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Abstract. We present a rigorous full quantum mechanical model for the lattice heat capacity of 
mesoscopic nanostructures in various dimensions. Model can be applied to arbitrary 
nanostructures with known vibrational spectrum in zero, one, two, or three dimensions. The 
limiting case of infinitely sized multi-dimensional materials are also found, which are in 
agreement with well-known results. As examples, we obtain the heat capacity of fullerenes. 

1. Introduction 
This paper presents a rigorous and unified quantization of bosonic fields, applicable to phononic, 
stress, strain, and electromagnetic fields. We then proceed to develop an exact relation for the lattice 
heat capacity of mesoscopic nanostructures, having finite physical dimensions. Extension of the model 
to the analysis of bulk media is shown to be agreement with known results. Numerical examples of 
this model for analysis of fullerenes and are shown and discussed. 
 
2. Field and Energy 
Suppose that a vector bosonic field state is ( ), t=r F F r , connected to a scalar energy functional as 
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where ijK⎡ ⎤= ⎣ ⎦K  is a second-rank tensor, describing the inherent properties of the medium. For a 

lossless medium K  has to Hermitian † t= =K K K  and real-valued. Hence, isotropic media require 
KI=K , which results in 21 1

2 2K KΠ = ⋅ =F F F . Now, using Fourier transformation pair we get 
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As ( ), tF r  is a real field we get ( ) ( )*, ,ω ω− = +B r B r , and hence the energy density expands as 
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Now if the medium allows orthogonal eigenstates 
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Hence, using (4) in (3)  
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Integrating from (5), the total energy is obtained and given by 
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Here, the second and the third terms are time independent while the first and the latter ones vibrate 
with ( )2 nω± frequency, and hence have zero contribution to the slowly time-varying components. 
Now, using (6) it is clear that the total time-average energy of the system is simply given by 
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system is equal to the sum of squared amplitudes of its eigen-modes.  

2.1. Classical Hamiltonian 
As bosons can occupy same level of energy with population more than one, this can produce a 
macroscopic quantum field ( ), tF r . We can define the functions 
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dt n n na t j a tω= − . This allows us to rewrite the total energy in the different form of 
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For a stress field due to phonons, a tensor representation is needed instead of vector field ( ), tF r , such 
as ( ) ( ), ,ijt tσ⎡ ⎤= ⎣ ⎦r rσ  [1]. The energy density will be given by 1 1
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well. Here, instead of ijK⎡ ⎤= ⎣ ⎦K  which is a second-rank tensor, we have to use the fourth-rank 

elasticity tensor ijklc⎡ ⎤= ⎣ ⎦c , to get scalar energy density. The rest of the analysis will be exactly the 
same. 
 
3. Transition to Quantum Mechanics 
Similarity of (7) to that of a quantized harmonic oscillator suggests using a sum on the energies of 
oscillators with frequencies ( )nω , to construct the quantum mechanical Hamiltonian. So we define the 
ladder operators in a standard way as 
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algebra †ˆ ˆ,n m nma a δ⎡ ⎤ =⎣ ⎦  and [ ]ˆ ˆ, 0n ma a = . This would guarantee the independence of bosonic modes. 
Therefore, the quantum mechanical Hamiltonian will be 
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Furthermore, the ladder operators satisfy 
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4. Heat Capacity 
Heat capacity is defined as  
 C E T= ∂ ∂  (9) 

To obtain C , it is enough to know the number distribution of bosons at the given temperature T  
under thermodynamic equilibrium. Now, a phononic field under thermal equilibrium is given by [2]  
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Here { }mψ  are coefficients of the expansion and { } ( ) ( ) ( ) ( )0 1 2 nm m m m m=  are eigenkets, 

meaning that the mode ( )n  can have ( )nm  bosons each having an energy of ( )nω . Now, application of 
Bose-Einstein statistics, requires that the probability of occupation of state ( )nω  with ( )nm  bosons is 
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where N  is the normalization constant to support 1ψ ψ = . A simple check shows that the Bose-

Einstein distribution for bosons is readily obtained through this method as ( ) ( )
1
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−⎡ ⎤= −⎣ ⎦ . 
Now, the energy of the system under the thermodynamic equilibrium at temperature T  is  
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which can be simplified through lengthy but straightforward calculations [3] as  
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where ( )
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E ω= ∑  is zero point energy. Using (9) we get the exact relation for heat capacity [3] 
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Small size of a nanostructure makes the energy spectrum both discrete and finite, so that (14) has a 
finite number of terms. This makes it possible to calculate the accurate value of (14) through 
numerical methods. At high temperatures, to a good approximation we have ( )( )exp 1n kTω − ≈
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the system. Thus C Lk≈ , will be independent of T . On the other hand, at very low temperatures we 
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Therefore at the limit of zero temperature we always have 0C = . Furthermore, when the size of 
structure approaches infinity, the relation for heat capacity reduces to 
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D ω δ ω ω⎡ ⎤= −⎣ ⎦∑  being the density of states. But for an N -dimensional bulk medium, we 

have ( ) 1ND ω αω −= , and the corresponding lattice heat capacity will be given by direct integration as 
NC T∝ , being in agreement with known results. 



 
 
 
 
 
 

5. Examples 
5.1. Fullerenes: C60, C70, C80 
Fullerenes are zero-dimensional (0D) nanostructures of Carbon (figures 1,2), and their calculated heat 
capacities are calculated and plotted in figure 3. It is interesting to note that all heat capacities detach 
from the origin at ( )0 0C T = = , and furthermore they behave as 0 constC T∝ =  for temperatures 
roughly below 30K . 

Figure 1. Fullerenes [4] Figure 2. Vibrational modes of C80 [4] 

Figure 3. Calculated heat capacities for fullerenes. 

6. Conclusions 
We presented a rigorous and general method for quantization of bosonic fields, which was applicable 
to phononic fields as well. This enabled us to find the exact expression for heat capacity. We studied 
its behavior at high and low temperatures and also at the limit of infinite multi-dimensional structures. 
Agreement to well-known expressions was noticed. As application examples, we have calculated and 
plotted the heat capacities for C60, C70, and C80 fullerenes using their recently published spectrum.  
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