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Abstract

Starting from the canonical formalism of relativistic (timeless) quantum mechanics, the formula-

tion of timeless path integral is rigorously derived. The transition amplitude is reformulated as the

sum, or functional integral, over all possible paths in the constraint surface specified by the (rela-

tivistic) Hamiltonian constraint, and each path contributes with a phase identical to the classical

action divided by ~. The timeless path integral manifests the timeless feature as it is completely

independent of the parametrization for paths. For the special case that the Hamiltonian constraint

is a quadratic polynomial in momenta, the transition amplitude admits the timeless Feynman’s

path integral over the (relativistic) configuration space.
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I. INTRODUCTION

The idea that quantum mechanics can be well defined even if the notion of time is absent

has been proposed [1, 2] and developed in a number of different strategies [3–7]. The motiva-

tion for formulating quantum mechanics in timeless description comes from the research on

quantum gravity, as in the quantum theory of general relativity, the spacetime background

is not fixed and generally it is not possible to make sense of quantum variables “at a moment

of time”. This is closely related to the “problem of time” in quantum gravity [8].

In particular, a comprehensive formulation for the relativistic (timeless) quantum mechan-

ics and its probabilistic interpretation are presented in Chapter 5 of [9]. The formulation is

based on the canonical (Hilbert spaces and self-adjoint operators) formalism and we wonder

whether it also admits the covariant (sum-over-histories) formalism. In the conventional

nonrelativistic (with time) quantum mechanics, the transition amplitudes are the matrix

elements of the unitary evolution generated by the Hamiltonian and can be reformulated as

the sum over histories, called the path integral (see [10] for a detailed derivation). In the

relativistic quantum mechanics, however, the concept of time evolution is not well defined in

the fundamental level; therefore, conceptual issues and technical subtleties arise when one

tries to derive the timeless path integral from the canonical formalism.

The aim of this paper is to rigorously derive the timeless path integral for relativistic quan-

tum mechanics, starting from the canonical formulation in [9]. It turns out the transition

amplitude can be reformulated as the sum, or functional integral, over all possible paths in

the constraint surface Σ specified by the (relativistic) Hamiltonian constraint H(qa, pa) = 0

for the configuration variables qa and their conjugate momenta pa, and each path contributes

with a phase identical to the classical action divided by ~. Unlike the conventional path

integral in which every path is parameterized by the time variable t, the timeless path in-

tegral is completely independent of the parametrization for paths, manifesting the timeless

feature. Furthermore, for the special case that the Hamiltonian constraint is a quadratic

polynomial in pa, the timeless path integral over Σ reduces to the timeless Feynman’s path

integral over the (relativistic) configuration space.

The timeless path integral for relativistic quantum mechanics is appealing both conceptu-

ally and technically. Conceptually, timeless path integral offers an alternative interpretation

of relativistic quantum fluctuations and is more intuitive than the canonical formalism for
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many aspects. It can give a new point of view about how the conventional quantum me-

chanics with time emerges within a certain approximation and thus may help to resolve the

problem of time. Technically, timeless path integral provides tractable tools to compute (at

least numerically or approximately) the transition amplitudes which otherwise remain formal

in the canonical formalism. For example, the semiclassical approximation for the timeless

path integral can be developed à la the Wentzel-Kramers-Brillouin (WKB) method.

In the research of loop quantum gravity (LQG), the sum-over-histories formulation is

an active research area that goes under the name “spin foam models” (SFMs) (see [9] and

references therein for LQG and SFMs). In particular, over the past years, SFMs in relation

to the kinematics of LQG have been clearly established [11–14]. However, the Hamiltonian

dynamics of LQG is far from fully understood, and although well motivated, SFMs have not

been systematically derived from any well-established theories of canonical quantum gravity.

Meanwhile, loop quantum cosmology (LQC) has recently been cast in a sum-over-histories

formulation, providing strong support for the general paradigm underlying SFMS [15, 16]. In

this paper, the timeless path integral is systematically derived from the canonical formalism

of relativistic quantum mechanics, and we hope it will shed new light on the issues of the

interplay between LQG/LQC and SFMs.

This paper is organized as follows. We begin with a review on the classical theory

of relativistic mechanics in Sec. II and then a review on the quantum theory of relativistic

mechanics in Sec. III. The main topic is presented in Sec. IV, where the timeless path integral

is derived and investigated in detail. Finally, conclusions and outlooks are summarized and

discussed in Sec. V.

II. CLASSICAL THEORY OF RELATIVISTIC MECHANICS

The conventional formulation of classical mechanics treats the time t on a special footing

and therefore is not broad enough for general-relativistic systems, which treat time on the

equal footing as other variables. To include general-relativistic systems, we need a a more

general formulation with a new conceptual scheme. A timeless formulation for relativistic

classical mechanics is proposed for this purpose and described in detail in Chapter 3 of [9],

excerpts from which are presented in this section with some new materials added to give a

review and define notations.
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A. Hamiltonian formalism

Let C be the relativistic configuration space coordinated by qa for a = 1, 2, · · · , d with qa

being the partial observables and d being the dimension of C. In nonrelativistic mechanics,

one of the partial observables can be singled out and treated specially as the time t, i.e.

qa = (t, qi), but this separation is generally not possible for general-relativistic systems. An

observation yields a complete set of qa, which is called an event. In nonrelativistic mechanics,

an observation is a reading of the time t together with other readings qi.

Consider the cotangent space Ω = T ∗C coordinated by qa and their momenta pa. The

space Ω carries a natural one-form θ̃ = pa dq
a. Once the kinematics (i.e. the space C of the

partial observables qa) is known, the dynamics is fully determined by giving a constraint

surface Σ in the space Ω. The constraint surface Σ is specified by H = 0 with a function

H : Ω → R
k. Denote γ̃ an unparameterized curve in Ω (observables and momenta) and γ

its projection to C (observables only). The physical motion is determined by the function

H via the following

Variational principle. A curve γ in C is a physical motion connecting the

events qa1 and qa2 , if γ̃ extremizes the action

S[γ̃] =

∫

γ̃

pa dq
a (2.1)

in the class of the curves γ̃ which satisfy

H(qa, pa) = 0, (2.2)

(i.e. γ̃ ∈ Σ) and whose projection γ to C connect qa1 and qa2 .

If k = 1, H is a scalar function and called the Hamiltonian constraint. If k > 1, there

is gauge invariance and H is called the relativistic Hamiltonian. The pair (C, H) describes

a relativistic dynamical system. All (relativistic and nonrelativistic) Hamiltonian systems

can be formulated in this timeless formalism.

By parameterizing the curve γ̃ with a parameter τ , the action (2.1) reads as

S[qa, pa, Ni] =

∫

dτ

(

pa(τ)
dqa(τ)

dτ
−Ni(τ)H

i(qa, pa)

)

, (2.3)

where the constraint (2.2) has been implemented with the Lagrange multipliers Ni(τ). Vary-

ing this action with respect to Ni(τ), q
a(τ) and pa(τ) yields the constraint equation(s) (2.2)

4



together with the Hamilton equations:

dqa(τ)

dτ
= Nj(τ)

∂Hj(qa, pa)

∂pa
, (2.4a)

dpa(τ)

dτ
= −Nj(τ)

∂Hj(qa, pa)

∂qa
. (2.4b)

For k > 1, a motion is determined by a k-dimensional surfaces in C and different choices of

the k arbitrary functions Nj(τ) determine different curves and parametrizations on the single

surface that defines a motion. For k = 1, a motion is a 1-dimensional curve in C and different

choices of N(τ) correspond to different parametrizations for the same curve. Different solu-

tions of qa(τ) and pa(τ) for different choices of Nj(τ) are gauge-equivalent representations

of the same motion and different choices of Nj(τ) have no physical significance.

Along the solution curve, the change rate of H with respect to τ is given by

dH i

dτ
=

dqa

dτ

∂H i

∂qa
+
dpa
dτ

∂H i

∂pa
= Nj

dHj

dpa

∂H i

∂qa
+Nj

dHj

dqa
∂H i

∂pa
≡ Nj {H i, Hj}. (2.5)

To be consistent, the physical motion should remain on the constraint surface Σ. That is,

dH/dτ has to vanish along the curve. Therefore, we must have the condition

{H i, Hj}
∣
∣
Σ
= 0, abbreviated as {H i, Hj} ≈ 0 (2.6)

for all i and j. A function F (qa, pa) defined in a neighborhood of Σ is called weakly zero if

F |Σ = 0 (abbreviated as F ≈ 0) and called strongly zero if

F |Σ = 0 and

(
∂F

∂qa
,
∂F

∂pa

)∣
∣
∣
∣
Σ

= 0, abbreviated as F ≃ 0. (2.7)

It can be proven that F ≈ 0 implies F ≃ fiH
i for some functions fi(q

a, pa). Consequently,

we have

{H i, Hj} ≃ f ijk(q
a, pa)H

k. (2.8)

The condition (2.6) ensures all constraints H i to be first class. (See [17] for more about

constrained systems and the concept of first class constraints.)

B. Nonrelativistic mechanics as a special case

The conventional nonrelativistic mechanics can also be formulated in the timeless frame-

work as a special case. For the nonrelativistic systems, the relativistic configuration space
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has the structure C = R×C0, where C0 is the conventional nonrelativistic configuration space;

i.e., qa = (t, qi) as one of the partial observables is identified as the time t. Correspondingly,

the momenta read as pa = (pt, pi) with pt being the conjugate momentum of t and pi being

the conjugate momenta of qi. The Hamiltonian constraint is given by

H(t, qi, pt, pi) = pt +H0(q
i, pi, t), (2.9)

whereH0(q
i, pi, t) is the conventional nonrelativistic Hamiltonian function. Given the Hamil-

tonian constraint in the form of (2.9), the Hamilton equations (2.4) lead to

dt

dτ
= N(τ),

dpt
dτ

= −N(τ)
∂H0

∂t
, (2.10a)

dqi

dτ
= N(τ)

∂H0

∂pi
,

dpi
dτ

= −N(τ)
∂H0

∂qi
, (2.10b)

which read as
dpt
dt

= −∂H0

∂t
(2.11)

and
dqi

dt
=
∂H0

∂pi
,

dpi
dt

= −∂H0

∂qi
, (2.12)

if particularly we use t to parameterize the curve of solutions. Furthermore, the constraint

(2.2) dictates pt = −H0. Thus, the momentum pt is the negative of energy and it is a

constant of motion if H0 = H0(q
i, pi) has no explicit dependence on t. The equations in

(2.12) are precisely the conventional Hamilton equations for nonrelativistic mechanics.

The Hamilton equations in (2.12) form a system of first-order ordinary differential equa-

tions. Given the initial condition qi(t0) = qi0 and pi(t0) = pi0 at the time t0, the existence

and uniqueness theorem for ordinary differential equations states that there exists a solution

of (2.12) given by qi = qi(t) and pi = pi(t) for t ∈ R, and furthermore the solution is unique.1

As a consequence, qi and pi evolve as functions of t, and a physical motion is an open curve

in C = R× C0, along which the observable t is monotonic.

A dynamical system in which a particular partial observable can be singled out as t

such that the Hamiltonian is separated as in the form of (2.9) is called deparametrizable.

For deparametrizable systems, the change of t is in accord with the ordinary notion of time,

1 In order to apply the existence and uniqueness theorem, we assume ∂H0/∂q
i, ∂H0/∂pi, ∂2H0/∂q

i2,

∂2H0/∂pi
2 and ∂2H0/∂q

i∂pj all continuous.
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which does not turn around but grows monotonically along the physical motion. Generically,

however, relativistic systems might be non-deparametrizable — no preferred observable can

serve as the time such that other variables are described as functions of time along the

physical motion. The classical theory predicts the physical motion as an unparameterized

curve, which gives correlations between physical variables, not the way physical variables

evolve with respect to a preferred time variable. In the next subsection, we will introduce

the timeless double pendulum as an example to illustrate the timeless feature.

C. Example: Timeless double pendulum

Let us now introduce a genuinely timeless system as a simple model to illustrate the

mechanics without time. This model was first introduced in [3, 4] and used repeatedly as

an example in [9].

Consider a mechanical system with two partial observables, a and b, whose dynamics is

specified by the relativistic Hamiltonian

H(a, b, pa, pb) = −1

2

(
p2a + p2b + a2 + b2 − 2E

)
(2.13)

with a given constant E. The relativistic configuration space is C = R
2 coordinated by a and

b, and the cotangent space Ω = T ∗C is coordinated by (a, b, pa, pb). The constraint surface

Σ is specified by H = 0; it is a 3-dimensional sphere of radius
√
2E in Ω.

In the N(τ) = 1 gauge, the Hamilton equations (2.4) give

da

dτ
= pa,

db

dτ
= pb,

dpa
dτ

= −a, dpb
dτ

= −b, (2.14)

and the Hamiltonian constraint (2.2) gives

a2 + b2 + p2a + p2b = 2E. (2.15)

The general solution is given by

a(τ) = Aa sin(τ), b(τ) = Ab sin(τ + β), (2.16)

where Aa =
√
2E sinα and Ab =

√
2E cosα, and α and β are constants.

Therefore, physical motions are closed curves (ellipses) in C = R
2. (Choosing different

gauges for N yields the same curve with different parametrizations.) This system is non-

deparametrizable and does not admit a conventional Hamiltonian formulation, because, as

7



discussed in Sec. II B, physical motions in C = R × C0 for a nonrelativistic system are

monotonic in t and thus cannot be closed curves.

D. Lagrangian formalism

Consider the special case that the relativistic Hamiltonian is given in the form:2

H(qa, pa) =
∑

a

αap
2
a +

∑

a

βapaq
a +

∑

a

γapa + V (qa), (2.17)

where αa, βa and γa are constant coefficients, and V (qa) is the potential which depends only

on qa. This form is quite generic and many examples of interest belong to this category

such as the relativistic particle (free or subject to an external potential), the timeless double

pendulum (harmonic or anharmonic) and the nonrelativistic system as described by (2.9)

with H0 =
∑

i p
2
i /2mi + V (qi, t). The Hamilton equations (2.4) yields

dqa

dτ
= N (2αapa + βaq

a + γa) , (2.18a)

dpa
dτ

= −N
(

βapa +
∂V

∂qa

)

. (2.18b)

Equation (2.18a) gives the relation between the momenta pa and the “velocities” q̇a :=

dqa/dτ , through which the inverse Legendre transform recasts the action (2.3) in terms of

the Lagrangian function:

S[qa, q̇a, N ; τ ] =

∫

dτ L(qa, q̇a, N)

=

∫

dτ

(
∑

a

N

4αa

[
q̇a

N
− βaq

a − γa

]2

−NV (qa)

)

. (2.19)

Variation with respect to N yields

δS

δN
≡ ∂L

∂N
= 0 ⇒

0 =
∑

a

1

4αa

[
q̇a

N
− βaq

a − γa

]2

−
∑

a

q̇a

2αaN

[
q̇a

N
− βaq

a − γa

]

− V

= −
(
∑

a

αap
2
a +

∑

a

βapaq
a +

∑

a

γapa + V

)

= −H, (2.20)

2 In this subsection, the repeated index a is not summed unless
∑

a is explicitly used.
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which is precisely the Hamiltonian constraint (2.2). On the other hand, variation with

respect to qa gives the equation of motion as a second-order differential equation:

δS

δqa
≡ ∂L

∂qa
− d

dτ

∂L

∂q̇a
= 0

⇒ d

Ndτ

(
dqa

Ndτ

)

= β2
aq
a + βaγa − 2αa

∂V

∂qa
, (2.21)

which is equivalent to (2.18).

III. QUANTUM THEORY OF RELATIVISTIC MECHANICS

The timeless formulation for relativistic classical mechanics is reviewed in Sec. II. Based

on the Hamiltonian framework of the classical theory, the quantum theory of relativistic me-

chanics can be formulated in canonical formalism. Unlike the conventional quantum theory,

relativistic quantum mechanics does not describe evolution in time, but correlations between

observables. The timeless formulation for relativistic quantum mechanics is described in de-

tail in Chapter 5 of [9], excerpts from which are presented in Sec. IIIA and Sec. III B to

give a review. Issues on the physical Hilbert space are detailed in Sec. IIIC and the physical

interpretation of quantum measurements and collapse is discussed in Sec. IIID.

A. General scheme

Let C be the relativistic configuration space for the classical theory as described in the

Sec. IIA. The corresponding quantum theory can be formulated timelessly in the following

scheme:

Kinematical states. Let S ⊂ K ⊂ S ′ be the Gelfand triple defined over C with the measure

ddqa ≡ dq1dq2 · · · dqd.3 The kinematical states of a system are represented by vectors

|ψ〉 ∈ K, and K is called the kinematical Hilbert space.

Partial observables. A partial observable is represented by a self-adjoint operator in K.

The simultaneous eigenstates |s〉 of a complete set of commuting partial observables

3 That is, S is the space of the smooth functions f(qa) on C with fast decrease, K = L2[C, ddqa] is a Hilbert

space, and S ′ is formed by the tempered distributions over C.
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are called quantum events. In particular, q̂a and p̂a are partial observables acting re-

spectively as multiplicative and differential operators on ψ(qa); i.e., q̂aψ(qa) = qaψ(qa)

and p̂aψ(q
a) = −i~ ∂ψ(qa)/∂qa. Their eigenstates |qa〉 (defined as q̂a|qa〉 = qa|qa〉) and

|pa〉 (defined as p̂a|pa〉 = pa|pa〉) are both quantum events.

Dynamics. Dynamics is defined by a self-adjoint operator Ĥ in K, called relativistic Hamil-

tonian. The operator from S to S ′ schematically defined as

P̂ =

∫

dτ e−iτĤ (3.1)

is called the “projector”.4 The matrix elements

W (s, s′) := 〈s|P̂ |s′〉 (3.2)

are called transition amplitudes, which encode entire physics of the dynamics.

Physical states. A physical state is a solution of the quantum Hamiltonian constraint

equation:

Ĥ|ψ〉 = 0, (3.3)

which is the quantum counterpart of (2.2). Given an arbitrary kinematical state

|ψα〉 ∈ S, we can associate an element (Ψψα
| ∈ S ′, defined by its (linear) action on

arbitrary states |ψβ〉 ∈ S as

(Ψψα
|ψβ〉 =

∫

dτ 〈eiτĤψα|ψβ〉 ≡ 〈ψα|P̂ |ψβ〉, (3.4)

such that (Ψψα
| is a physical state, namely, a solution to (3.3). The solution space is

endowed with the Hermitian inner product:

(Ψψα
|Ψψβ

) := (Ψψα
|ψβ〉, (3.5)

which is called the physical inner product. The Cauchy completion of the solution

space with respect to the physical inner product (·|·) is called the physical Hilbert

space and denoted as H.

4 The integration range depends on the system: It is over a compact space if the spectrum of Ĥ is discrete

and over a noncompact space if the spectrum is continuous. The operator P̂ is a projector in the precise

sense only if zero is a part of the discrete spectrum of Ĥ.
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Measurements and collapse. If the measurement corresponding to a partial observable Â

is performed, the outcome takes the value of one of the eigenvalues of Â if the spectrum

of Â is discrete, or in a small spectral region (with uncertainty) if the spectrum is

continuous. Measuring a complete set of partial observables Âi simultaneously is

called a complete measurement at an “instance”,5 the outcome of which gives rise to

a kinematical state |ψα〉 (which is a simultaneous eigenstate of Âi if the spectra of

Âi are discrete). The physical state is said to be collapsed to |Ψψα
) by the complete

measurement.

Prediction in terms of probability. If at one instance a complete measurement yields

|ψα〉, the probability that at another instance another complete measurement yields

|ψβ〉 is given by

Pβα =

∣
∣
∣
∣
∣
∣
∣

(Ψψβ
|Ψψα

)
√

(Ψψβ
|Ψψβ

)
√

(Ψψα
|Ψψα

)

∣
∣
∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

W [ψβ , ψα]
√

W [ψβ, ψβ]
√

W [ψα, ψα]

∣
∣
∣
∣
∣

2

, (3.6)

where

W [ψβ, ψα] := 〈ψβ |P̂ |ψα〉 =
∫

ds

∫

ds′ ψβ(s) W (s, s′)ψα(s
′). (3.7)

In particular, if the quantum events s make up a discrete spectrum, the probability of

the quantum event s given the quantum event s′ is

Pss′ =
∣
∣
∣
∣
∣

W (s, s′)
√

W (s, s)
√

W (s′, s′)

∣
∣
∣
∣
∣

2

. (3.8)

If the spectrum is continuous, the probability of a quantum event in a small spectral

region R given a quantum event in a small spectral region R′ is

PRR′ =

∣
∣
∣
∣
∣

W (R,R′)
√

W (R,R)
√

W (R′, R′)

∣
∣
∣
∣
∣

2

, (3.9)

where

W (R,R′) :=

∫

R

ds

∫

R′

ds′ W (s, s′). (3.10)

5 In the timeless language, a complete measurement is said to be conducted at some “instance”, not at

some “instant”.
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It should be noted that, unlike the classical theory, the relativistic quantum mechanics

described above is not equivalent to the conventional quantum theory, even if the system is

deparametrizable. In conventional quantum mechanics, the time t is treated as a parameter

and not quantized as an operator. Thus, the measurement of t is presumed to have zero

uncertainty (∆t = 0). In relativistic quantum mechanics, t is on the same footing as other

observables qi and the measurement of t will yield nonzero ∆t. For a simple harmonic

oscillator govern by the relativistic Hamiltonian H = pt +H0 = pt + p2α/2m+mω2α2/2, it

was shown in [5, 6] that, if ∆t ≪ m∆α2/~, we can ignore the temporal resolution ∆t and

idealize the measurement of t as instantaneous, and the conventional nonrelativistic quantum

theory is recovered as a good approximation of the relativistic quantum mechanics.

In the following, we will first take the timeless double pendulum as an example to see

how the above scheme is carried out, and then elaborate on some intricate issues.

B. Example: Timeless double pendulum

Take the timeless double pendulum introduced in Sec. IIC as an example. The kine-

matical Hilbert space is K = L2(R2, dadb), and the quantum Hamiltonian equation reads

as

Ĥψ(a, b) =
1

2

(

−~
2 ∂

2

∂a2
− ~

2 ∂
2

∂b2
+ a2 − b2 − 2E

)

ψ(a, b) = 0. (3.11)

Since Ĥ = Ĥa+ Ĥb−E, where Ĥa (resp. Ĥb) is the nonrelativistic Hamiltonian for a simple

harmonic oscillator in the variable a (resp. b), this equation can be easily solved by using

the basis that diagonalizes Ĥa and Ĥb. Let

ψn(a) ≡ 〈a|n〉 = 1√
n!
Hn(a) e

−a2/2~ (3.12)

be the normalized nth eigenfunction for the harmonic oscillator with eigenvalue En = ~(n+

1/2), where Hn(a) is the nth Hermite polynomial. Clearly, the function

ψna,nb
(a, b) := ψna

(a)ψnb
(b) ≡ 〈a, b|na, nb〉 (3.13)

solves (3.11) if

~ (na + nb + 1) = E, (3.14)

which implies the quantum theory exists only if E = ~(N + 1) with N ∈ Z
+ ∪ {0}.
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Consequently, for a given N , the general solution of (3.11) is given by

Ψ(a, b) =

N∑

n=0

cn ψn(a)ψN−n(b), (3.15)

and thus the physical Hilbert space H is an (N + 1)-dimensional proper subspace of K
spanned by an orthonormal basis {|n,N − n〉}n=0,··· ,N .

The projector P̂ : S → H is a true projector as H is a proper subspace of K for the case

that the spectrum of Ĥ is discrete. Obviously, P̂ is given by

P̂ =
N∑

n=0

|n,N − n〉〈n,N − n |, (3.16)

which can be obtained (up to an irrelevant overall factor) from (3.1):

∫ 2π/~

0

dτ e−iτĤ ∝ 1

2π

∫ 2π

0

dτ
∑

na,nb

|na, nb〉 e−iτ(na+nb+1−E)〈na, nb |

=
∑

na,nb

δna+nb+1,E |na, nb〉〈na, nb | = P̂ . (3.17)

Here, the integration range is so chosen because exp(−iτĤ) is periodic in τ with period

2π/~ if E = ~(N + 1).

The transition amplitudes are given by

W (a, b, a′, b′) := 〈a, b|P̂ |a′, b′〉 =
N∑

n=0

〈a, b|n,N − n〉〈n,N − n|a′, b′〉

=
N∑

n=0

e−(a2+b2+a′2+b′2)/2~

n!(N − n)!
Hn(a)HN−n(b)Hn(a

′)HN−n(b
′) , (3.18)

which is the probability density of measuring (a, b), given (a′, b′) measured at another in-

stance. Furthermore, the probability of the quantum event (na, nb) given the quantum event

(n′

a, n
′

b) is

W [ψna,nb
, ψn′

a,n
′

b
] := 〈na, nb|P̂ |n′

a, n
′

b〉 = δN,na+nb
δna,n′

a
δnb,n

′

b
. (3.19)

C. More on the physical Hilbert space

The operator P̂ : S → S ′ maps an arbitrary element of S to its dual space S ′. If zero is

in the continuous spectrum of Ĥ, P̂ maps S to a larger space S ′ and thus is not really a

projector. In this case, the physical state (Ψψα
| mapped from |ψα〉 is a tempered distribution.

13



P̂ becomes a true projector only if zero is a part of the discrete spectrum of Ĥ such as in

the timeless double pendulum.

The construction in (3.1) is a special case for the group averaging procedure [18, 19], the

idea of which is to averaging over all states along the gauge flow (generated by the constraint

operator) to yield the physical solution which satisfies the constraint equation. In the special

case, let |E〉 be the eigenstate of Ĥ with eigenvalue E, then schematically we have

Ĥ|Ψψα
) =

∫

dτ Ĥe−iτĤ |ψα〉 =
∫

dτ

∫

dE Ĥe−iτĤ |E〉〈E|ψα〉

=

∫

dτ

∫

dE E e−iτE |E〉〈E|ψα〉 =
∫

dE δ(E)E|E〉〈E|ψα〉 = 0, (3.20)

thus showing that P̂ maps an arbitrary kinematical state |ψα〉 to a physical state which

satisfies the constraint equation (3.3). Furthermore, it can be easily shown that (Ψψα
|ψβ〉 =

(Ψψα
|ψ′

β〉 if (Ψψβ
| = (Ψψ′

β
|, and therefore the physical inner product in (3.5) is well defined.

If there are multiple constraints, we have to solve the multiple constraint equations si-

multaneously:

Ĥ i|ψ〉 = 0, for i = 1, · · · , k. (3.21)

In the simplest case that [Ĥ i, Ĥj] = 0 for all i, j, the projector can be easily constructed via

P̂ =

∫

dτ1 · · ·
∫

dτk e
−iτiĤi

(3.22)

as a direct extension of (3.1). In general, however, Ĥ i do not commute, as classically the

Poisson brackets {H i, Hj} vanish only weakly [see (2.6) and (2.8)].

In the case that Ĥ i do not commute but form a closed Lie algebra, i.e.,

[Ĥ i, Ĥj] = f ijk Ĥ
k (3.23)

with f ijk being constants, the exponentials of Ĥ i form a Lie group G and the physical state

can be obtained by group averaging:

|Ψψα
) =

∫

G

dµ(Û) Û |ψα〉, (3.24)

where dµ is the Haar measure. It follows

Û ′|Ψψα
) =

∫

G

dµ(Û) Û ′Û |ψα〉 =
∫

G

dµ(Û ′−1Û ′′) Û ′′|ψα〉

=

∫

G

dµ(Û ′′) Û ′′|ψα〉 = |Ψψα
) (3.25)
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for any Û ′ ∈ G. The fact that |Ψψα
) is invariant under any Û ′ ∈ G implies that it is

annihilated by the generators of G, namely, Ĥ i|Ψψα
) = 0. Furthermore, the physical inner

product in (3.5) is again well defined. (See [19] for more details and subtleties.) The

averaging in (3.22) is indeed a special case of (3.24).

Generically, f ijk are functions of q
a and pa in (2.8), and, correspondingly, Ĥ i do not form

a closed Lie algebra in the kinematical space K. In this case, it is much more difficult to

obtain the physical solutions and to construct the quantum theory which is free of quantum

anomalies (see [20] for the issues of anomalies).

D. Remarks on measurements and collapse

Imagine that a quantum system is measured by Alice and Bob at two different instances,

yielding two outcomes corresponding to |ψα〉 and |ψβ〉, respectively. From the perspective of

Alice, the physical state is collapsed to |Ψψα
) by her measurement and Bob’s measurement

affirms her prediction. Bob, on the other hand, regards the physical state to be collapsed to

|Ψψβ
) by his measurement and predicts what Alice can measure. The striking puzzle arises:

Who, Alice or Bob, causes the physical state to collapse in the first place?

In the timeless framework, it turns out to be an invalid question to ask who collapses

the physical state first, since we cannot make any sense of time. The seemingly puzzle

is analogous to the Einstein-Podolsky-Rosen (EPR) paradox, in which a pair of entangled

particles are measured separately by Alice and Bob. In the context of special relativity, if the

two measurements are conducted at two spacetime events which are spacelikely separated,

the time-ordering of the two events can flip under a Lorentz boost and thus has no physical

significance. Alice and Bob can both claim that the entangled state is collapsed by her/his

measurement and thus have different knowledge about what the physical state should be, yet

the predictions by Alice and Bob are consistent to each other. In our case, the measurement

at an instance is analogous to the measurement on a single particle of the EPR pair; the

kinematical state is analogous to the (local) state of a single particle; and the physical state

is analogous to the (global) entangled state of the EPR pair. A complete knowledge (usually

from measurement) about the local state will collapse the global state at once through the

entanglement, which is analogous to the dynamics (or say, transition amplitudes) in our

case. Consistency also holds in our case as (Ψψα
|ψβ〉 = (Ψψβ

|ψα〉 . (See [21] for more on the
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EPR paradox in the relational interpretation of quantum mechanics and also Section 5.6 of

[9] for more on the philosophical issues.)

As a side remark, exploiting further the close analogy between the EPR pair and the

timeless formalism of relativistic quantum mechanics, one might be able to conceive an

analog of the Bell’s inequality, which would help to elaborate on the interpretational and

conceptual issues of relativistic quantum mechanics at the level of thought experiments.

IV. TIMELESS PATH INTEGRAL

The canonical formalism for relativistic quantum mechanics is described in Sec. III. All

information of the quantum dynamics is encoded by the transition amplitudes (3.2). In

particular, by choosing |s〉 = |qa〉 and |s′〉 = |q′a〉, all physics can be obtained from the

following transition amplitudes

W (qa, q′a) = 〈qa|P̂ |q′a〉 ∼
∫

dτ 〈qa|e−iτĤ |q′a〉. (4.1)

From now on, we will use the notation ∼ to denote the equality up to an overall constant

factor which has no physical significance, as any overall constant is canceled out in the

numerator and denominator in (3.8).

As a special case of group averaging, the integration range of τ is taken to be a compact

interval if exp(−iτĤ) forms a compact Lie group U(1) (timeless double pendulum is an

example) and it is taken to be (−∞,∞) if the group of exp(−iτĤ) is noncompact. For

the case that exp(−iτĤ) gives U(1), we can unwrap U(1) to its covering space R and

correspondingly integrate τ over (−∞,∞). The unwrapping only gives rise to an overall

multiplicative factor (which is divergent if not properly regulated). Therefore, in any case,

up to an irrelevant overall factor, transition amplitudes can be computed by

W (qa, q′a) ∼
∫

∞

−∞

dτ 〈qa|e−iτĤ |q′a〉, (4.2)

where 〈qa|eiτĤ |q′a〉 can be thought as the transition amplitude for a kinematical state |q′a〉 to
“evolve’ to the state |qa〉 by the “parameter time” τ . Equation (4.2) sums over 〈qa|eiτĤ |q′a〉
for all possible values of τ , suggesting thatW (qa, q′a) is intrinsically timeless as the parameter

time τ has no essential physical significance.
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Rigorously, the integration should be regularized via

W (qa, q′a) ∼ lim
M→∞

∫M

−M
dτ〈qa|e−iτĤ |q′a〉
∫M

−M
dτ

, (4.3)

as a cut-off M is introduced to regulate the integral and the irrelevant overall factor to be

finite. As we will see, the variable τ corresponds to the parametrization of curves in the

path integral and integrating over all τ indicates that the parametrization of curves has no

physical significance. The above regularization scheme is physically well justified, as it cuts

off the curves in the path integral which are “too wild” (noncompact curves), given the

endpoints q′a and qa fixed.

In the following, starting from (4.2), we will first derive the timeless path integral for the

case of a single Hamiltonian constraint and then investigate it in more detail. In the end,

we will study the path integral with multiple relativistic constraints.

A. General structure

For a given τ , let us introduce a parametrization sequence: τ0 = 0, τ1, τ2, · · ·, τN−1, τN = τ

with τi ∈ R, and define ∆τn := τn − τn−1. The conditions on the endpoints (τ0 = 0 and

τn = τ) correspond to
∑N

n=1∆τn = τ . The mesh of the parameter sequence is defined to be

maxn=1,··· ,N{|∆τn|}. The parameter sequence is said to be fine enough if its mesh is smaller

than a given small number ǫ.6

As τ is fixed now, identifying qa = qaN and q′a = qa0 , and using
∑N

n=1∆τn = τ , we can

6 Let X be a topological space and s ∈ [0, 1]. A continuous map γ : s 7→ γ(s) ∈ X is called a path with

an initial point s(0) = x0 and an end point s(1) = x1. The image of γ is called a curve, which can be

reparameterized with respect to a new variable τ as γ : τ 7→ γ(τ) by introducing an arbitrary continuous

function τ : s 7→ τ(s) ∈ R. The parametrization sequence τ0 = 0, τ1, τ2, · · ·, τN−1, τN = τ can be viewed

as a discrete approximation for the reparametrization function τ(s) with τ(s = 0) = 0 and τ(s = 1) = τ if

we identify τn = τ(n/N). For the case that τ(s) is injective, the parametrization sequence is ordered (i.e.

0 = τ0 < τ1 < · · · < τN−1 < τN = τ and ∆τn > 0 if τ > 0) and called a partition of the interval [0, τ ], which

is used to define the Riemann integral as the continuous limit:
∫ τ

0
f(τ ′)dτ ′ = limmesh→0

∑N−1

n=0
f(τn)∆τn.

In the timeless formulation of relativistic mechanics, a dynamical solution is an unparameterized curve

in Ω and its parametrization has no physical significance. In order to exploit the timeless feature, we

should keep the parametrizations generic and not restrict ourselves to injective ones. Correspondingly,

the partition is generalized to a parametrization sequence and the Riemann integral is generalized to the

Riemann-Stieltjes integral as
∫
1

0
f(s)dτ(s) = limmesh→0

∑N−1

n=0
f(n/N)∆τn, which is well defined even if

τ(s) is not injective.
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rewrite 〈qa|e−iτĤ |q′a〉 as

〈qa|e−iτĤ |q′a〉 ≡ 〈qaN |e−i∆τN Ĥ e−i∆τN−1Ĥ · · · e−i∆τ1Ĥ |qa0〉

=

(
N−1∏

n=1

∫

ddqan

)

〈qaN |e−i∆τN Ĥ |qaN−1〉〈qaN−1|e−i∆τN−1Ĥ |qaN−2〉 · · · 〈qa1 |e−i∆τ1Ĥ |qa0〉, (4.4)

where we have inserted N − 1 times the completeness relation
∫

ddqa |qa〉〈qa | :=
∫

dq1 · · · dqd |q1, · · · , qd〉〈q1, · · · , qd | . (4.5)

For a given arbitrary small number ǫ, by increasing N , we can always make the parameter

sequence fine enough such that mesh{τi} < |τ |/N < ǫ.7 Consequently, we can approximate

each 〈qan|e−i∆τnĤ |qan−1〉 to the first order in ǫ as

〈qan+1|e−i∆τn+1Ĥ |qan〉 = 〈qan+1|1− i∆τn+1Ĥ(q̂a, p̂a)|qan〉+O(ǫ2). (4.6)

For the generic case that the Hamiltonian operator Ĥ is a polynomial of q̂a and p̂a and

is Weyl ordered, with the use of the completeness relation for the momenta
∫

ddpa
(2π~)d

|pa〉〈pa | :=
∫
dp1 · · · dpd
(2π~)d

|p1, · · · , pd〉〈p1, · · · , pd |, (4.7)

it can be shown that

〈qa|Ĥ(q̂q, p̂a)|q′a〉 =
∫

ddpa
(2π~)d

exp

[
i

~
pa(q

a − q′a)

]

H

(
qa + q′a

2
, pa

)

. (4.8)

(See Exercise 11.2 in [10] for the proof.) Applying (4.8) to (4.6), we have

〈qan+1|e−i∆τn+1Ĥ |qan〉 =

∫
ddpna
(2π~)d

eipna(qan+1
−qan)/~

[
1− i∆τn+1H((qan+1 + qan)/2, pna

]
+O(ǫ2)

=

∫
ddpna
(2π~)d

eipna∆qan/~ e−i∆τn+1H(q̄an, pna) +O(ǫ2), (4.9)

where we define q̄an := (qan+1 + qan)/2 and ∆qan := qan+1 − qan.

Making the parametrization sequence finer and finer (by decreasing ǫ or equivalently by

increasing N) and at the end going to the limit ǫ→ 0 or N → ∞, we can cast (4.4) as

〈qa|e−iτĤ |q′a〉 = lim
N→∞

(
N−1∏

n=1

∫

ddqan

)(
N−1∏

n=0

∫
ddpna
(2π~)d

)

exp

(

i

~

N−1∑

n=0

pna∆q
a
n

)

× exp

(

−i
N−1∑

n=0

∆τn+1H(q̄an, pna)

)

. (4.10)

7 More rigorously, for a given ǫ, the large number N should be chosen to satisfy mesh{τi} < |τ |/N < M/N <

ǫ, where M is the cut-off regulator defined in (4.3), so that the O(ǫ2) term in (4.9) can be dropped for

any value of |τ |. In the end, we have to integrate (4.10) over all possible values of τ to obtain W (qa, q′a),

and the regularization is essential to keep the O(ǫ2) terms under control for arbitrary values of τ .
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In the limit N → ∞, the points qn and pn can be viewed as the sampled points of a

continuous curve in Ω = T ∗C given by γ̃(τ ′) = (qa(τ ′), pa(τ
′)), which is parameterized by τ ′

and with the endpoints projected to C fixed by qa(τ ′ = 0) = q′a and qa(τ ′ = τ) = qa. That

is, qn and pn are the sampled points of γ̃ as qan = qa(τn) and pna = pa(τn). In the treatment

of functional integral, it is customary to introduce the special notations for path integrals:

N−1∏

n=1

∫

ddqan →
∫

Dqa, (4.11a)

N−1∏

n=0

∫
ddpna
(2π~)d

→
∫

Dpa. (4.11b)

Meanwhile, in the continuous limit (N → ∞), the finite sums appearing in the exponents

in (4.10) also converge to the integrals:

i

~

N−1∑

n=0

pna∆q
a
n → i

~

∫

γ̃

padq
a ≡ i

~

∫

γ̃

(

pa
dqa

dτ ′

)

dτ ′ (4.12)

and

− i
N−1∑

n=0

∆τn+1H(pna, q̄
a
n) → −i

∫

γ̃

H(qa(τ ′), pa(τ
′)) dτ ′. (4.13)

Note that the continuous limit above is defined via the Riemann-Stieltjes integral as an

extension of the Riemann integral (see Footnote 6). With the new notations, (4.10) can be

written in a concise form:

〈qa|e−iτĤ |q′a〉 =
∫

Dqa
∫

Dpa exp

(
i

~

∫

γ̃

padq
a

)

exp

(

−i
∫

γ̃

H(qa(τ ′), pa(τ
′)) dτ ′

)

. (4.14)

It is remarkable to note that (up to the factor i/~) the continuous limit in (4.12) is

simply the line integral of the one-form θ̃ = padq
a over the curve γ̃, identical to (2.1), and

is independent of the parametrization τ . On the other hand, the integral in (4.13) depends

on the parametrization of τ . Thus, to compute W (qa, q′a)) in (4.2), the integration over τ

only hits the second exponential in (4.14) and the first exponential simply factors out. The

integration of the second exponential over τ yields

∫
∞

−∞

dτ exp

(

−i
∫

γ̃

H(qa(τ ′), pa(τ
′)) dτ ′

)

=

∫
∞

−∞

dτ exp

(

−iτ
∫

γ̃

H(qa(τ̄), pa(τ̄ )) dτ̄

)

= δ

(∫

γ̃

H(qa(τ̄), pa(τ̄)) dτ̄

)

, (4.15)
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where we have rescaled the parametrization τ ′ to τ̄ = τ ′/τ so that the endpoints now read as

q′a = qa(τ̄ = 0) and qa = qa(τ̄ = 1).8 The appearance of the Dirac delta function indicates

that only the paths which satisfy
∫

γ̃
H(τ̄)dτ̄ = 0 will contribute to the path integral for

W (qa, q′a). The condition
∫

γ̃
H(τ̄)dτ̄ = 0 is, however, still not geometrical, since τ̄ can be

further reparameterized to τ̄ ′ = τ̄ ′(τ̄ ) to yield
∫

γ̃
H(τ̄ ′)dτ̄ ′ 6= 0 even with the initial and final

values fixed, i.e., τ̄ ′(τ̄ = 0) = 0 and τ̄ ′(τ̄ = 1) = 1. On the other hand, W (qa, q′a) cast

in (4.2) has no dependence on the parametrization whatsoever, which implies that, in the

continuous limit, the contribution of a path γ̃ satisfying the condition
∫

γ̃
H(τ̄)dτ̄ = 0 for a

specific (rescaled) parametrization τ̄ is somehow exactly canceled by that of another path

satisfying the same condition. In the end, only the paths restricted to the constraint surface

(i.e., γ̃ ∈ Σ, or equivalently H(τ ′) = 0 for all τ ′ along the path) contribute to the path

integral for W (qa, q′a). The constraint γ̃ ∈ Σ is now geometrical.

How the aforementioned cancelation takes place is obscure. To elucidate this point, we

exploit the fact that W (qa, q′a) is independent of the parametrization and play the trick by

averaging over all possible parametrizations. That is, up to an overall factor of no physical

significance, we can recast W (qa, q′a) by summing over different parametrizations as follows:

W (qa, q′a) ∼
∫

dτ

∫

[D∆τ ]∑∆τn=τ
〈qa|eiτĤ |q′a〉 (4.16)

∼
∫

dτ

∫

[D∆τ ]∑∆τn=τ

∫

Dqa
∫

Dpa exp

(
i

~

∫

γ̃

padq
a

)

exp

(

−i
N−1∑

n=0

∆τn+1H(q̄an, pna)

)

,

where the notation
∫
[D∆τ ]∑∆τn=τ

is a shorthand for

∫ τ/N

−τ/N

d∆τ1

∫ τ/N

−τ/N

d∆τ2 · · ·
∫ τ/N

−τ/N

d∆τN

︸ ︷︷ ︸
∑N

n=1
∆τn=τ

→
∫

[D∆τ ]∑∆τn=τ
, (4.17)

which sums over all fine enough (namely, mesh{τi} < |τ |/N) parametrization sequences for

a given τ . It is easy to show that

∫
∞

−∞

dτ

∫ τ/N

−τ/N

d∆τ1

∫ τ/N

−τ/N

d∆τ2 · · ·
∫ τ/N

−τ/N

d∆τN

︸ ︷︷ ︸
∑N

n=1 ∆τn=τ

=
N−1∏

n=0

∫
∞

−∞

d∆τn+1, (4.18)

8 In the expression of (4.15), we have removed the cut-off regulator (i.e. the limit M → ∞ has been taken).

More rigorously, we have removed the regulator before the limit N → ∞ is taken. The Dirac delta function

in (4.15) would have been a nascent delta function if the regulator had not been removed.
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when the cut-off regulator M is removed (also see Footnote 8). Consequently, for a given

arbitrary parametrization τ ′, renaming the varying ∆τn as ∆τn = ~
−1Nn∆τ

′

n, we can rewrite

(4.16) as

W (qa, q′a) (4.19)

∼
∫

Dqa
∫

Dpa
∫

DN exp

(
i

~

∫

γ̃

padq
a

)

exp

(

− i

~

N−1∑

n=0

∆τ ′n+1Nn+1H(q̄an, pna)

)

,

where we introduce the notation

N−1∏

n=0

∫
∞

−∞

dNn+1 →
∫

DN. (4.20)

Again, in the continuous limit, the finite sum converges to the Riemann-Stieltjes integral:

− i

~

N−1∑

n=0

∆τ ′n+1Nn+1H(q̄an, pna) → − i

~

∫

γ̃

N(τ ′)H(qa(τ ′), pa(τ
′))dτ ′, (4.21)

and (4.19) can be neatly written as the path integral :

W (qa, q′a) ∼
∫

Dqa
∫

Dpa
∫

DN exp

[
i

~

(∫

γ̃

padq
a −

∫

γ̃

N(τ ′)Hdτ ′
)]

≡
∫

Dqa
∫

Dpa
∫

DN exp

[
i

~

∫

γ̃

(

pa
dqa

dτ ′
−N(τ ′)H

)

dτ ′
]

. (4.22)

Integration over N can be carried out to obtain the delta functional:

∫

DN exp

(
i

~

∫

N(τ ′)Hdτ ′
)

∼ δ[H ] ≡ lim
N→∞

N−1∏

n=0

δ(H(q̄an, pan)), (4.23)

and thus the path integral (4.22) can be written in an alternative form as

W (qa, q′a) ∼
∫

Dqa
∫

Dpa δ[H ] exp

[
i

~

∫

γ̃

padq
a

]

, (4.24)

where insertion of the delta functional δ[H ] confines the path to be in the constraint surface

(i.e. γ̃ ∈ Σ). Note that the phase in the exponent in (4.24) is identical to the classical action

defined in (2.1) (divided by ~) and that in (4.22) is identical to the classical action in (2.3)

with k = 1. Therefore, each path in Σ contributes with a phase, which is the classical action

divided by ~.

The path integral formalism is intuitively appealing. It gives us an intuitive picture about

the transition amplitudes: W (qa, q′a) is described as the sum, with the weight exp(iS/~)
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(where S is the classical action of γ̃), over all arbitrary paths γ̃ which are restricted to Σ

and whose projection γ to C connect q′a and qa. None of qa is restricted to be monotonic

along the paths, and in this sense the formulation is called timeless path integral. The

parametrization for the paths has no physical significance as can be seen in the expression of

(4.24), which is completely geometrical and independent of parametrizations. On the other

hand, the continuum notation of (4.22) is really a schematic for the discretized version:

W (qa, q′a) ∼ lim
N→∞

N−1∏

n=1

∫

ddqan

N−1∏

n=0

∫
ddpna
(2π~)d

N−1∏

n=0

∫

dNn+1

× exp

(

− i

~

N−1∑

n=0

∆τ ′n+1Nn+1H(q̄an, pna)

)

(4.25a)

∼ lim
N→∞

N−1∏

n=1

∫

ddqan

N−1∏

n=0

∫
ddpna
(2π~)d

N−1∏

n=0

∫

dNn+1

× exp

(

− i

~

N−1∑

n=0

Nn+1H(q̄an, pna)

)

, (4.25b)

where ∆τ ′n in (4.25a) is absorbed to Nn in (4.25b) and this only results in an irrelevant

overall factor. The expression of (4.25b) is explicitly independent of parametrizations.9

The contributing paths in the path integral can be very “wild” — not necessarily smooth

or even continuous. This calls into question whether the path integral can achieve conver-

gence. We do not attempt to present a rigorous derivation here but refer to [22] for the

legitimacy issues and subtleties of the path integral.

Each path in Σ contributes with a different phase, and the contributions from the paths

far away from the stationary solution essentially cancel one another through destructive

interference. As a result, most contributions come from the paths close to the stationary

solution. The stationary solution can be obtained by taking the functional variation on

(4.22) with respect to N , qa and pa, which yield the classical Hamiltonian constraint (2.2)

and the Hamilton equations (2.4). Therefore, the stationary solution is the classical solution

and we thus have the approximation

W (qa, q′a) ≈
∑

i

e
i
~
S[γ̃i], (4.26)

9 Perhaps, more appropriately, the “timeless path integral” should be renamed “timeless ‘curve’ integral”,

as in the rigorous terminology, a curve is defined as the unparameterized image of a path, which is specified

by a parameter. However, we keep the name of “path integral” to conform the conventional nomenclature.
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where γ̃i are the classical solutions which connect q′a and qa and S is the action.10 Based on

the path integral formalism, a semiclassical theory can be developed in the vicinity of the

classical solutions à la the WKB method.

B. Deparametrizable systems as a special case

If the Hamiltonian happens to be deparametrizable, the classical Hamiltonian is in the

form of (2.9), and the path integral (4.24) reads as

W (qa, q′a) ∼
∫

Dt
∫

Dqi
∫

Dpt
∫

Dpi δ[pt +H0] exp

[
i

~

∫

γ̃

(
ptdt+ pidq

i
)
]

=

∫

Dt
∫

Dqi
∫

Dpi exp
[
i

~

∫

γ̃

(

pi
dqi

dt
−H0

)

dt

]

(4.27a)

≡ lim
N→∞

(
N−1∏

n=1

∫

dtn

)(
N−1∏

n=1

∫

dd−1qin

)(
N−1∏

n=0

∫
dd−1pni
(2π~)d−1

)

× exp

[

i

~

N−1∑

n=0

(

pni
∆qin
∆tn

−H0(q̄
i
n, pin)

)

∆tn

]

. (4.27b)

On the other hand, in the conventional nonrelativistic quantum mechanics, the transition

amplitude is given by the conventional path integral (see Chapter 11 of [10]):

G(qi, t; q′i, t′) := 〈qi|e−iĤ0(t−t′)|q′i〉

=

∫

Dqi
∫

Dpi exp
[
i

~

∫

γ̃0

(

pi
dqi

dt
−H0

)

dt

]

(4.28a)

≡ lim
N→∞

(
N−1∏

n=1

∫

dd−1qin

)(
N−1∏

n=0

∫
dd−1pni
(2π~)d−1

)

× exp

[

i

~

N−1∑

n=0

(

pni
∆qin
∆tn

−H0(q̄
i
n, pin)

)

∆tn

]

, (4.28b)

where the path γ̃0 is in the cotangent space T ∗C0 and its projection γ0 on C0 has the endpoints
fixed at qi(t′) = q′i and qi(t) = qi.

Equations (4.27) looks almost the same as (4.28) except for the functional integral
∫
Dt.

In (4.27), all paths given by qa(τ) = (t(τ), qi(τ)) (parameterized by an arbitrary parameter

τ) are summed and the quantum fluctuation in t is also included; by contrast, in (4.28), all

10 Generally, there could be multiple classical solutions connecting q′a and qa (as in the case of the timeless

double pendulum), if the system is not deparametrizable.

23



paths are given by qi(t) as t is treated as a parameter and with no fluctuation at all. In other

words, (4.28) sums over only the paths which are monotonic in t, whereas (4.27) sums over

all possible paths whether t is monotonic or not. The difference is profound and shows that

the relativistic quantum mechanics is not equivalent to the conventional quantum mechanics

even if the system is deparametrizable, as already commented in the end of Sec. IIIA.

However, for most systems, we have the good approximation (4.26) and only the paths

in the vicinity of the classical solution are important. Meanwhile, as discussed in Sec. II B,

the classical solution for a deparametrizable system is always monotonic in t. Therefore, in

(4.27), it is a good approximation to sum over only the paths which are not too deviated

from the classical solution and thus monotonic in t. In this approximation, (4.27) reduces

to the conventional path integral (4.28) as
∫
Dt factors out as an irrelevant overall factor.

Therefore, the conventional path integral, although not equivalent to, is a good approxi-

mation for the timeless path integral. Further research is needed to investigate when the

approximation remains good and when it fails; this is closely related to the question when

the fluctuation (uncertainty) of t can be ignored and thus the measurement of it can be

idealized as instantaneous (see [5, 6] for the case of a simple harmonic oscillator).

C. Timeless Feynman’s path integral

Consider the special case that the classical Hamiltonian is given in the form of (2.17) and

the Hamiltonian operator is Weyl ordered. As the Hamiltonian is a quadratic polynomial in

pa, the path integral over Dpa in (4.22) can be integrated out. That is, in the expression:11

W (qa, q′a) (4.29)

∼
∫

Dqa
∫

DN
N−1∏

n=0

∫
ddpn
(2π~)d

exp

[

i

~

N−1∑

n=0

(
∑

a

pna∆q
a
n −∆τ ′n+1Nn+1H(q̄an, pna)

)]

,

the integration over each pna can be explicitly carried out:

∫
∞

−∞

dpna exp

(
i

~

[
pna∆q

a
n −∆τ ′n+1Nn+1

(
αap

2
na + βapnaq̄

a
n + γapna

)]
)

∝ 1
√

Nn+1

exp

(

i

~

∆τ ′n+1Nn+1

4αa

[
∆qan

∆τ ′n+1Nn+1
− βaq̄

a
n − γa

]2
)

(4.30)

11 In this subsection, the repeated index a is not summed unless
∑

a is explicitly used.
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by the Gaussian integral
∫

∞

−∞
dx e−αx

2+βx = (π/α)1/2eβ
2/4α. Noting that dNn+1/

√

Nn+1 =

2 d
√

Nn+1 and introducing the shorthand notation:

N−1∏

n=0

∫
∞

−∞

d
√

Nn+1 →
∫

D
√
N, (4.31)

we then have

W (qa, q′a) ∼
∫

Dqa
∫

D
√
N (4.32)

× exp

[

i

~

N−1∑

n=0

(
∑

a

Nn+1

4αa

[
∆qan

∆τ ′n+1Nn+1
− βaq̄

a
n − γa

]2

−Nn+1V (q̄an)

)

∆τ ′n+1

]

,

which written in the continuous form reads as

W (qa, q′a) ∼
∫

Dqa
∫

D
√
N exp

i

~

∫

γ

dτ ′

(
∑

a

N

4αa

[
q̇a

N
− βaq

a − γa

]2

−NV (qa)

)

, (4.33)

where the “velocity” q̇a := dqa/dτ ′ is the continuous limit of ∆qan/∆τ
′

n+1.

Therefore, in the special case that the Hamiltonian is a quadratic polynomial in pa, the

transition amplitude admits a path integral formalism over the configuration space, whereby

the functional integration over N is modified as
∫
D
√
N . This is called the configuration

space path integral or Feynman’s path integral. The configuration space path integral (4.33)

sums over all arbitrary paths γ ∈ C whose endpoints are fixed at q′a and qa, and each path

contributes with a phase, which is identical to the Lagrangian function as given in (2.19)

(divided by ~). The functional variations on (4.33) with respect to
√
N and qa yield the

classical Hamiltonian constraint and equation of motion as in (2.20) and (2.21).12 This

shows again that the stationary solution is the classical solution and thus (4.26) is a good

approximation.

D. Path integral with multiple constraints

If there are multiple constraints and the constraint operators Ĥ i commute, the projector

is given by (3.22) and (4.2) can be directly generalized as13

W (qa, q′a) ∼
∫

∞

−∞

dτ 1 · · ·
∫

∞

−∞

dτk 〈qa|e−i
∑k

i=1
τ iĤi |q′a〉. (4.34)

12 Note that δW/δ
√
N = 2

√
N δW/δN .

13 In this subsection, the repeated index i is not summed unless
∑

i is explicitly used.
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If each Ĥ i is a polynomial of q̂a and p̂a and Weyl ordered, the linear sum Ĥ ′ =
∑

i τ
iĤ i is

also a polynomial and Weyl ordered. Thus, by replacing τ with 1 and Ĥ with Ĥ ′ in (4.14),

it can be shown

〈qa|e−i
∑

i τ
iĤi |q′a〉 =

∫

Dqa
∫

Dpa exp

(
i

~

∫

γ̃

padq
a

)

× exp

(

−i
∑

i

∫

γ̃

τ iH i(qa(τ̄), pa(τ̄ )) dτ̄

)

, (4.35)

where τ̄ is a parameter for the curve γ̃ with q′a = qa(τ̄ = 0) and qa = qa(τ̄ = 1). Redefining

τ i∆τ̄n as ∆τ in, we then have

〈qa|e−i
∑

i τ
iĤi|q′a〉 =

∫

Dqa
∫

Dpa exp

(
i

~

∫

γ̃

padq
a

)

× exp

(

−i
∑

i

∫

γ̃

H i(qa(τ i), pa(τ
i)) dτ i

)

, (4.36)

As in the case with a single constraint, the first exponential in (4.36) is independent

of parametrizations for the curve γ̃, and for the second exponential we can play the same

trick by summing over different parametrizations to get rid of the seemingly dependence on

parametrizations. Following the same steps in Sec. IVA, for each i, we have

∫

dτ i
∫
[
D∆τ i

]
∑

∆τ in=τ
i 〈qa|eiτ

iĤi|q′a〉 (4.37)

=

∫

Dqa
∫

Dpa
∫

DNi exp

[
i

~

∫

γ̃

(

pa
dqa

dτ ′
−Ni(τ

′)H i

)

dτ ′
]

(4.38)

for a given arbitrary parametrization τ ′. After summed over [D∆τ i]∑∆τ in=τ
i for each i, (4.34)

yields

W (qa, q′q) ∼
∫

Dqa
∫

Dpa
k∏

i=1

∫

DNi exp

[

i

~

∫

γ̃

(

pa
dqa

dτ ′
−

k∑

i=1

NiH
i

)

dτ ′

]

(4.39a)

∼
∫

Dqa
∫

Dpa
k∏

i=1

δ[H i] exp

[
i

~

∫

γ̃

padq
a

]

, (4.39b)

which is the direct generalization of (4.22) and (4.24). In the path integral, each path in Σ

contributes with a phase, which is the classical action given in (2.3) divided by ~. Functional

variation on (4.39a) with respect to Ni, q
a and pa again yields the classical equations (2.2)

and (2.4).
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V. SUMMARY AND DISCUSSION

Starting from the canonical formulation in [9], the timeless path integral for relativistic

quantum mechanics is rigorously derived. Given in (4.24), the transition amplitude is for-

mulated as the path integral over all possible paths in the constraint surface Σ (through the

confinement by the delta functional δ[H ]), and each path contributes with a phase identical

to the classical action
∫

γ̃
padq

a divided by ~. The alternative expression is given in (4.22),

which is the functional integral over all possible paths in the cotangent space Ω = T ∗C as

well as over the Lagrange multiplier N . The timeless path integral manifests the timeless

feature of relativistic quantum mechanics, as the parametrization for paths has no physical

significance. For the special case that the Hamiltonian constraint H(qa, pa) is a quadratic

polynomial in pa, the transition amplitude admits the timeless Feynman’s path integral over

the paths in the configuration space C, as given in (4.33).

The formulation of timeless path integral is intuitively appealing and advantageous in

many respects as it generalizes the action principle of relativistic classical mechanics by

replacing the classical notion of a single trajectory with a sum over all possible paths. In

particular, it is easy to argue that the classical solution contributes most to the transition

amplitude and thus (4.26) is a good approximation for generic cases since the stationary

solution is identical to the classical one. In the vicinity of the classical trajectory, the

semiclassical approximation à la the WKB method can be developed. Furthermore, time-

less path integral offers a new perspective to see how the conventional quantum mechanics

emerges from relativistic quantum mechanics within a certain approximation (as discussed

in Sec. IVB) and may provide new insight into the problem of time.

The formulation of timeless path integral can be directly extended for the dynamical

systems with multiple constraints as given in (4.39), if the constraint operators Ĥ i commute.

For the case that Ĥ i do not commute but form a closed Lie algebra, the projector is no loner

given by (3.22) but we have to invoke (3.24) to obtain the physical state, which leads to

W (qa, q′a) ∼
∫

dµ(~θ) 〈qa|e−i~θ· ~̂H |q′a〉, (5.1)

where θi are coordinates of the Lie group G generated by Ĥ i. Starting from (5.1) and

following the similar techniques used in this paper, one should be able to obtain the timeless

path integral, but the measure of the functional integral
∏k

i=1

∫
DNi appearing in (4.39a)
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would have to be nontrivially modified as θi play the same role of τ i in (4.34) but now the

nontrivial Haar measure dµ is involved and the nontrivial topology of G has to be taken

into account. For the case that Ĥ i do not form a closed Lie algebra, it is not clear how

to construct the quantum theory which is free of quantum anomalies even in the canonical

formalism. The timeless path integral may instead provide a better conceptual framework

to start with for the quantum theory.

Throughout this paper, we have focused on simple mechanical systems, but not field the-

ories. In Section 3.3 of [9], the canonical treatment of classical field theories which maintains

clear meaning in a general-relativistic context is presented as a direct generalization of the

timeless formulation for relativistic classical mechanics (see also [23] and references therein),

and the corresponding quantum field theory is formulated in Section 5.3 of [9]. The timeless

path integral for relativistic quantum mechanics derived in this paper should be extended

for the quantum field theory described in [9]. We leave it for the future research.

Furthermore, as the timeless path integral is systematically derived from the well-

controlled canonical formulation of relativistic quantum mechanics, we expect it to provide

new insight into the issues of the connection between LQG/LQC and SFMs. Extending

timeless path integral to field theories will be particularly helpful.
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