonal directions which are
perpendicular to the mean spin direction, and [A,B]+ =
AB +BA.
The spin squeezing parameter ξ2T is defined as [7, 12]

ξ2T =
λmin

〈

~J2
〉

− N
2

, (9)

where λmin is the minimal eigenvalue of the real symmet-
ric matrix

Γ = (N − 1)γ +C, (10)

where C is the correlation matrix of which the matrix
elements are

Cαβ =
1

2
〈JαJβ + JβJα〉 , α, β = x, y, z, (11)

The covariance matrix γ is given as

γαβ = Cαβ − 〈Jα〉 〈Jβ〉 . (12)

Below, for the sake of simplicity, we assume the mean
spin direction ~n is along the z-axis. And then we can
write the matrix Γ in an explicit form as

Γ =

(

Γ~n⊥

~BT

~B Γ~n

)

, (13)

where Γ~n⊥
is a 2× 2 matrix

Γ~n⊥
=

(

N
〈

J2
x

〉

N
2

〈

[Jx, Jy]+
〉

N
2

〈

[Jx, Jy]+
〉

N
〈

J2
y

〉

)

, (14)

and

Γ~n = N (△Jz)
2 +

〈

Jz
〉2
, (15)

~B =

(

N

2

〈

[Jz , Jx]+
〉

,
N

2

〈

[Jz , Jy]+
〉

)

. (16)

Note that ~B is a 1 × 2 vector. According to Eq. (8), the
parameter ξ2KU is equal to the minimal eigenvalue of the
matrix

Γ̃ =
4

N2
Γ~n⊥

=
4

N2

(

N
〈

J2
x

〉

N
2

〈

[Jx, Jy]+
〉

N
2

〈

[Jx, Jy]+
〉

N
〈

J2
y

〉

)

.

(17)
In analogy to the relation between ξ2KU and Γ~n⊥

, we de-
fine a spin squeezing parameter

ξ2~n =
4

N2
Γ~n =

4

N2

[

N (△Jz)
2
+ 〈Jz〉

2
]

, (18)

which characterizes the spin squeezing along the mean

spin direction. Here we consider the case of
〈

~J2
〉

=
N
2

(

N
2
+ 1

)

. According to the Rayleigh-Ritz theorem [56],
the minimal eigenvalue of Γ is less or equal to that of Γ~n⊥

,
thus we have ξ2T ≤ ξ2KU .
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B. Relations between spin squeezing and the

minimal pairwise correlation

Now, we discuss the relation between the spin squeez-
ing parameter ξ2T and the minimal pairwise correlation
Cmin. Here, we consider the system with only symmetric
Dicke states populated, which has exchange symmetry

and
〈

~J2
〉

= N
2

(

N
2
+ 1

)

. In this case, we have the follow-
ing relations,

〈

J2
α

〉

=
N

4
+

N (N − 1)

4

〈

σ1ασ2α

〉

, (19)
〈

J2
−

〉

= N (N − 1)
〈

σ1−σ2−

〉

, (20)

〈

[Jα, Jβ ]+
〉

=
N (N − 1)

4

〈

[σ1α, σ2β ]+
〉

, (α 6= β) .

(21)

Thus, with the above relations, the matrix Γ, as shown
in Eq. (10), can be rewritten as

Γα,β =
N

2

〈

[Jα, Jβ]+
〉

− (N − 1)
〈

Jα
〉〈

Jβ
〉

=
N2 (N − 1)

4

(〈

σασβ

〉

−
〈

σα

〉〈

σβ

〉)

=
N2 (N − 1)

4
Cα,β, (α 6= β) ; (22)

Γα,α = N
〈

J2
a

〉

− (N − 1)
〈

Jα
〉2

=
N2 (N − 1)

4

(

〈

σ1ασ2α

〉

−
〈

σα

〉2
)

−
N2

4

=
N2 (N − 1)

4
Cα,α −

N2

4
. (23)

The relation between the matrix Γ and the pairwise cor-
relation matrix C can be written as

C =
4Γ

N2 (N − 1)
−

I

(N − 1)
. (24)

where I is a 3 × 3 identity matrix. Thus, the matrix C

and Γ can be diagonalized with the same unitary trans-
formation. So

Cmin =
4λmin

N2 (N − 1)
−

1

N − 1
, (25)

where Cmin and λmin are the minimal eigenvalues of the
matrix C and Γ, respectively. Here the spin squeezing
parameter ξ2T can be written as ξ2T = 4λmin/N

2 since
〈

~J2
〉

= N
2

(

N
2
+ 1

)

. The relation between the minimal

pairwise correlation and the parameter ξ2T can be written
as

Cmin = min
~n

C~n,~n =
ξ2T − 1

(N − 1)
. (26)

Therefore, negative correlation (Cmin < 0) is equivalent
to spin squeezing (ξ2T < 1). From Refs. [7, 12], ξ2T <

1 is also a criterion of entanglement, so it reveals that
there are close relations among negative correlation, spin
squeezing, and entanglement. If the minimal pairwise
correlation is in the plane which is perpendicular to the
mean spin direction, the above relation will degenerate
to Eq. (4).

C. Relations between spin squeezing and

concurrence

Here, we briefly introduce the relations between spin
squeezing and concurrence. The entanglement between a
pair of spin-1/2 particles is quantified by the concurrence
C [4, 5], which is defined as

C = max {0, λ1 − λ2 − λ3 − λ4} , (27)

where the quantities λi are the square roots of the eigen-
values of the matrix ρ12 (σ1y ⊗ σ2y) ρ

∗
12 (σ1y ⊗ σ2y) in de-

scending order, ρ∗12 is the complex conjugate of ρ12. For
spin states with parity, it was found that [16], when
ξ2KU < 1, the relation between ξ2KU and C is

ξ2KU = 1− (N − 1)C. (28)

In Refs. [8], the authors found that for systems with par-
ity and exchange symmetry, when concurrence C > 0,
the spin squeezing parameter ξ2T < 1, and vice versa.

III. QUANTUM KICKED TOP

Now we introduce the QKT model. Consider an en-
semble of N spin-1/2 particles, the QKT Hamiltonian
reads [33–35]

H =
κ

2jτ
J2
z + pJy

∞
∑

n=−∞

δ (t− nτ) , (29)

where j = N/2, and Jα (α = x, y, z) are angular mo-
mentum operators that obey the commutation relations
[Jα, Jβ ] = i~εαβγJγ , where εαβγ is the Levi-Civita sym-
bol. The first term of Eq. (29) describes a nonlinear pre-
cession around the z-axis with strength κ, and the second
term describes the kicks around the y-axis with strength
p, separated by a period τ . In the below, we set p = π/2

and τ = 1, and the magnitude
〈

~J2
〉

= j (j + 1) is a con-
stant of the motion.
Now, we study the classical corresponding of the QKT.

The evolutions of the expectation values of the angular
momentum operators are

〈Ja〉n+1 =
〈

U †JαU
〉

n
, (30)

where U is the Floquet operator describing the unitary
evolution for each kick,

U = exp

(

−
iκ

2j
J2
z

)

exp (−ipJy) . (31)
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To study the quantum chaos of the QKT, we should first
analyze its classical corresponding, which is obtained in
the classical limit, i.e. j → ∞. For convenience, we use
the following three quantities

X =
〈Jx〉

j
, Y =

〈Jy〉

j
, Z =

〈Jz〉

j
, (32)

when j → ∞, these three variables become

(X,Y, Z) = (sin θ cosφ, sin θ sinφ, cosφ) , (33)

where θ is the polar angle and φ is the azimuthal an-
gle. Therefore, (X,Y, Z) represents a point on the Bloch
sphere with radius r = 1. In the classical limit, we can
factorize the products of the mean values of the angular
momentum operators as

〈JxJy〉

j2
= XY . (34)

By substituting Eqs. (31), (32), and (34) into Eq. (30),
we can derive the classical equations of motions as [34]





X
Y
Z





n+1

=





Z cos (κX) + Y sin (κX)
−Z sin (κX) + Y cos (κX)

−X





n

. (35)

Therefore, in the classical limit, the dynamics of the QKT
is governed by the above equation, and by using Eq. (33),
we plot the stroboscopic dynamics of the classical vari-
ables θ and φ in Fig. 1. Each point represents a state
of (X,Y, Z) in the phase space. In this plot, we choose
κ = 3, and thus there are periodic, quasi-periodic, and
chaotic regions in the phase space.
The quantum evolution of the QKT is studied when j

is finite, and the chaos is indicated by the stroboscopic
plot shown in Fig. 1. Thus, to make connection between
quantum and classical evolutions, the initial state should
be chosen as coherent spin state (CSS) [33–35], which can
be viewed as a most classical state

|θ, φ〉 = R (θ, φ) |j, j〉 = R (θ, φ) |1〉⊗N , (36)

where |j, j〉 is the eigenstate of Jz with the eigenvalue j,
and the rotation operator is defined as

R (θ, φ) = exp {iθ [Jx sinφ− Jy cosφ]} , (37)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. The expectation
values of the angular momentums on this state are given
by

〈J〉 = (〈Jx〉 , 〈Jy〉 , 〈Jz〉) = j (sin θ cosφ, sin θ sinφ, cos θ) ,
(38)

which is the same as Eq. (33). This is the reason that
we choose CSS to be the initial state. Since CSS can
be regarded as a classical state, and it is a product state,
thus there is no correlations between qubits. Substituting
Eq. (6) into Eq. (37), we can see that the operator R
can be written as a direct product of N operators acting

FIG. 1: (Color online) Stroboscopic phase-space map of the
classical kicked top with κ = 3 and p = π/2. we choose 200
random initial states and each evolves 200 kicks. A triangle
at (θ, φ) = (2.25, 0.63) is at the fixed point, namely in the
periodic region. A diamond at (θ, φ) = (2.25,−2.35) is in the
quasi-periodic region. A circle at (θ, φ) = (2.25,−1) is in the
chaotic region.

independently on each qubit. And note that |j, j〉 is a
product state, and thus the CSS is also a product state.
In the classical limit, the initial classical state is indeed a
CSS, and during the evolution, the state is still classical.
However, in the quantum case, the factorization (34) is
not valid, since quantum correlations are created during
the evolution, and thus the state is no longer a CSS.
Such quantum correlations are characterized below by
spin squeezing and concurrence.

IV. DYNAMICS OF SPIN SQUEEZING AND

CONCURRENCE IN THE QKT MODEL

At first, we use spin squeezing to characterize quantum
correlations and quantum chaos. According to the dis-
cussions of Sec. II, the spin squeezing parameter ξ2T char-
acterizes the minimal pairwise correlation, the parameter
ξ2KU characterizes the minimal pairwise correlation in the
plane which is perpendicular to the mean spin direction
~n, and the parameter ξ2~n is the pairwise correlation along
~n-direction. The numerical results of quantum evolutions
of spin squeezing parameters ξ2T , ξ

2
KU , and ξ2~n are given

in Fig. 2, and we find that the maximal spin squeezing
directions are strongly influenced by quantum chaos.
Here, we analyze these three spin squeezing param-

eters in the periodic region, as shown in Fig. 2(a). It
can be seen that the spin squeezing parameter ξ2KU is
much smaller than ξ2~n, but there are very slight differences
between ξ2KU and ξ2T , thus the maximal spin squeezing,
which refer to the minimal pairwise correlation, is around
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FIG. 2: (Color online) Dynamical evolutions of the parame-
ters ξ2T , ξ

2

KU , and ξ2~n with different initial states. We choose
N = 50. In the periodic region (a), (θ, φ) = (2.25, 0.63) ,
ξ2KU and ξ2T are almost the same, while ξ2~n is very large.
This implies that, the maximal spin squeezing is around the
~n⊥-direction. However, in the chaotic region (b), (θ, φ) =
(2.25,−1) , the differences between ξ2KU and ξ2T are obvious,
that means, the maximal spin squeezing is not restricted to
the ~n⊥-direction. The dashed line corresponds to 1.

the ~n⊥-direction.

In the chaotic case, as shown in Fig. 2 (b), we can find
that the parameter ξ2T is much smaller than both ξ2KU and
ξ2~n at some time, that means the maximal spin squeez-
ing is along neither the ~n⊥-direction nor the ~n-direction.
Therefore, the directions of maximal spin squeezing are
around the ~n⊥-direction in the periodic case, while they
are not restricted to the ~n⊥-direction in the chaotic case.

The directions of the maximal spin squeezing are cal-
culated in Fig. 3. The ~n-axis in Fig. 3 is the mean spin
direction [28]. It can be written in the spherical coordi-
nate as

~n = (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0) , (39)

where θ0 and φ0 are the polar and azimuthal angles, re-

−1
0

1−1 0 1

−1

0

1

~n1

~n2

Periodic case

~n

−1
0

1−1 0 1

−1

0

1

~n1

~n2

Chaotic case

~n

FIG. 3: (Color online) Directions of the maximal spin squeez-
ing. The dots on the uint sphere represent the end points of
the directions of maximal spin squeezing. And the axis label ~n
denotes the mean spin direction, ~n1 and ~n2 are two orthogonal
directions which are perpendicular to ~n. In the left plot, the
initial state is in the periodic region, with (θ, φ) = (2.25, 0.63).
And in the right plot, the initial state is in the chaotic region,
with (θ, φ) = (2.25,−1).

spectively. They are calculated as

θ0 = arccos
(

〈

Jz
〉

/
∣

∣ ~J
∣

∣

)

,

φ0 =















arccos

(

〈Jx〉

| ~J| sin θ0

)

if 〈Jy〉 > 0,

2π − arccos

(

〈Jx〉

| ~J| sin θ0

)

if 〈Jy〉 ≤ 0.
(40)

where
∣

∣ ~J
∣

∣ =

√

〈

Jx
〉2

+
〈

Jy
〉2

+
〈

Jz
〉2
. The other two

axes in Fig. 3 are chosen as

~n1 = (− cos θ0 cosφ0,− cos θ0 sinφ0, sin θ0) ,

~n2 = (− sinφ0, cosφ0, 0) . (41)

From Fig. 3, it can be easily found that the directions of
the maximal spin squeezing are around the ~n⊥-direction
in the periodic case. But in the chaotic case, the direc-
tions are not concentrated in a certain direction. Thus
the directions of maximal spin squeezing are strongly in-
fluenced by quantum chaos.
Then, we use concurrence to character the quantum

chaos, and give comparisons among the spin squeezing
parameters ξ2KU , ξ2T , and concurrence. From Ref. [16],
when ξ2KU < 1, the relation between ξ2KU and C is
shown as Eq. (28) for states with a fixed parity, and when
ξ2KU ≥ 1, the relation does not hold. In the QKT model,
there is not a simple relation between spin squeezing and
concurrence as the states here are more general than
those with a parity. In order to make a direct comparison
between spin squeezing parameter and concurrence, here,
we introduce a new quantity to describe the concurrence,
the form is

ξ2C = 1− (N − 1)C1, (42)

where

C1 = λ1 − λ2 − λ3 − λ4,
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FIG. 4: (Color online) Evolutions of ξ2T , ξ2KU and ξ2C with
different initial states, and we choose N = 50. In (a) and
(b), the initial state is in the periodic region, at (θ, φ) =
(2.25, 0.63). The values of ξ2T and ξ2C are almost the same
except for the first two kicks, but there are small differences
between ξ2KU and ξ2C . In (c) and (d), we choose (θ, φ) =
(2.25,−1), which is centered in the chaotic region. There
are small differences between ξ2T and ξ2C , but the differences
between ξ2KU and ξ2C are large. The dashed line corresponds
to 1.

which can be got from the Eq. (27) without the max func-
tion, and when ξ2C < 1, C1 > 0, namely the state is pair-
wise entangled. The numerical results of the dynamical
evolutions of ξ2T , ξ2KU , and ξ2C in the QKT model are
given in Fig. 4.
In the periodic case, as shown in Fig. 4(a) and (b),

we can see that, at the first two kicks, there are small
differences between ξ2T

(

ξ2KU

)

and ξ2C . After the third

kick, the parameters ξ2T and ξ2C are nearly coincide, while
there are also small differences between ξ2KU and ξ2C . We
also note that when ξ2C < 1, both ξ2T and ξ2KU are smaller
than 1, so both the two spin squeezing parameters can
well describe the pairwise entanglement.
In the chaotic case, as shown in Fig. 4(c) and (d), we

can find that there are very small differences between
ξ2T and ξ2C , but the differences between ξ2KU and ξ2C are
large. We also observe that when ξ2C < 1, ξ2T < 1, and
vice versa. It means the spin squeezing parameter ξ2T may
indicate the pairwise entanglement. At the second and
third kicks, the parameter ξ2C < 1, ξ2KU > 1, namely, the
spin squeezing parameter ξ2KU is not a good quantity to
describe the pairwise entanglement in this chaotic case.

V. SUDDEN DEATH OF ENTANGLEMENT

AND SPIN SQUEEZING

Recently, entanglement sudden death and sudden birth
have received a lot of attentions. In this paper, we find
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FIG. 5: (Color online) Dynamical evolutions of concurrence in
the QKT model for (a) the periodic case (θ, φ) = (2.25, 0.63),
(b) the quasi-periodic case (θ, φ) = (2.25,−2.35), and (c) the
chaotic case (θ, φ) = (2.25,−1). Here, we choose N = 50.

that both ESD and ESB occur in the QKT model. Here
we study the influences of quantum chaos on ESD and
ESB. We choose the initial states are in the periodic,
quasi-periodic, and chaotic regions, and the dynamics of
concurrence are shown in Fig. 5. Since the initial state
is a CSS, there is no entanglement at first, after the first
kick, the pairwise entanglement (C > 0) is produced.
As time evolves, the concurrence decreases to zero, and
remains for a period of time. As shown in Fig. 5 (c),
we can see that, when the initial state is in the chaotic
region, there is no entanglement again. However, we ob-
serve ESB when the initial states are in the periodic and
quasi-periodic regions, as shown in Fig. 5 (a) and (b).
The whole length of the time intervals for zero entan-
glement in the periodic case is shorter than that in the
quasi-periodic case.
Similar to concurrence, we also find SSSD and SSSB

in the QKT model. In Ref. [7], the authors introduced a
quantity to describe the spin squeezing, the form is

ζ2 = max
{

0, 1− ξ2T
}

, (43)

therefore, if there is no spin squeezing, i.e. ξ2T > 1, we
have ζ2 = 0. The numerical results of ζ2 in the peri-
odic, quasi-periodic, and chaotic cases are illustrated in
Fig. 6. At first, we consider the periodic case, as shown
in Fig. 6 (a), there is spin squeezing (ζ2 > 0) at the first
kick, and it quickly decreases to zero. As time evolves,
ζ2 becomes larger than 0. Both SSSD and SSSB appear
multiple times under this condition. In the quasi-periodic
case, as shown in Fig. 6(b), both SSSD and SSSB appear
alternatively, but the whole length of time intervals for
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FIG. 6: (Color online) Dynamical evolutions of spin squeez-
ing in the QKT model with (a) the periodic case (θ, φ) =
(2.25, 0.63), (b) the quasi-periodic case (θ, φ) = (2.25,−2.35) ,
and (c) the chaotic case (θ, φ) = (2.25,−1). Here, we choose
N = 50.

zero spin squeezing parameter is longer than that in the
periodic case. At last, we consider the chaotic case, as
shown in Fig. 6(c), the spin squeezing vanishes after a few
kicks, and then there is no spin squeezing again.

From the above discussions, we find that the quantum
chaos greatly affects the dynamics of spin squeezing and
entanglement. When the initial states are in the periodic
and quasi-periodic regions, both ESD (SSSD) and ESB
(SSSB) appear alternatively, and when the initial states
are in the chaotic region, there is only ESD (SSSD).

VI. CONCLUSIONS

In summary, we first prove that negative correlations
are equivalent to spin squeezing for systems with only
symmetric Dicke states populated. Then we study the
effects of quantum chaos on spin squeezing and entan-
glement in the QKT model. Using the spin squeezing
parameter ξ2T , we find that, in the periodic case the di-
rections of the maximal spin squeezing are around the
~n⊥-direction, while in the chaotic case, they deviate from
the ~n⊥-direction and behave irregularly. Then, we study
the dynamics of spin squeezing parameters ξ2KU , ξ

2
T , and

concurrence, and find that ξ2T is a good quantity to char-
acterize the pairwise entanglement. At last, we study
the influences of quantum chaos on ESD (SSSD) and
ESB (SSSB) in the QKT model. We find that both ESD
(SSSD) and ESB (SSSB) occur alternatively in the pe-
riodic and quasi-periodic cases, but there is only ESD
(SSSD) in the chaotic case. We believe that the behav-
iors of spin squeezing in the QKT model may also be
found in other models that exhibit quantum chaos, e.g.
the Dicke model.
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