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Abstract

For a given time horizon ∆T , this article explores the relationship between the realized volatility
(the volatility that will occur between t and t + ∆T ), the implied volatility (corresponding to
at-the-money option with expiry at t + ∆T ), and several forecasts for the volatility build from
multi-scales linear ARCH processes. The forecasts are derived from the process equations, and
the parameters set a priori. An empirical analysis across multiple time horizons ∆T shows that
a forecast provided by an I-GARCH(1) process (1 time scale) does not capture correctly the dy-
namic of the realized volatility. An I-GARCH(2) process (2 time scales, similar to GARCH(1,1))
is better, while a long memory LM-ARCH process (multiple time scales) replicates correctly the
dynamic of the realized volatility and delivers consistently good forecast for the implied volatil-
ity. The relationship between market models for the forward variance and the volatility forecasts
provided by ARCH processes is investigated. The structure of the forecast equations is identi-
cal, but with different coefficients. Yet the process equations for the variance are very different
(postulated for a market model, induced by the process equations for an ARCH model), and
not of any usual diffusive type when derived from ARCH.
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1 Introduction

The intuition behind volatility is to measure price fluctuations, or equivalently the typical
magnitude for the price changes. Yet, beyond the first intuition, volatility is a fairly
complex concept, for various reasons. First, turning this intuition into formulas and
numbers is partly arbitrary, and many meaningful and useful definitions of volatilities
can be given. Second, the volatility is not directly “observed” or traded, but rather
computed from time series (although this situation is changing indirectly through the
ever increasing and sophisticated option market, the volatility indexes and the options
on volatility). For trading strategies, options and risk evaluations, the valuable quantity
is the realized volatility, namely the volatility that will occur between the current time
t and some time in the future t + ∆T . As this quantity is not available at time t, a
forecast needs to be constructed. Clearly, a better forecast of the realized volatility allows
to better price options, to make profit on volatility based trades, and to manage better
risks in a portfolio.

At a time t, a forecast for the realized volatility can be constructed from the (underly-
ing) price time series. In this paper, multiscales ARCH processes are used. On the other
hand, a liquid option market allows to compute the implied volatility, corresponding to the
“market” forecast for the realized volatility. On the theoretical side, an “instantaneous”,
or effective, volatility σeff is needed to define processes, and the forward variance. There-
fore, at a given time t, we have mainly one theoretical instantaneous volatility and three
notions of “observable” volatility (forecasted, implied and realized). This paper studies
the empirical relationship between these three time series, as a function of the forecast
horizon ∆T . There exist already an abundant literature on this topic, and [Poon, 2005]
published a book summarizing nicely the available publications (∼100 articles on volatility
forecast alone!).

The main line of this work is to model the underlying time series by multi-components
ARCH processes, and to derive a volatility forecast. This forecast, based only on the
underlying, should be close to the implied volatility for the at-the-money (ATM) option.
In particular when option data are poor, lacking or not available, such approach allows
to obtain a good approximation for the ATM implied volatility. For trading and risk
management, the correct pricing of options is clearly an issue, and to have a fall-back
solution for the implied volatility surface using a minimal modeling of the underlying is
a clear advantage. This article does not address the issue of the full surface, but only the
implied volatility for the ATM options, called the backbone.

A vast literature on implied volatility and its dynamic already exists. In this article, we
will review some recent developments on market models for the forward variance. These
models focus on the volatility as a process, and many process equations can be set that are
compatible with a martingale condition for the volatility. On the other side, the volatility
forecast as induced by a multi-components ARCH process leads also to process equations
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for the volatility only. These two approaches leading to process for the volatility are
contrasted, showing the formal similarity in the structure of the forecasts, but the very
sharp difference in the processes for the volatility. If the price time series behave according
to some ARCH process, then the implication for volatility modeling is far reaching as the
usual structure based on Wiener process cannot be used.

This paper is organized as follow. The required definitions for the volatilities and forward
variance are given in the next section. The various multi-components ARCH processes
are introduced in sec. 3, and the induced volatility forecasts and processes given in sec 4
and 5. The market models and the associated volatility dynamics are presented in sec. 6.
The relationship between market models, options and the ARCH forecasts are discussed
in section 7. Section 8 presents an empirical investigation of the relationship between the
forecasted, implied and realized volatilities, before the conclusion.

2 Definitions and setup of the problem

2.1 General

We assume to be at time t, with the corresponding information set Ω(t). The time
increment for the processes and the granularity of the data is denoted by δt, and is 1 day
in the present work. We assume that there exists an instantaneous volatilities denoted
by σeff(t), which corresponds to the annualized expected standard deviation of the price
in the next time step δt. This is a usefull quantity for the definitions, but this volatility
is essentially unobserved. In a process, σeff gives the magnitude of the returns.

2.2 Realized volatility

The realized volatility corresponds to the annualized standard deviation of the returns in
the interval between t and t + ∆T

σ2(t, t + ∆T ) =
1 year

n δt

∑

t<t′≤t+∆T

r2(t′) (1)

where r(t) are the (unannualized) returns measured over the time interval δt, and the
ratio 1 year/δt annualized the volatility. The empirical section is done with daily data
and the returns are evaluated over a 1 day interval δt = 1 day. If the returns do not
overlap in the sum, then ∆T = n δt. At the time t, the realized volatility cannot be
evaluated from the information set Ω(t). The realized volatility is the usefull quantity we
would like to forecast and to relate to the implied volatility.
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2.3 Forward variance

In a continuum time formulation, the expected cumulative variance is defined by

V (t, t + ∆T ) =

∫ t+∆T

t

dt′ E
[
σ2

eff(t
′) | Ω(t)

]
(2)

and the forward variance by

v(t, t + ∆T ) =
∂V (t, t + ∆T )

∂∆T
= E

[
σ2

eff(t + ∆T ) | Ω(t)
]
. (3)

The cumulative variance is an extensive quantities as it is proportional to ∆T . For
empirical investigation, it is simpler to work with an intensive quantity as this remove
a trivial dependency on the time horizon. For this reason, the cumulative variance is
used only in the theoretical part (hence also the continuum definition with an integral),
whereas the forecasted volatility is used in the empirical part.

The variance enters into the variable leg of a variance swap, and as such, it is tradable.
Related tradable instruments are the volatility indexes like the VIX (but the relation is
indirect as the index is defined through implied volatility of a basket of options). Because
volatility is becoming tradable, the forward variance should be a martingale

E [v(t′, T ) | Ω(t)] = v(t, T ). (4)

For the volatility, this condition is quite weak as it follows also from the chain rule for
conditional expectation

E
[
E

[
σ2

eff(T ) | Ω(t′)
]
| Ω(t)

]
= E

[
σ2

eff(T ) | Ω(t)
]

for t < t′ < T (5)

and from the definition of the forward variance as a conditional expectation. Therefore,
any forecast build as a conditional expectation produces a martingale for the forward
variance.

At this level, there is a formal analogy with interest rates, with the (zero coupon) interest
rate and forward rate being analogous to the cumulative variance and forward variance.
Therefore, some ideas and equations can be borrowed from the IR field. For example,
on the modeling side, one can write process for the cumulative variance or for the for-
ward variance, the later being more convenient as the martingale condition gives simpler
constraints on the possible equations. In this paper, the ARCH path is followed using a
multi-scale process for the underlying. The forward variance is computed as an expecta-
tion, and therefore the martingale property follows. In section 6, this ARCH approach is
contrasted with a direct model for the forward volatility, where the martingale condition
has to be explicitely enforced.
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2.4 The forecasted volatility

The forecasted volatility is defined by

σ̃2(t, t + ∆T ) =
1

n

∑

t<t′≤t+∆T

E
[
σ2

eff(t
′) | Ω(t)

]
(6)

Up to a normalization and the transformation of the integral into a discrete sum, this
definition is similar to the expected cumulative variance.

2.5 The implied volatility

As usual, the implied volatility is defined as the volatility to insert into the Black-
Sholes equation so as to recover the market price for the option. The implied volatility
σBS(m, ∆T ) is a function of the moneyness m and of the time to maturity ∆T . The mon-
eyness can be defined is various ways, with most definitions similar to m ≃ ln (F/K), and
with F the forward rate F = Ser ∆T . The (forward) at-the-money option corresponds to
m = 0. The backbone is the implied volatility at the money σBS(∆T ) = σBS(m = 0, ∆T ),
as a function of the time to maturity ∆T . For a given time to maturity ∆T , the implied
volatility as function of moneyness is called the smile.

Intuitively, the implied volatility surface can loosely be decomposed in backbone × smile.
The rationale for this decomposition is that the two directions depend on different option
features. The backbone is related to the expected volatility until the option expiry

σ̃(t, t + ∆T ) = σBS(m = 0, ∆T )(t) (7)

In the Black-Sholes formula, the volatility appears only through the combination ∆T σ2,
corresponding to the cumulative expected variance. In the other direction, the smile is
the fudge factor to remedy the incomplete modeling of the underlying by a Gaussian
random walk. The Black-Sholes model has the key advantage to be solvable, but does
not include many stylized facts like heteroscedasticity, fat-tails, or leverage effect. These
shortcomings translate into various “features” of the smile.

In principle, the equation 7 should be checked using empirical data. Yet this comparison
raises a number of issues, on both sides of the equation. On the left hand side, the
variance forecast should be computed using some equations and the time series for the
underlying. The forecasting scheme, with its estimated parameters, is subject to errors.
On the right had side, the option market has its own idiosyncracies, for example related
to demand and supply. Such effect can be clearly observed by computing the implied
volatility corresponding to the option bid or ask prices. These points are discussed in
more details in sec. 8. Therefore, the equation 7 should be taken only as a first order
approximation.
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3 Multi-components ARCH processes

3.1 The general setup

The basic idea of a multi-components ARCH process is to measure historical volatilities
using exponential moving average on a set of time horizons, and to compute the effective
volatility for the next time step as a convex combination of the historical volatilities.
A first process along similar line was introduced in [Dacorogna et al., 1998], and this
family of processes was throughly developed and explored in [Zumbach and Lynch, 2001,
Lynch and Zumbach, 2003, Zumbach, 2004]. A particular simple process with long mem-
ory is used to build the RM2006 risk methodology [Zumbach, 2006], with the salient
feature to be very parsimonious. One of the key advantage of these multi-components
processes is that forecast for the variance can be computed analytically. We will use this
property to explore their relations with the option implied volatility.

In order to build the process, the historical volatilities are measured by exponential moving
averages (EMA) at time scales τk

σ2
k(t) = µk σ2

k(t − δt) + (1 − µk) r2(t) k = 1, · · · , n (8)

and with decay coefficients µk = exp(−δt/τk). The process time increment is δt, and δt
= 1 day in this work. Let us emphasize that the σk are computed from historical data,
and there is no hidden stochastic processes like in a stochastic volatility model.

The “effective” variance σ2
eff is a convex combination of the σ2

k and of the mean variance
σ2
∞

σ2
eff(t) =

n∑

k=1

wk σ2
k(t) + w∞ σ2

∞ = σ2
∞ +

n∑

k=1

wk

(
σ2

k(t) − σ2
∞

)
(9)

1 =
n∑

k=1

wk + w∞

Finally, the price follow a random walk with volatility σeff

r(t + δt) = σeff(t) ǫ(t + δt). (10)

Depending on the number of components n, the time horizons τk and weights wk, a number
of interesting processes can be build. The processes we are using to compare with implied
volatility are given in the next subsections.

On general ground, we make the distinction between affine processes for which the mean
volatility is fixed by σ∞ and w∞ > 0, and the linear process for which w∞ = 0. The linear
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and affine terms qualify the equations for the variance (i.e. in σ2). The linear processes
are very interesting for forecasting volatility as they have no mean volatility parameter σ∞

which is clearly time series dependent. However, their asymptotic properties are singular,
and affine processes should be used in Monte Carlo simulations. This subtle difference
between both classes of processes is discussed in details in [Zumbach, 2004]. As this paper
deal with volatility forecasts, only the linear processes are used.

3.2 I-GARCH(1)

The I-GARCH(1) model corresponds to a 1-component linear process

σ2(t) = µ σ2(t − δt) + (1 − µ) r2(t)

σ2
eff(t) = σ2(t).

It has one parameter τ (or equivalently µ). This process is equivalent to the integrated
GARCH(1,1) process [Engle and Bollerslev, 1986], and with a given value for µ is equiv-
alent to the standard RiskMetrics methodology. Its advantage is to be the most simple,
but it does not capture mean revertion for the forecast (i.e. that forecasts for increasing
horizons should converge to a (mean) long term volatility).

For the empirical evaluation, the characteristic time has been fixed a priori to τ = 16
business days, corresponding to µ ≃ 0.94.

3.3 I-GARCH(2) and GARCH(1,1)

The I-GARCH(2) process corresponds to a 2-components linear model

σ2
1(t) = µ1 σ2

1(t − δt) + (1 − µ1) r2(t)

σ2
2(t) = µ2 σ2

2(t − δt) + (1 − µ2) r2(t) (11)

σ2
eff(t) = w1σ

2
1(t) + w2σ

2
2(t)

It has three parameters τ1, τ2 and w1. Even if this process is linear, it has mean reversion
for time scale up to τ2, with σ2(t) playing the role of the mean volatility.

The GARCH(1,1) process [Engle and Bollerslev, 1986] corresponds to the 1-component
affine model

σ2
1(t) = µ1 σ2

1(t − δt) + (1 − µ1) r2(t) (12)

σ2
eff(t) = (1 − w∞) σ2

1(t) + w∞σ2
∞
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It has three parameters τ1, w∞ and σ∞. In this form, the analogy between the I-
GARCH(2) and GARCH(1,1) processes is clear, with the long term volatility σ2 playing
a similar role as the mean volatility σ∞.

Given a process, the parameters need to be estimated on a time series. GARCH(1,1) is
more problematic with that respect because σ∞ is clearly time series dependent. A good
procedure is to estimate the parameters on a moving historical sample, say in a window
between t − ∆T ′ and t for a fixed span ∆T ′. With this setup, the mean variance σ2

∞

is essentially the sample variance
∑

r2 computed on the estimating window. This is a
rectangular moving average, similar to an EMA but for the weights given to the past. This
argument shows that I-GARCH(2) and (a continuously re-estimated on a moving window)
GARCH(1,1) behaves similarly. A detailled analysis of both processes in [Zumbach, 2004]
show that they have similar forecasting power, with an advantage to I-GARCH(2).

In this work, we use the I-GARCH(2) process with two parameter sets fixed a priori to
some reasonable values. The first set is τ1 = 4 business days, τ2 = 512 business days,
w1 = 0.843 and w2 = 0.157. The second set is τ1 = 16 business days, τ2 = 512 business
days, w1 = 0.804 and w2 = 0.196. The values for the weights are obtained according to
the long memory ARCH process, but with only two given τ components.

3.4 Long Memory ARCH

The idea for a long memory process is to use a multi-components ARCH model with a
large number of components but simple analytical form for the characteristic time τk and
the weights wk. For the long memory ARCH process, the characteristic times τk increase
as a geometric series

τk = τ1 ρk−1 k = 1, · · · , n (13)

while the weights decay logarithmically

wk =
1

C
(1 − ln(τk)/ ln(τ0)) (14)

C =
∑

k

(1 − ln(τk)/ ln(τ0)) .

This choice produces lagged correlations for the volatility that decays logarithmically, as
observed in the empirical data [Zumbach, 2006]. The parameters are taken as for the
RM2006 methodology [Zumbach, 2006], namely τ1 = 4 business days, τn = 512 business
days, ρ =

√
2 and the logarithmic decay factor τ0 = 1560 days = 6 years .
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Figure 1: The weights wk(∆T ) as function of the forecst horizon ∆T for a long memory process
with w∞ = 0.1 and τk = 2, 4, 8, 16, · · · , 256 days . The weights with increasing time horizon τk

have decreasing initial values and the maximum values going from left to right.

4 Forward variance and multi-components ARCH processes

For multiscales ARCH processes (I-GARCH, GARCH(1,1), long-memory ARCH, etc ...),
the forward variance can be computed analytically [Zumbach, 2004, Zumbach, 2006]. The
idea is to compute the conditional expectation of the process equations, from which it-
erative relations can be deduced. Then, some algebra and matrix computations allow to
get the following form for the forward variance

v(t, t + ∆T ) = E
[
σ2

eff(t + ∆T ) | Ω(t)
]

= σ2
∞ +

n∑

k=1

wk(∆T )
(
σ2

k(t) − σ2
∞

)
(15)

The weight wk(∆T ) can be computed by a recursion formula depending on the decay
coefficients µk and with initial values given by wk = wk(1). The equation for the forecast
of the realized volatility has the same form but the weights wk(∆T ) are different.

Let us emphasize that this can be done for all processes in this class (linear and affine).
Moreover, the σ2

k(t) are computed from the underlying time series, namely there is no
hidden stochastic volatility to estimate. This makes volatility forecasts particularly easy
in this framework.
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Figure 2: The sum of the weights
∑

k wk(∆T ) = 1 − w∞, for the same parameters as above.

For a multi-component ARCH process, the intuition for the forecast can be understood
from a graph of the weights wk(∆T ) as function of the forecast horizon ∆T as given in
Fig. 1. For short forecast horizon, the volatilities with the shorter time horizons dominate.
As the forecast horizon get larger, the weights of the short term volatilities decay while
the weights of the longer time horizons get larger. The weight for a particular horizon
τk peaks at a forecast horizon similar to τk, for example the Burgundy curve corresponds
to τ = 32 days and its maximum is around a similar value. The figure 2 shows the sum
of the volatility coefficients

∑
k wk = 1 − w∞. This shows the increasing weight of the

mean volatility as the forecast horizon get longer. Notice that this behavior corresponds
to our general intuition about forecasts, namely short term forecasts depend mainly on
the recent past while long term forecasts need to use more informations from the distant
past. The nice feature of the multi-components ARCH process is that the forecast weights
are derived from the process equations, and that they have a similar content compared
to the process equations (linear or affine, one or multiple time scales).

5 The induced volatility process

The multi-components ARCH processes are stochastic processes for the return, in which
the volatilities are convenient intermediate quantities. It is important to realize that
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the volatilities σk and σeff are useful and intuitive in formulating a model, but they can
be completely eliminated from the equations. An important advantage of this class of
process is that the forward variance v(t, t + ∆T ) can be computed analytically. Going in
the opposite direction, we want to eliminate the return, namely to derive the equivalent
process equations for the dynamic of the forward variance induced by a multi-component
ARCH process. This will allow us to make contact with some models for the forward
variance that are available in the literature and presented in the next section.

The eq. 8 for σk can be rewritten as

dσ2
k(t) = σ2

k(t) − σ2
k(t − δt) (16)

= (1 − µk)
{
−σ2

k(t − δt) + ǫ2(t) σ2
eff(t − δt)

}

= (1 − µk)
{
σ2

eff(t − δt) − σ2
k(t − δt) + (ǫ2(t) − 1) σ2

eff(t − δt)
}

The equation can be simplified by introducing the annualized variances vk = 1y/δt σ2
k,

veff = 1y/δt σ2
eff and a new random variable χ with

χ = ǫ2 − 1 such that E [ χ(t) ] = 0, χ(t) > −1. (17)

Assuming that the time increment δt is small compared to the time scales τk in the model,
the following approximation can be used

1 − µk =
δt

τk

+ O(δt2). (18)

In the present derivation, this expansion is used only to make contact with the more usual
continuous time form, but no term of higher order are neglected. Exact expressions are
obtained by replacing δt/τk by 1 − µk in the equations below.

These notations and approximations allows to write the equivalent equations

dvk =
δt

τk
{veff − vk + χ veff} (19a)

veff =
∑

k

wk vk + w∞v∞ (19b)

The process for the forward variance is given by

dv∆T =
∑

k

wk(∆T ) dvk (20)

with dvτ (t) = v(t, t + ∆T ) − v(t − δt, t − δt + ∆T ).
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The content of Eq. 19a is the following. The term δt {veff − vk} /τk gives a mean reversion
toward the current effective volatility veff at a time scale τk. This structure is fairly
standard, except for veff which is given by a convex combination of all the variances
vk. Then, the random term is unusual. All the variances share the same random factor
δt χ/τk, which has a standard deviation of order δt instead of the usual

√
δt appearing in

Gaussian model.

An interesting property of this equation is to enforce positivity for vk through a somewhat
peculiar mechanism. The equation 19a can be rewritten as

dvk =
δt

τk

{−vk + (χ + 1)veff} (21)

Because χ ≥ 1, the term (χ + 1)veff is never negative, and as δt vk(t − δt)/τk is smaller
than vk(t − δt), this implies that vk(t) is always positive (even for a finite δt). Another
difference with the usual random process is that the distribution for χ is not Gaussian. In
particularly if ǫ has a fat-tail distribution, as seems required in order to have a data gen-
erating process that reproduce the properties of the empirical time series, the distribution
for χ also has fat tails.

The continuum limit of the GARCH(1,1) process was already investigated by [Nelson, 1990].
In this limit, GARCH(1,1) is equivalent to a stochastic volatility process where the vari-
ance has its own source of randomness. Yet Nelson constructed a different limit as above
because he fixes the GARCH parameters α0, α1 and β1. The decay coefficient is given
by α1 + β1 = µ and is therefore fixed. With µ = exp(−δt/τ), fixing µ and taking the
limit δt → 0 is equivalent to τ → 0. Because the characteristic time τ of the EMA go
to zero, the volatility process becomes independent of the return process, and the model
converges toward a stochastic volatility model. A more interesting limit is to take τ fixed
and δt → 0, as in the computation above. Notice that the computation is done with a
finite time increment δt; the existence of a proper continuum limit δt → 0 for a process
defined by eq. 19b to 20 is likely not a simple question.

Let us emphasize that the derivation of the volatility process as induced by the ARCH
structure involves only elementary algebra. Essentially, if the price follows an ARCH
process (one or multiple time scales, with or without mean σ∞), then the volatility follows
a process according to 19. The structure of this process involves a random term of order
δt and therefore it cannot be reduced to a Wiener process. This is a key difference from
the processes used in finance that were developed to capture the price diffusion.

The implications of eq. 19 are important as they show a key difference between ARCH
and stochastic volatility processes. This has clearly implication for option pricing, but
also for risk evaluation. In a risk context, the implied volatility is a risk factor for any
portfolio that contains options, and it is likely better to model the dynamic of the implied
volatility by a process with a similar structure.
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6 Market model for the variance

In the literature, the models for the implied volatility are dominated by stochastic volatil-
ity processes, essentially assuming that the implied volatility “has its own life”, indepen-
dently of the underlying. In this vast literature, a recent direction is to write processes
directly for the forward variance. Recent papers in this direction include [Buehler, 2006]
and [Bergomi, 2005], and a presentation by [Gatheral, 2007]. In this direction, we present
here simple linear processes for the forward variance, and discuss the relation with a
multi-components ARCH in the next section.

The general idea is to write a model for the forward variance

v(t, t + ∆T ) = G(vk(t); ∆T ) (22)

where G is a given function of the (hidden) random factors vk. In principle, the random
factors can appear everywhere in the equation, say for example as a random characteristic
time like τk. Yet, Buehler has showed that strong constraints exist on the possible random
factors, for example forbiding random characteristic time. In this paper, only linear model
will be discussed, and therefore the random factor appears as a variance vk.

The dynamic for the random factor vk are given by processes

dvk = µk(v) dt +
d∑

α=1

σα
k (v) dW α k = 1, · · · , n. (23)

The processes have d sources of randomness dW α, and the volatility σα
k (v) can be any

function of the factors.

As such, the model is essentially unconstraint, but the martingale condition 4 for the
forward variance still has to be enforced. Through standard Ito calculus, the variance
curve model together with the martingale condition lead to a constraint between G(v; ∆T ),
µ(v) and σ(v)

∂∆T G(v; ∆T ) =

n∑

i=1

µi ∂vi
G(v; ∆T ) +

n∑

i,j=1

d∑

α=1

σα
i σα

j ∂2
vi,vj

G(v; ∆T ) (24)

A given function G is say to be compatible with a dynamic for the factors if this condition
is valid. The compatibility constraint is fairly weak, and many processes can be written
for the forward variance that are martingale. As already mentionned, we consider only
functions G that are linear in the risk factors. Therefore, ∂2

vi,vj
G = 0, leading to first

order differential equations that can be solved by elementary techniques. For this class of
models, the condition does not involve the volatility σα

k (v) of the factor, which therefore
can be chosen freely.
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6.1 Example: one factor market model

The forward variance is parameterized by

G(v1; ∆T ) = v∞ + w1(∆T )(v1 − v∞) (25)

w1(∆T ) = w1 e−∆T/τ1

which is compatible with the stochastic volatility dynamic

dv1 = −(v1 − v∞)
dt

τ1

+ γ vβ
1 dW for β ∈ [1/2, 1]. (26)

The parameter w1 can be chosen freely, and for identification purpose the choice w1 = 1
is often made. Because G is linear in v1, there is no constraint on β. The value β = 1/2
corresponds to the Heston model, β = 1 to the log-normal model. This model is somewhat
similar to the GARCH process, with one characteristic time τ1, a mean volatility v∞, and
the volatility of the volatility (vol-of-vol) γ. This model is not rich enough to describe
the empirical forward variance dynamic, which involve multiple time scale.

6.2 Example: two factors market model

The linear model with two factors

G(v; ∆T ) = v∞ + w1(∆T ) (v1 − v∞) + w2(∆T ) (v2 − v∞)

w1(∆T ) = w1 e−∆T/τ1 (27)

w2(∆T ) =
1

1 − τ1/τ2

(
−w1 e−∆T/τ1 + (w1 + w2) e−∆T/τ2

)

is compatible with the dynamic

dv1 = −(v1 − v2) dt/τ1 + γ vβ
1 dW1 (28)

dv2 = −(v2 − v∞) dt/τ2 + γ vβ
2 dW2.

The parameters w1 and w2 can be chosen freely, and for identification purpose the choice
w1 = 1 and w2 = 0 is often made. Notice the similarity of the equation 27 with the
Nelson-Siegel-Svensson parameterization for the yield curve.

The linear model can be solved explicitely for n-components, but the ∆T dependency in
the coefficients wk(∆T ) becomes increasingly complex. It is therefore not natural in this
approach to create the equivalent of a long-memory model with multiple time scales.
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7 Market models and options

Assuming a liquid option market, the implied volatility surface can be extracted, and
from its backbone, the forward variance v(t, t + ∆T ) is computed. At a given time t,
given a market model G(vk(t); ∆T ), the risk factors vk(t) are estimated by fitting the
function G(∆T ) on the forward variance curve. It is therefore important for the function
G(∆T ) to have enough possible shapes to accommodate the various forward variance
curves. This estimation procedure for the risk factors gives the initial condition vk(t).
Then, the postulated dynamics for the risk factors induce a dynamic for G, and hence of
the forward variance.

Notice that in this approach, there is no relation with the underlying and its dynamic. For
this reason, the possible processes are weakly constrained, and the parameters need to be
estimated independently (say for example the characteristic times τk). Another drawback
of this approach is to rely on the empirical forward variance curve, and therefore a liquid
option market is a prerequisite.

Our choice of notations makes clear the formal analogy of the market model with the
forecasts produced by a multi-component ARCH process. Except for the detailled shapes
of the functions wk(∆T ), the equations 15 and 27 have the same structure. They are
however quite different in their spirits as the vk are computed from the underlying time
series in the ARCH approach, whereas in a market model approach the vk are estimated
from the forward variance curve obtained from the option market. In other word, ARCH
leads to a genuine forecast based on the underlying, whereas market model provides for
a constraint fit of the empirical forward curve. Beyond this formal analogy, the dynamic
for the risk factors are quite different as the ARCH approach leads to the unusual eq. 19a
whereas market models use the familiar generic Gaussian process in eq. 23.

8 Comparison of the empirical implied, forecasted and realized
volatilities

As explained in sec. 4, a multi-components ARCH process provides us with a forecast
for the realized volatility, and the forecast is directly related to the underlying process
and its properties. At a given time t, there is three volatilities (implied, forecasted and
realized) for each forecast horizon ∆T . Essentially, the implied and forecasted volatilities
are forecasts for the realized volatility. In this section, we investigate the relationship be-
tween these three volatilities and the forecast horizon ∆T . When analyzing the empirical
statistics and comparing these three volatilities, several factors should be kept in mind.

1. For short forecast horizons (∆T = up to 10 days), the number of returns in ∆T is
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small and therefore the realized volatility estimator (computed with daily data) has
a large variance.

2. The forecastability decreases with increasing ∆T .

3. The forecast and implied volatilities are “computed” using the same information set,
namely the history up to t. This is different from the realized volatility, computed
using the information in the interval [t, t + ∆T ]. Therefore, we expect the distance
between the forecast and implied to be the smallest.

At a more detailed level, the information set for the implied volatility is richer, be-
cause traders use intra-day information which helps building better forecasts, par-
ticularly for short risk horizons. This contrasts with all the present ARCH forecasts
that are computed using only daily close prices. From this difference on their ac-
tual information sets, the implied volatility can be expected to provide for a better
forecast of the realized volatility.

4. The implied volatility has some particular idiosyncracies related to the option mar-
ket, for example supply and demand, or the liquidity of the underlying necessary to
implement the replication strategy. Similarly, an option bears a volatility risk, and a
related volatility risk premium can be expected. These particular effects could bias
the implied volatility upward.

5. From the raw options and underlying prices, the computations leading to the implied
volatility are complex, and therefore error prone. This data quality problem is
inherent to the original data provider and the option market, and is a reflect of the
difficulty to compute clean and reliable implied volatility surfaces. For stocks, the
problem is made more difficult because of the dividents, the corporate events and
the smaller liquidity. For this reason, we present only the figures corresponding to
two of the most liquid option markets. The results have been checked with other
FX rates, stock indexes and stocks, and are essentially valid for all underlyings.

6. The options are traded for fixed maturity time, whereas the convenient volatility
surface is given for constant time to maturity. Therefore, some interpolation and
extrapolation need to be done. As exchanged traded options are defined with one
maturity per month, it is difficult to get reliable implied volatility for time to ma-
turity smaller than one month.

7. The ARCH based forecasts are dependent on the choice of the process and the
associated parameters.

8. As the forecast horizon increases, the dynamic of the volatility get slower and the
actual number of independent volatility points decreases (as 1/∆T ). Therefore, the
statistical uncertainty on the statistics are increasing with ∆T .
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Figure 3: The volatilities at the beginning of the years 2002 to 2007, for EUR/USD. The black
curve with square symbols is the realized volatility, the black curve with full circle symbols is
the implied volatility, and the color curve with full circle symbols is the forecast according to the
various ARCH processes (with the same colors as below). The vertical axis gives the annualized
volatility in %, the horizontal axis the forecast time interval ∆T in day.

Because of the above points, each volatility has some peculiarities, and therefore we do
not have a firm anchor point to base our comparison. Given that we are on a floating
ground, our goals are fairly modest. Essentially, we want to show that a process with
one time scale is not good enough, and that the long-memory process provides for a good
forecast with an accuracy comparable to the implied volatility. The processes used in the
analysis are I-GARCH(1), I-GARCH(2) with two set of parameters and LM-ARCH. The
equations for the processes are given in sec. 3, with the values for the parameters.

The best way to visualize the dynamic of the three volatilities would be to use a movie of
the σ[∆T ] time evolution. Unfortunately, the present analogic paper does not allow for
such medium, and we present instead 6 snapshots for EUR/USD in Figure 3. Overall,
the realized volatility has a weak term structure, although the global level changes signif-
icantly with time. The implied volatility has more structures as function of the time to
maturity, but this seems not always appropriate. The term structures for the ARCH fore-
casts are in line with the implied volatility, with essentially a weak term structure. The
I-GARCH(1) process has a constant term structure, and this explains why its forecasting
performances are indeed very good compared to more complex processes. Beyond a qual-
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itative assessement of the term structure, the various forecasts for the realized volatility
are difficult to rank, but clearly the ARCH forecasts are close to the target and compare
well with the implied volatility.

The statistics are presented for two time series, the USD/EUR foreign exchange rate and
the DAX stock index. The time series for the volatilities are shown on fig. 4 for a 3 months
forecast horizon. The time series are not very long (∼10 years for USD/EUR, ∼6 years
for DAX). This clearly makes statistical inferences difficult, as the effective sample size
is fairly small. The lagging behavior of the forecast and implied volatility with respect
to the realized volatility is clearly observed. For the DAX, the data sample contains an
abrupt drop in the realized volatility at the beginning of 2003. This pattern was difficult
to capture for the models with long term mean reversion.

For the statistics, all the horizontal and vertical scales are identical, and the colors are
fixed for a given process. The graphs are presented for the mean absolute error (MAE)

MAE(x, y) =
1

n

∑

t

|x(t) − y(t)| (29)

where n is the number of term in the sum. Other measures of distance like root mean
square error, or the MAE for ln(σ), give very similar figures.

The overall relationship betwen the three volatilities can be understood on figure 5. The
pair of volatilities with the closest relationship is the implied and forecasted volatilities,
because they are build upon the same information set. The distance with the realized
volatility is larger, with similar values for implied-realized and forecast-realized. This
shows that it is quite difficult to assert which one of the implied and forecasted volatility
provides for a better forecast of the realized volatility. All the distances have a global
U-shape form as function of ∆T . This originates in the points 1 and 2 above, which
leads to a minimum between 2 to 6 months for the distances. The distance is larger for
shorter ∆T because of the bad estimator for the realized volatility, and larger for longer
∆T because of the decreasing forecastability. The time structures of the ARCH processes
impact the distances between the forecasted and implied volatility (dotted line), and the
relation between process structure and forecast quality discussed in the next paragraph.

The figure 6 shows the distances for given volatility pairs, depending on the process used to
build the forecast. The forecast-implied distance shows clear difference between processes
(left panels). The I-GARCH(1) process is lacking mean reversion, an important feature
of the volatility dynamic. The I-GARCH(2) process with parameter set 1 is handicapped
by the too short characteristic time for the first EMA (4 days); this leads to a noisy
volatility estimator and subsequently to a noisy forecast. The same process with a longer
characteristic time for the first EMA (16 days, parameter set 2) shows much improved
performance up to a time horizon comparable to the long EMA (512 days). Finally,
the LM-ARCH produces the best forecast. As the forecast becomes better (1 time scale
→ 2 time scales → multiple time scales), the distance between the implied and forcasted
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Figure 4: The volatilities time series for the USD/EUR (upper panel) and DAX (lower panel),
for a 3 months forecast horizon. For the DAX data, the implied volatility is given for the put
and call options (blue curves).
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Figure 5: The MAE distances between volatility pairs for different forecasts: I-GARCH(1)
(upper left, red), I-GARCH(2) parameters 1 (upper right, blue), I-GARCH(2) parameters 2
(lower left, blue) and LM-ARCH (lower right, black). The vertical axis gives the MAE for the
annualized volatility in %, the horizontal axis the forecast time interval ∆T in day. The data is
EUR/USD.
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Figure 6: The MAE distances between volatility pairs: forecast-implied (left) and forecast-
realized (right). The upper figures are for EUR/USD, the lower figure for the DAX stock index.
The vertical axis gives the MAE for the annualized volatility in %, the horizontal axis the
forecast time interval ∆T in day.
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volatilities decreases. For EUR/USD, the mean volatility is around 10% (the precise value
depending on the volatility and time horizon), and the MAE is in the 1 to 2% range. This
shows that in this time to maturity range, we can build a good estimator of the ATM
implied volatility based only on the underlying time series.

The distance forecast-realized is larger than the forecast-implied volatility (right panel),
with the long memory process giving the smallest distance. The only exception is the
I-GARCH(1) process applied to the DAX time series, due to the particular abrupt drop
in the realized volatility at early 2003. This shows the limit of our analysis due to the
fairly small data sample, and longer time series for implied volatility are required to gain
more statistical power. Given the limited sample size, a cross sectional study over 9 other
time series shows consistent results.

9 Conclusion

The “ménage à 3” between the forecasted, implied and realized volatilities is quite a
complex affair, where each participants have their own character. The salient outcome is
that the forecasted and impled volatilities have the closest relationship, while the realized
volatility is more distant as it incorporates a larger information set. This picture is de-
pendent to some extend on the quality of the volatility forecast: the multi-scale dynamic
of the long memory ARCH process is seen to capture correctly the dynamic of the volatil-
ity, while the I-GARCH(1) process is not rich enough in its time scale structures. This
conclusion falls in line with the risk methodology developed in [Zumbach, 2006], where
the same long memory process is shown to capture correctly the lagged correlation for
the volatility.

The connection with the market model for the forward variance shows the parallel in
the structure of the volatility forecasts provided by both approaches. However, their dy-
namics are very different (postulated for the forward volatility market models, induced by
the ARCH structure for the multi-components ARCH processes). Moreover, the volatility
process induced by the ARCH equations is of a different type than the usual price process,
because the random term is of order δt instead of

√
δt used in diffusive equations. This

emphasize a fundamental difference between price and volatility processes. A clear ad-
vantage of the ARCH approach is to deliver a forecast based only on the properties of the
underlying time series, with a minimal number of parameters that need to be estimated
(none in our case as all the parameters correspond to the values used in [Zumbach, 2006]).
This point brings us to a nice and simple common framework to evaluate risks as well as
a good approximation for the implied volatilities of at-the-money options.

The natural extension of this work is to study the whole implied volatility surface. As
the backbone is essentially under control, the perpendicular direction needs to be studied,
namely the volatility smile should be related to the underlying behavior. Due to the
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heteroscedasticity, any multi-component ARCH process will capture some (symmetric)
smile. Moreover, fat tail innovations will make the smile stronger, as the process becomes
increasingly distant from a Gaussian random walk. Yet, adding an asymmetry in the
smile, as observed for stocks and stock indexes, requires to enlarge the family of process
to capture asymmetries in the distribution of returns. This is left for further work.
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