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Nuclear Collective Excitation by a Short Strong Laser Pulse
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We derive the conditions on the average laser energy and the mean photon number such that
a strong short laser pulse causes collective nuclear excitation. We use the nuclear Giant Dipole
Resonance as a representative example, and a random–matrix description of the fine–structure
states and perturbation theory as tools.

PACS numbers: 42.50Ct, 24.30Cz, 24.60Dr

Purpose. Qualitative Considerations. With the start
of the construction of ELI (the “extreme light infrastruc-
ture”) [1], nuclear spectroscopy using intense beams of
high–energy gamma rays or even intense laser light has
become a realistic possibility. Indeed, laser light of sev-
eral MeV energy is expected to be produced by coherent
Thomson backscattering [2, 3]. These developments call
for a theoretical analysis of the absorption mechanism of
laser light in nuclei. Naively one might expect that for a
laser pulse containing N ≫ 1 photons, the dominant pro-
cess is multiple excitation of individual nucleons moving
independently in the nuclear mean field since the time
between successive photon absorption processes becomes
too short for the nuclear system to relax collectively. We
show that that naive expectation may fail: Even a strong
short laser pulse may lead to single or multiple collective
nuclear excitation.

We focus attention on dipole absorption, the dominant
photon absorption process in nuclei. The dipole mode
|10〉 is the normalized product of the dipole operator and
the wave function |0〉 of the nuclear ground state. That
is not an eigenstate of the nuclear Hamiltonian Hnuc,
and the dipole mode is spread over the eigenstates |µ〉 of
Hnuc with eigenvalues Eµ, µ = 1, . . .. Gross features ver-
sus excitation energy E of that spreading are measured
by the strength function S(E) =

∑

µ |〈10|µ〉|2δ(E − Eµ).
The average (overbar) is taken over an energy interval
large compared to the average nuclear level spacing d. In
the simplest model adopted here, S(E) has Lorentzian
shape and is characterized by two experimenally deter-
mined parameters [4]: The peak energy Edip ≈ 80 A−1/3

MeV (where A is the nuclear mass), and the width Γ↓ ≈ 5
MeV (the “spreading width”). The resulting broad peak
of S(E) is referred to as the Giant Dipole Resonance
(GDR). By the uncertainty relation, the time for the
dipole mode to spread over the eigenstates of Hnuc (the
“equilibration time”) is τeq = h̄/Γ↓. If photons within the
same laser pulse are successively absorbed at time inter-
vals larger than τeq, the nucleus relaxes after every step.
Absorption of the first photon then excites the dipole
mode, and successive absorption of several photons leads
to multiple excitation of that mode. As a result, nuclei
may absorb laser light in a manner characteristic of a
strongly interacting many–body system. In the present

paper we show that that process is indeed expected to
occur, and we derive the conditions for it to happen.

The width Γdip for gamma decay of the GDR to the
nuclear ground state is estimated below and has a typi-
cal value of 10 keV. With N photons in the laser pulse,
the characteristic time scale for photon absorption is
τdip = h̄/(NΓdip). Naively one would expect that excita-
tion of the GDR (as opposed to independent excitation of
individual nucleons) dominates whenever τdip > τeq, i.e.,
whenever NΓdip < Γ↓. That simple estimate is modi-
fied by two factors, however. (i) For a short laser pulse
with average energy EL and energy spread σ (where we
take σ ≈ 10 keV corresponding to a time length of the
laser pulse of ≈ 10−19 s, a realistic estimate [5]), the
Lorentzian shape of the GDR produces for EL < Edip

an additional factor [Γ↓/(EL − Edip)]
2. (ii) The char-

acteristic cubic dependence of Γdip on energy yields an
additional factor (EL/Edip)

3. In total the criterion for
collective excitation of the GDR at energy EL reads
N < (EL/Edip)

3[(EL−Edip)
2/(ΓdipΓ

↓)]. With Γdip = 10
keV, Γ↓ = 5 MeV, Edip = 14 MeV, EL = 7 MeV that
yields N < 5 × 103. That bound on N is significantly
larger than the bound N < Γ↓/Γdip ≈ 700 obtained from
the naive estimate and shows that even for an intense
laser pulse, excitation of the collective GDR is a realistic
alternative in nuclei to excitation of individual nucleons
provided only that EL is sufficiently far below Edip. And
even for EL near Edip a laser pulse of sufficiently low in-
tensity (i.e., sufficiently small N) would excite the GDR.
Thus, varying both N and EL provides the exciting pos-
sibility to investigate the dynamical interplay between
collective and single–particle dipole excitation in nuclei.

Our argument is not restricted to single excitation of
the GDR but applies likewise to double photon absorp-
tion. We demonstrate that fact by calculating the prob-
abilities P1 for single–quantum dipole excitation and P2

for double–quantum dipole excitation as functions of N ,
of EL, and of σ. To calculate P2 we use the Brink–Axel
hypothesis [6, 7]. It states that every nuclear state (and
not only the nuclear ground state) possesses a GDR. The
hypothesis applies, in particular, to the configurations
that mix with the dipole mode. As a consequence, sin-
gle excitation of the dipole mode may be followed either
by double excitation of that mode (i.e., formation of the
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second harmonic) or by dipole excitation of the configura-
tions mixed with the single dipole mode. We account for
both possibilities and show that for σ ≪ Γ↓ the contri-
bution from the Brink–Axel mechanism dominates and
yields P2 = (1/2)P 2

1 . For values of N and of EL such
that P1 ≪ 1 that relation implies that single photon
absorption is the dominant process even if N ≫ 1. (Ob-
servable consequences of single–photon absorption were
recently investigated theoretically in Ref. [5]). Our re-
sult suggests that the probability for nuclear excitation
by n–fold dipole absorption may be approximately given
by Pn ≈ 2−nPn

1 . That would imply that in the regime
where our approximations apply (P1 < 1/2 or so) multi-
ple collective nuclear excitation is unlikely.
Our calculations are based upon a random–matrix

model for the complex configurations that mix with the
single or double dipole modes. Every random–matrix
model is based upon the implicit assumption that the
equilibration time (here τeq) is short compared to the
time scale of the physical process of interest (here τdip).
Our use of random–matrix theory is justified if the
above–mentioned conditions for collective excitation of
the GDR are met. We also use perturbation theory to
calculate P1 and P2. That is justified if P1 and P2 are
sufficiently small compared to unity. The resulting con-
straint is the same as for the use of random–matrix the-
ory.
Hamiltonian. We write the total time–dependent

Hamiltonian as

H(t) = Hnuc +H(t) (1)

where H(t) stands for the time–dependent interaction
with the laser light. In constructing Hnuc we are guided
by the following qualitative picture [8]. In a closed–
shell nucleus, the dipole mode |10〉 is a superposition of
one–particle one–hole (1p 1h) excitations. That mode
is embedded in a sea of 2p 2h excitations |0k〉 where
k = 1, . . . ,K and K ≫ 1. (Here and in what follows
the first label of the state vector counts the number of
absorbed dipole quanta and the second enumerates the
states). The mixing of both kinds of excitations causes
the dipole mode to be distributed over the eigenstates of
Hnuc. The absorption of a second dipole quantum may
either lead from the dipole mode |10〉 to the double dipole
mode |20〉 (a 2p 2h state), or it may lead from one of the
2p 2h states |0k〉 to the dipole mode |1k′〉 of that same
state (a 3p 3h state). The double dipole mode |20〉 is
similarly embedded in a sea of 3p 3h states |0α〉 with
α = 1, . . . , L. All of the states |1k′〉 are embedded in a
sea of 4p 4h states |0ρ〉 where ρ = 1, . . . ,M and M ≫ K.
The residual interaction of the nuclear shell model mixes
these configurations, and both the double dipole mode
and the states |1k′〉 are spread out over the eigenstates
ofHnuc. In modeling this qualitative picture we disregard
the fact that single or double dipole excitation may pop-
ulate states with different spin and isospin values. Hnuc

is accordingly schematically written in matrix form as
follows.

Hnuc =





















E0 0 0 0 0 0 0
0 E1 V1l 0 0 0 0
0 Vk1 H̃

(1)
kl 0 0 0 0

0 0 0 E2 V2β 0 0

0 0 0 Vα2 H̃
(2)
αβ 0 0

0 0 0 0 0 H̃k′l′ Wk′σ

0 0 0 0 0 Wρl′ h̃ρσ





















.

(2)
Here E0 is the energy of the nuclear ground state, while
E1 and E2 are the mean excitation energies of the sin-
gle and of the double dipole modes. For simplicity we
use a harmonic–oscillator picture so that E2 − E1 =
E1 − E0 = Edip. Moreover we put E0 = 0. The real
matrix elements V1l mix the dipole mode with the 2p
2h states |0l〉. These are governed by the K–dimensional

Hamiltonian matrix H̃
(1)
kl . Similarly, the matrix elements

V2β mix the double dipole mode with the 3p 3h states
|0β〉. These are governed by the L–dimensional Hamil-

tonian matrix H̃
(2)
αβ . We write H̃

(1)
kl = E1δkl +H

(1)
kl and

H̃
(2)
αβ = E2δαβ+H

(2)
αβ and assume that bothH

(1)
kl andH

(2)
αβ

are random matrices, members of the Gaussian Orthog-
onal Ensemble (GOE), with no correlations between the

elements ofH
(1)
kl and ofH

(2)
αβ . The spectra of E1δkl+H

(1)
kl

and of E2δαβ + H
(2)
αβ both have the shape of a semicir-

cle centered at E1 and E2, respectively. The last diag-
onal block in Eq. (2) describes similarly the mixing of
the states |1k′〉 with the 4p 4h states |0ρ〉. We write
H̃k′l′ = E2δk′l′ +Hk′l′ and h̃αβ = E2δαβ + hαβ . We im-
plement the Brink–Axel hypothesis by putting H = H(1).
Again, the M–dimensional matrix hρσ is assumed to be a
member of the GOE. We calculate the excitation proba-
bilities P1 and P2 as ensemble averages forK,L,M → ∞.
In that limit, the spreading widths of the single and dou-
ble dipole mode and of each of the states |1k′〉 are given
by the generic expression [9] Γ↓ = 2πv2ρ where v2 stands
for the mean square of the relevant mixing matrix ele-
ments and ρ for the mean level density in the center of
the semicircle. To avoid unneccessary complexity we as-
sume that all spreading widths have the same value Γ↓.
That schematic picture can be refined if the need arises.
We disregard the fact that the states excited by gamma
absorption may decay by particle or by gamma emission.
That is justified because the time scales associated with
such decay are orders of magnitude larger than both τeq
and τdip.
For the time–dependent interaction Hamiltonian H(t)

we use a semiclassical description (justified for N ≫ 1)
and write

H(t) =
√
Ng(t)Hdip . (3)

Here Hdip is the time–independent electromagnetic in-
teraction operator for a single–photon dipole transition.
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The factor
√
N accounts for the presence of N photons

and the ensuing factor N in the transition rate. (For
N ≫ 1 single and double transitions have the same am-
plification factor). The dimensionless function g(t) de-
scribes the time dependence of the short laser pulse. We
use the ansatz

g(t) = exp[−σ2t2/(2h̄2)− iωLt] . (4)

Fourier transformation of g(t) shows that the mean en-
ergy of the laser pulse is EL = h̄ωL, the spread in energy
has width σ. Actually the interaction Hdip depends on
energy, too, via the wave number k. For σ ≈ 10 keV we
may put k ≈ kL where kL = ELc/h̄.
In the scheme of Eq. (2) the non–zero matrix elements

of the dipole operator are 〈10|Hdip|0〉, 〈20|Hdip|10〉, and
〈1k′|Hdip|0k〉. We use the Brink–Axel hypothesis to write
〈1k′|Hdip|0k〉 = δkk′ 〈1k|Hdip|0k〉. We assume that all
non–zero matrix elements of the dipole operator have
the same value written as 〈Hdip〉. That corresponds to a
harmonic–oscillator approximation. To estimate 〈Hdip〉,
we write the Hamiltonian Hint describing the interac-
tion with the electromagnetic field in Coulomb gauge as
Hint = −(1/c)~j ~A. Here ~j is the current and ~A the vector
potential. In our time–dependent approach the latter has
the form of a wave packet,

~A(~x,Ω, t) = α

∫

dω exp[−iωt] g̃(ω) exp[i~k~r] ~χ . (5)

The unit vector ~χ describes the polarization, Ω indicates

the direction of the vector ~k, and k =
√

~k2 and ω are
related by k = ω/c. The function g̃ is the Fourier trans-
form of g(t) in Eq. (4). We determine the normalization
constant α from the reqirement that the energy carried
by ~A be equal to EL. We use the dipole approxima-
tion. That yields α2 = (σEL)/(π

1/2h̄c). Quantization
of the electromagnetic field for individual quanta that
have the form of the wave packet (5) yields for the en-
ergy density the expression n(E) = 1/(4π3/2σ). From
Fermi’s golden rule, the total width for dipole decay is
Γdip = 2πn(EL)|〈Hdip〉|2. Thus,

|〈Hdip〉| =
√

2π1/2Γdipσ . (6)

For the dipole width we use the Weisskopf estimate,

Γdip = 3
4
e2

h̄c (kR)2EL. With R = 3 × 10−13 cm and
EL = 15 MeV that gives Γdip ≈ 10 keV, so that
|〈Hdip〉| ≈ 10 keV, too. A somewhat larger value for
Γdip results when the Thomas–Reiche–Kuhn sum rule is
taken into account. Here we are interested in order–of–
magnitude estimates only, however.
Perturbation Expansion. We solve the time–dependent

Schrödinger equation in the interaction representation
where the perturbation has the form

H̃(t) = exp[iHnuct/h̄] H(t) exp[−iHnuct/h̄] . (7)

We assume that at time t = −∞ the nucleus is in the
ground state |0〉. We determine perturbatively the prob-
abilities P1 and P2 that at time t = +∞ one or two dipole
quanta have been absorbed.
At t = +∞, the probability amplitudes for occupation

of the states |10〉 and |0k〉 reached after single–dipole
absorption are

b1 =
1

ih̄
〈10|

∫ +∞

−∞

dt H̃(t)|0〉

=

√
N

ih̄
〈Hdip〉

∫ +∞

−∞

dt g(t)〈10| exp[iHnuct/h̄]|10〉 ,

b0k =
1

ih̄
〈0k|

∫ +∞

−∞

dt H̃(t)|0〉

=

√
N

ih̄
〈Hdip〉

∫ +∞

−∞

dt g(t)〈0k| exp[iHnuct/h̄]|10〉.(8)

The corresponding amplitudes for occupation of the
states |20〉, |0α〉 and |1k′〉, |0ρ〉 reached after double–
dipole absorption are denoted by b2, bα, b1k′ and b0ρ.
For brevity we give here only the expresssion for b0ρ as
an example.

b0ρ =

(

1

ih̄

)2

〈0ρ|
∫ +∞

−∞

dt1 H̃(t1)

∫ t1

−∞

dt2 H̃(t2)|0〉

=

(
√
N

ih̄

)2

〈Hdip〉2
∫ +∞

−∞

dt1 g(t1)

∫ t1

−∞

dt2 g(t2)

×
∑

ll′

〈0ρ| exp[−iHnuc)t1/h̄]|1l′〉δll′

×〈0l| exp[i{Hnuc(t1 − t2)}/h̄]|10〉 . (9)

The average probabilities for single and double dipole
absorption are, thus, given by

P1 =

〈

|b1|2 +
∑

k

|b0k|2
〉

,

P2 =

〈

|b2|2 +
∑

α

|b0α|2

+
∑

k′

|b1k′ |2 +
∑

ρ

|b0ρ|2
〉

. (10)

The big angular brackets indicate the ensemble average.
The first (last) two terms that contribute to P2 are due to
double excitation of the dipole mode and to the Brink–
Axel hypothesis, respectively.
Averages. By way of example we perform the ensem-

ble average for P1 and focus attention on the sum of
the squares of the time-dependent matrix elements in
Eqs. (8). Using completeness and a simple identity we
obtain for these

〈

〈10| exp[iHnuc(t1 − t2)/h̄]|10〉
〉

=



4

∫ +∞

−∞

dε exp[iε(t1 − t2)/h̄]

(

1

2iπ

〈

〈10| 1

ε− −Hnuc
|10〉

−〈10| 1

ε+ −Hnuc
|10〉

〉)

. (11)

We use Eq. (2) to write
〈

〈10| 1

ε± −Hnuc
|10〉

〉

=

〈

〈10| 1

ε± − Edip − V1(ε± −H(1))−1V †
1

|10〉
〉

=
1

ε− Edip ± (i/2)Γ↓
. (12)

Using Eq. (4) for g(t) and carrying out the time integrals
(see Eqs. (8)), we find that ε is confined to an interval
of size σ around EL. Since σ ≪ Γ↓, the argument of
the expression in Eq. (12) can be taken at ε = EL. The
remaining integration can be done. With the help of
Eq. (6) that yields

P1 =
2πNΓdipΓ

↓

(EL − Edip)2 + (1/4)(Γ↓)2
. (13)

The result (13) is intuitively appealing and clearly dis-

plays the suppression factors Γ↓2/(EL − Edip)
2 and

(EL/Edip)
3 mentioned above that come into play for

EL < Edip.
The calculation of P2 proceeds similarly but is more

involved. We use operator identities such as

〈10| 1

ε−2 −Hnuc

|0k〉

= 〈10| 1

ε−2 − Edip − V1(ε
−
2 − Edip −H(1))−1V †

1

|10〉

×〈10|V1
1

ε−2 − Edip −H(1)
|0k〉 . (14)

That leads to products of terms each containing H(1) in
the denominator. We neglect the correlations between
eigenvalues of H(1) in different factors because such cor-
relations extend over an energy range measured in units
of the mean level spacing d while the range of the terms
in Eq. (14) is given by Γ↓ ≫ d. For the last two terms in
the second of Eqs. (10) we obtain

〈

∑

k′

|b1k′ |2 +
∑

ρ

|b0ρ|2
〉

=
1

2
P 2
1 (15)

with P1 given by Eq. (13). The calculation of the first
two terms yields a contribution that in comparison to
Eq. (15) is small of order σ/Γ↓. Thus for all values of
EL the contribution to P2 from double excitation of the
dipole mode is negligibly small in comparison with that
from the Brink–Axel mechanism in Eq. (15). As a result
we find

P2 =
1

2
P 2
1 . (16)

The factor 1/2 in Eq. (16) is due to the time ordering
in Eqs. (9). Thus, we expect that for arbitrary positive
integer n we have Pn = 2−nPn

1 .

Conclusions. We have used a random–matrix model to
calculate the probabilities P1 and P2 for single and dou-
ble nuclear dipole absorption from a strong laser pulse
containing N photons. The assumptions and approxima-
tions we have used require both P1 and P2 to be small
compared to unity. Eq. (13) shows that in the tails of
the GDR that condition is easily met even for an in-
tense laser pulse. That is due to the suppression factors
mentioned in the introduction. Ways of detecting such
collective nuclear excitation experimentally are discussed
in Ref. [5]. Double photon absorption is dominantly due
to the Brink–Axel mechanism (as opposed to double ex-
citation of the dipole mode). The remarkable result (16)
shows that if our approximations hold for the calculation
of P1, i.e., if P1 is small compared to unity, they are valid
a fortiori for the calculation of P2. We speculate that for
integer n > 2 we have Pn = 2−nPn

1 .

With increasing N , the time for dipole absorption
τdip will eventually become small compared to the nu-
clear equilibration time τeq, and the collective mecha-
nism studied above will not apply. Then photons are
absorbed by nucleons moving independently in the mean
field of the nuclear shell model. Eq. (13) shows that in
the center of the GDR, i.e., for EL = Edip, that will
happen already for fairly small values of N ≈ 10 or so.
As N is increased, the process spreads to the tails of the
GDR. It would be of considerable interest to investigate
the transition between the two regimes.
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