
Imaging of microwave fields using ultracold atoms
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We report a technique that uses clouds of ultracold atoms as sensitive, tunable, and non-invasive probes for
microwave field imaging with micrometer spatial resolution. The microwave magnetic field components drive
Rabi oscillations on atomic hyperfine transitions whose frequency can be tuned with a static magnetic field.
Readout is accomplished using state-selective absorption imaging. Quantitative data extraction is simple and
it is possible to reconstruct the distribution of microwave magnetic field amplitudes and phases. While we
demonstrate 2d imaging, an extension to 3d imaging is straightforward. We use the method to determine the
microwave near-field distribution around a coplanar waveguide integrated on an atom chip.

Today, Monolithic Microwave Integrated Circuits
(MMICs) are of great importance in science and tech-
nology. In particular, they constitute key building
blocks of today’s communication technology.1 MMICs
also serve as main components of superconducting quan-
tum processors.2 In our group, a simple MMIC structure
has recently been used as a tool for quantum coherent
manipulation of ultracold atoms on an atom chip.3

Function and failure analysis is of crucial importance
for the design of MMICs as well as for simulation
verification.4 External port measurements (e.g. using a
network analyzer) offer only limited insight. The mi-
crowave (mw) near-field distribution on the device gives
much more information, enabling specific improvement.
Therefore, different methods have been developed to
measure the spatial distribution of mw near-fields.5 These
methods use diverse physical effects to measure the mw
electric or magnetic field. They have in common that
they scan the field distribution point-by-point.

Here we propose and experimentally demonstrate a
highly parallel method that allows for non-invasive and
complete (amplitudes and phases) imaging of the mw
magnetic field distribution using clouds of ultracold
atoms.6 In this method, the mw magnetic field drives
resonant Rabi oscillations1 between two atomic hyperfine
levels that can be detected using state-selective absorp-
tion imaging.8 The method offers µm spatial resolution
and a mw magnetic field sensitivity in the 10−8 T range
at frequencies of a few GHz. It is a frequency-domain,
single-shot technique to measure a 2d field distribution.
The method can be extended to measure 3d distributions
slice by slice. Data extraction is simple, it offers a high
dynamic range, and it is intrinsically calibrated since only
well-known atomic properties enter in the analysis.

For the proof-of-principle experiment presented here,
we use our atom chip setup,3 see Fig. 1. The chip has
integrated mw coplanar waveguide structures that were
designed for quantum manipulation of ultracold atoms.3

To demonstrate our method, we analyze the mw mag-
netic field near this structure. In general, the device to
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be tested does not have to be integrated on an atom chip.

FIG. 1. Schematic of the experiment. (a) Ground state hy-
perfine levels of 87Rb atoms in a static magnetic field. Ini-
tially, the atoms are trapped in state |F,mF 〉 = |1,−1〉. The
three relevant transitions |1,−1〉 → |2,m2〉, (m2 = −2,−1, 0)
are indicated. The corresponding transition frequencies ωγ ,
(γ = −, π,+) are split by ωL due to the Zeeman effect. The
Rabi frequencies Ωγ are indicated. (b) The atom chip. Inset:
Atom cloud near the coplanar waveguide (CPW) structure
whose mw magnetic field is examined. The three inner wires
constitute the CPW. (c) Experimental sequence. Left: The
trap is switched off and the atom cloud expands. Right: A mw
pulse is applied to the CPW, resonant with one of the transi-
tions ωγ . Its magnetic field of amplitude B(r) drives Rabi
oscillations with position-dependent Ωγ(r) between |1,−1〉
(red) and the corresponding state |2,m2〉 (blue). The re-
sulting atomic density distribution n1(r) (n2(r)) in F = 1
(F = 2) is detected. From ni(r), we reconstruct Ωγ(r). Sev-
eral such measurements on the three transitions are combined
to reconstruct B(r).

Our method works as follows. On the room-
temperature atom chip, we prepare clouds of 87Rb atoms
at a temperature of T ' 5 µK using laser and evapo-
rative cooling techniques.3,6 The magnetically trapped
atoms are initially in the ground state hyperfine sub-
level |F,mF 〉 = |1,−1〉, see Fig. 1a. The trap is moved
close to the mw structure to be characterized, where it is
switched off and the atoms are released to free fall. Dur-
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ing a hold-off time dtho, the cloud drops due to gravity
and expands due to its thermal velocity spread, filling
the region to be imaged (Fig. 1b+c). We maintain a
homogeneous static magnetic field B0 of order 10−4 T.
It provides the quantization axis and splits the frequen-
cies ωγ , (γ = −, π,+) of the three hyperfine transitions
|1,−1〉 → |2,m2〉, (m2 = −2,−1, 0) by ωL = µBB0/2~
due to the Zeeman effect (cf. Fig. 1a). A mw signal on
the MMIC is subsequently switched on for a duration
dtmw (typically some tens of µs). We select one of the
transitions by setting the mw frequency ω = ωγ . The
mw magnetic field B(r, t) = 1

2

[
B(r)e−iωt + B∗(r)eiωt

]
couples to the atomic magnetic moment and drives Rabi
oscillations of frequency Ωγ(r) on the resonant transition.
For the three transitions of interest,

Ω−(r) = −
√

3
µB
~
B−(r)e−iφ−(r), (1)

Ωπ(r) = −
√

3

4

µB
~
Bπ(r)e−iφπ(r), (2)

Ω+(r) =

√
1

2

µB
~
B+(r)e−iφ+(r). (3)

Here, Bπ and φπ are the real-valued amplitude and
phase of the component of B parallel to B0, and B+, φ+

(B−, φ−) are the corresponding quantities for the right
(left) handed circular polarization component in the
plane perpendicular to B0, see Supplementary Informa-
tion. After the mw pulse, a spatial pattern of atomic
populations in F = 1 and F = 2 results, see Fig. 1c. The
probability to detect an atom in F = 2 is

p2(r) ≡ n2(r)

n1(r) + n2(r)
= sin2

[
1
2 |Ωγ(r)|dtmw

]
. (4)

Here, n1(r) (n2(r)) is the density of atoms in F = 1
(F = 2), which can be measured using state-selective ab-
sorption imaging.8 From p2(r) we can reconstruct |Ωγ(r)|
and thus the spatial distribution of the resonant mw po-
larization component Bγ(r), as shown below.

For a reconstruction of B(r), we measure Bπ(r),
B+(r), and B−(r) with B0 pointing along the x, y, and
z axis. In each of the nine measurements (cf. Fig. 2),
we tune ω into resonance with the desired transition ωγ .
Alternatively, to test a device at a given frequency ω,
one can achieve resonance by Zeeman-tuning of ωγ via
B0. The measurements allow a reconstruction of the am-
plitudes of all three cartesian components of B as well
as their relative phases. The measurements of Bπ for the
three orientations of B0 directly yield the amplitudes Bx,
By, and Bz. The relative phases can be reconstructed
from the other measurements, see Supplementary Infor-
mation. It is also possible to measure the spatial depen-
dence of the global phase of B using an interferometric
method, see Supplementary Information.

Absorption imaging integrates over the direction of
propagation of the imaging laser beam. Structures to
be characterized should therefore have a characteristic
length scale along the beam larger than the size of the

FIG. 2. Imaging of mw magnetic field components near the
CPW of Fig. 1. The images show the measured probability
p2(r) to find an atom in F = 2 after applying the mw pulse.
Columns correspond to measurements on the three different
transitions ωγ , rows to three different orientations of B0. The
imaging beam is reflected from the chip surface at an angle of
2◦. As a result, on each picture, a direct image and its reflec-
tion on the surface are visible. The dashed line separates the
two. No atoms are visible in the very center of the image be-
cause the CPW structures distort the imaging beam. The mw
power launched into the CPW, Pmw, and the mw pulse dura-
tion dtmw are indicated. dtho varies between 1 – 2 ms. The
noise in the image periphery corresponds to regions without
atoms. Images are averaged over several experimental runs
(15 to 130).

atom cloud. The cloud size can be adjusted through the
magnetic trap frequencies, T , and dtho.

We experimentally demonstrate our method by mea-
suring the mw magnetic field distribution near the copla-
nar waveguide (CPW) on our atom chip. The measure-
ment is performed at a position where the CPW is trans-
lationally invariant along the imaging beam. An overview
of the data is shown in Fig. 2. What appears in the im-
ages are essentially isopotential lines of the mw magnetic
field components. Qualitative conclusions can be drawn
directly by looking at the images – e.g. the left/right
asymmetry visible in Fig. 2 reveals that there is an asym-
metry in the mw currents on the CPW wires. This con-
firms independent findings in our previous paper.3

It is possible to automatically extract Bγ(r) from a
single image. From p2(r) we can calculate |Ωγ(r)| using
Eq. (4) up to an offset of nπ/dtmw, where n is an in-
teger. The offset for each point can be calculated by a
ray-tracing method, where rays are sent from the image
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FIG. 3. Measured mw magnetic field component Bx(r) near
the CPW and comparison with a simulation. The measure-
ment is performed with ω = ωπ and B0 along x, and the
movie method (see text) is used to extract Bπ(r) ≡ Bx(r).
(a) Rabi oscillations at two exemplary pixels of the image,
recorded by varying Pmw at fixed dtmw = 20 µs. The sinu-
soidal fits used to determine |Ωπ| and thus Bπ ≡ Bx as a
function of

√
Pmw are shown. The observed decay of the os-

cillations is due to mw field gradients across the pixel. (b)
Image of Bx(r) at Pmw = 120 mW as obtained from the data.
(c) Corresponding quasi-static simulation of Bx(r).3 We find
best agreement with (b) if we allow for a 10% asymmetry be-
tween the currents on the two CPW ground wires and assume
induced currents in the two wires next to the CPW grounds
with an amplitude of 2% of the signal conductor current.

periphery (where |Ωγ | dtmw � 1) through the desired
point to the center of the mw structure (where |Ωγ | is
maximal). n is given by the sum of the number of min-
ima and maxima of p2(r) encountered on the ray.

Alternatively, we take series of k image frames, scan-
ning either the mw power Pmw or dtmw (the movie
method). k depends on the desired dynamic range,
but can be as low as 10. The time to record one
frame is 14 s, but could be reduced to ≤ 3 s.11 For
each image pixel, we thus obtain a sequence of k dat-
apoints showing Rabi oscillations, see Fig. 3a. We fit
a function ∝ sin2

[
1
2 |Ωγ(Pmw)|dtmw

]
to the data, where

|Ωγ(Pmw)| = a
√
Pmw and a is the fit parameter. From

the fit, we determine |Ωγ | and thus, via Eqs. (1) - (3),
Bγ at this pixel for a given Pmw. As an example, Fig. 3b
shows an image of the cartesian mw field component
Bx(r) near our CPW reconstructed in this way. Fig. 3c
shows a corresponding simulation. Comparing data and
simulation, we obtain information about the current dis-
tribution on the CPW.

The single-shot mw field sensitivity of our method is
mainly determined by the interaction time dtmw. There is
a trade-off between sensitivity and effective spatial res-
olution seff . Longer dtmw yields higher sensitivity, but
at the same time the image blurs due to the movement
of the atoms. For our parameters (optical resolution
sopt = 4 µm, dtmw = 80 µs, T = 5 µK) and dtho = 0, we
obtain seff = 8.2 µm and a mw magnetic field sensitivity
of 2× 10−8 T (Supplementary Information).

In a variant of the presented method, trapped atoms
could be used as a scanning mw field sensor. For trapped
atoms, dtmw can be much longer without increasing seff ,
thereby improving the field sensitivity. To record an im-

age, the trap position has to be scanned from shot to
shot of the experiment (Supplementary Information).

Our method is frequency selective. Individual com-
ponents of a multi-tone signal could be resolved. The
transition frequencies ωγ can be adjusted via B0. For
B0 up to 0.5 T, which is a realistic effort e.g. for proto-
type testing, transition frequencies of 2.5 - 14 GHz are
accessible with 87Rb (Supplementary Information). Note
that for B0 > 0.1 T we start entering the Paschen-Back
regime, where the matrix elements of Eqs. (1) - (3) change
and the theory has to be modified. Using other atomic
species, different frequency ranges are accessible. Alter-
natively, a two-photon transition could be used for imag-
ing, where two mw fields or a mw and a radio frequency
field are applied to the atoms. The first field (frequency
ω1) is applied externally with known spatial distribution,
while the other field (frequency ω2) is to be imaged. Res-
onant Rabi oscillations occur for ω1 +ω2 = ωγ . It is also
possible to image off-resonant mw fields and other dif-
ferential potentials using a Ramsey interferometry tech-
nique, see8 and Supplementary Information.

Our technique can be extended to measure 3d distri-
butions of B(r) slice by slice, either by using a gradient
of B0 such that only a slice of atoms is resonant with
ω, or by using a light sheet detection technique,10 where
slices perpendicular to the camera line of sight are im-
aged. Using similar techniques, it is also possible to shape
the atomic cloud to prepare a thin sheet of atoms.

The method presented here seems promising for ap-
plications like prototype characterization. It allows
for highly sensitive, parallel, high-resolution, and non-
invasive imaging of the complete mw magnetic field dis-
tribution around an MMIC. Compact and portable sys-
tems for the preparation of ultracold atoms have been
built,11 and key components of such systems are com-
mercially available.
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31 2188-2189 (1995). T. Dubois, S. Jarrix, A. Penarier, and P.
Nouvel IEEE Trans on Instrumentation and Measurement 57
2398-2404 (2008). T.P. Budka, S.D. Waclawik, and G.M. Rebeiz
IEEE TMTT 44 2174-2184 (1996). R.C. Black, F.C. Wellstood,
E. Dantsker, A.H. Miklich, D.T. Nemeth, D. Koelle, F. Ludwig,
and J. Clarke Appl. Phys. Lett. 66 1267-1269 (1995).

6S. Chu Nature 416 205-246 (2002).



4

7T.R. Gentile, B.J. Hughey, D. Kleppner, and T.W. Ducas, Phys.
Rev. A 40 5103-5115 (1989).

8M.R. Matthews, D.S. Hall, D.S. Jin, J.R. Ensher, C.E. Wieman,
E.A. Cornell, F. Dalfovo, C. Minniti, and S. Stringari Phys. Rev.
Lett. 81 243-247 (1998).

9N.F. Ramsey Molecular Beams (Clarendon Press, Oxford, 1956).
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IMAGING OF MICROWAVE FIELDS USING ULTRACOLD ATOMS: SUPPLEMENTARY INFORMATION

A. Rabi Frequencies

We derive the Rabi frequencies1 for the resonant coupling of ground state hyperfine levels of 87Rb with a microwave
(mw) field. In the following, we consider an atom in a weak static magnetic field B0, so that the Zeeman splitting
ωL = µBB0/2~ is small compared to the zero-field splitting of ω0 ' 2π × 6.8 GHz between the two hyperfine states
F = 1 and F = 2 of the 52S1/2 electronic ground state of 87Rb. The atom is initially prepared in the hyperfine
sublevel |F,mF 〉 = |1,−1〉, and the microwave frequency ω is resonant with one of the transitions |1,−1〉 ↔ |2,m2〉,
(m2 = −2,−1, 0) connecting to this level (see Fig. 1 of the main paper).

The real-valued mw magnetic field at position r = (x, y, z) in the fixed cartesian laboratory coordinate system is
B(r, t) = 1

2

[
B(r)e−iωt + B∗(r)eiωt

]
with the complex phasor

B(r) ≡

 Bx(r)e−iφx(r)

By(r)e−iφy(r)

Bz(r)e−iφz(r)

 .

Here, we have chosen Bi(r), φi(r) ∈ R≥0, (i = x, y, z). In the following, we consider a fixed position in space and
suppress the dependence of Bi(r) and φi(r) on r to simplify notation. In our experiment, we apply a homogeneous
static magnetic field B0 along several directions in order to be able to reconstruct all components of the mw magnetic
field. For a given B0, we choose a new cartesian coordinate system (x′, y′, z′) with the z′-axis pointing along B0,
which defines the quantization axis for the atomic states |F,mF 〉. In this new coordinate system, the mw magnetic
field phasor is given by

B ≡

 Bx′e
−iφx′

By′e
−iφy′

Bz′e
−iφz′

 .

The mw magnetic field couples to the magnetic moment of the electron spin of the atom. The coupling to the nuclear
magnetic moment is neglected, because it is three orders of magnitude smaller than the electron magnetic moment.
The Rabi frequency on the hyperfine transition |1,m1〉 ↔ |2,m2〉 is given by

Ω2,m2

1,m1
=

2µB
~
〈2,m2|B · J|1,m1〉, (5)

with J = (Jx′ , Jy′ , Jz′) the electron spin operator. Using J± = Jx′ ± iJy′ we can write

B · J = Bx′e
−iφx′Jx′ +By′e

−iφy′Jy′ +Bz′e
−iφz′Jz′ (6)

= 1
2

(
Bx′e

−iφx′ − iBy′e−iφy′
)
J+ + 1

2

(
Bx′e

−iφx′ + iBy′e
−iφy′

)
J− +Bz′e

−iφz′Jz′ . (7)

Evaluating the matrix elements for the three transitions connecting to |1,−1〉,2 we obtain the Rabi frequencies:

Ω− ≡ Ω2,−2
1,−1 =

2µB
~
〈2,−2|1

2

(
Bx′e

−iφx′ + iBy′e
−iφy′

)
J−|1,−1〉 = −e−iφ− ·

√
3 · µB

~
B−, (8)

Ωπ ≡ Ω2,−1
1,−1 =

2µB
~
〈2,−1|Bz′e−iφz′Jz′ |1,−1〉 = −e−iφπ ·

√
3

4
· µB
~
Bπ, (9)

Ω+ ≡ Ω2,0
1,−1 =

2µB
~
〈2, 0|1

2

(
Bx′e

−iφx′ − iBy′e−iφy′
)
J+|1,−1〉 = e−iφ+ ·

√
1

2
· µB
~
B+, (10)

where we have used the definitions

B−e
−iφ− := 1

2

(
Bx′e

−iφx′ + iBy′e
−iφy′

)
, (11)

Bπe
−iφπ := Bz′e

−iφz′ , (12)

B+e
−iφ+ := 1

2

(
Bx′e

−iφx′ − iBy′e−iφy′
)
, (13)

with Bγ , φγ ∈ R≥0, (γ = −, π,+). We note that Ωπ is proportional to the projection of B onto B0, while Ω+(−) is
proportional to the right (left) handed circular polarization component in the plane perpendicular to B0.

In the experiment, we choose a sufficiently strong static field so that ωL � Ωγ . Furthermore, we choose the
microwave frequency resonant with one of the transitions, ω = ωγ . In this way, Rabi oscillations are induced only on
the resonant transition in a given run of the experiment, which allows us to selectively image the individual microwave
magnetic field components Bγ .
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B. Reconstruction of the microwave magnetic field

The amplitudes Bx, By, and Bz of the cartesian components of B in laboratory coordinates can be easily determined
by measuring |Ωπ| with the quantization axis B0/B0 pointing along x, y, and z, respectively. The extraction of the
field components from absorption images is described in the main text. In the following, the upper index indicates
the direction of the quantization axis in laboratory coordinates, e.g. Ωy− (By−) means Ω− (B−) for B0 pointing along
the y-axis.

To reconstruct the relative phases (φy − φx) and (φz − φx) between the cartesian components of B, we also measure
the amplitudes of the circularly polarized components Bx+, Bx−, By+, By−, Bz+, and Bz−. Having measured these
components, we can reconstruct the relative phases according to the following recipe.

1. B0 along x

We choose a new coordinate system with z′ along x, resulting from the following coordinate transformation:

x′ = −z
y′ = y
z′ = x

In this rotated coordinate system, the mw magnetic field phasor reads

B ≡

 Bx′e
−iφx′

By′e
−iφy′

Bz′e
−iφz′

 =

 −Bze−iφzBye
−iφy

Bxe
−iφx

 .

From this we obtain:

Bx′ = Bz φx′ = φz + π
By′ = By φy′ = φy
Bz′ = Bx φz′ = φx

Using Eqs. (11) and (13), we calculate

B2
+ −B2

− = −Bx′By′ sin(φy′ − φx′). (14)

By insertion of the coordinate transformation and using Eqs. (8) - (10), we obtain

sin (φz − φy) =
~

4µ2
BBzBy

(
4

3
|Ωx−|2 − 8|Ωx+|2

)
=

1

~ByBz
(
(Bx−)2 − (Bx+)2

)
. (15)

2. B0 along y

A similar calculation as before yields

sin (φx − φz) =
~

4µ2
BBxBz

(
4

3
|Ωy−| − 8|Ωy+|2

)
=

1

~BxBz
(
(By−)2 − (By+)2

)
. (16)

3. B0 along z

In this case, we obtain

sin (φy − φx) =
~

4µ2
BBxBy

(
4

3
|Ωz−| − 8|Ωz+|2

)
=

1

~BxBy
(
(Bz−)2 − (Bz+)2

)
. (17)

All quantities on the right hand sides of Eqs. (15) - (17) can be measured. From Eqs. (15) - (17), the relative
phases (φy − φx) and (φz − φx) can be determined. The solution is unique except for the very degenerate case where
sin (φx − φz) = sin (φy − φx) = sin (φz − φy) = 0. In this case, there are 4 solutions which cannot be distinguished.
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C. Reconstruction of the absolute microwave phase

While Sec. B describes the reconstruction of the relative phases (φy − φx) and (φz − φx) between the cartesian
components of B, it is also possible to reconstruct the spatial dependence of the global phase of B. The procedure
uses two mw pulses. During the whole sequence, B0 stays the same. In the following, we assume B0 is pointing
along the x-axis, so that φx(r) is measured. The other two phases, φy(r) and φz(r), can then be determined from the
already known relative phases.

After releasing the atoms from the trap, they are prepared in an equal superposition of states |1,−1〉 and |2,−1〉
by application of a π

2 -pulse at frequency ω = ωπ. This mw pulse is applied from a well-characterized source, so that
it has negligible (or at least known) intensity gradients and negligible (or known) phase gradients across the atomic
cloud. This can be achieved by using an external mw horn.3 The duration of the pulse is dtmw1 = π

2|Ωπ,1| , where

Ωπ,1 = |Ωπ,1| eiφπ,1 is the Rabi frequency of the pulse. The state after this preparation pulse is (in the rotating wave
approximation)4

|ψ1〉 = 1√
2

(
|1,−1〉+ ie−iφπ,1 |2,−1〉

)
. (18)

Immediately after the end of this preparation pulse, the mw in the MMIC to be characterized is pulsed on at frequeny
ωmw,2 = ωπ for a duration dtmw,2. The Rabi frequency and phase of this second mw pulse are denoted by Ωπ,2(r)
and φπ,2(r), respectively. After the second pulse, the state of an atom at position r is

|ψ2(r)〉 = 1√
2

[
cos

(
|Ωπ,2(r)| dtmw,2

2

)
− eiφπ,2−iφπ,1 sin

(
|Ωπ,2(r)| dtmw,2

2

)]
|1,−1〉

+ 1√
2

[
ie−iφπ,1 cos

(
|Ωπ,2(r)| dtmw,2

2

)
+ ie−iφπ,2 sin

(
|Ωπ,2(r)| dtmw,2

2

)]
|2,−1〉.

The probability p2(r) of finding an atom at position r in state F = 2 is given by

p2(r) =
1

2
+

1

2
sin (|Ωπ,2(r)| dtmw,2) · cos (φπ,1 − φπ,2(r)) (19)

To calculate φπ,2(r), the quantities |Ωπ,2(r)| and φπ,1 have to be known. |Ωπ,2(r)| can be measured as described in
the main text. If B0 is pointing along the x-axis, then φx(r) ≡ φπ,2(r).

The calculation above assumes that there is zero delay between the end of the first preparation pulse and the second
pulse in the MMIC. A similar calculation is also possible for non-zero delay between the two pulses.

D. Sensitivity & spatial resolution

In this section we estimate the maximum sensitivity of our technique for our set of experimental parameters. As
described in the main text, the mw magnetic field sensitivity is mainly determined by the interaction time dtmw of
the atoms with the mw pulse on the MMIC. A longer interaction time dtmw leads to a higher mw magnetic field
sensitivity, because then a weaker mw field can already drive a substantial fraction of a Rabi cycle. However, at the
same time the effective spatial resolution seff ≡ 2σeff decreases as the image blurs due to the movement of the atoms
during dtmw. In the following, the symbol σ always refers to an r.m.s. width. σeff is determined by the average moving
distance σmw of the atoms during the mw pulse, by the optical resolution of the imaging system sopt ≡ 2σopt, and by
the movement of the atoms during the imaging laser pulse, where thermal motion (σtm) and diffusive motion due to
photon scattering (σps) contribute. In the following, we will calculate σmw, σtm, σps, and σeff .

1. Movement of atoms during the microwave pulse - σmw

A free-falling atom in a cloud at temperature T has a mean thermal velocity perpendicular to the line of sight of

vth =
√

2kBT
m .5 After releasing the atom from the trap and waiting for dtho, the atom has furthermore acquired a

velocity vg = g · dtho along the direction of gravity. During the interaction with the mw for a time dtmw, the atom
moves ballistically by an average distance

σmw = g · dtho · dtmw +
1

2
g · dt2mw +

√
2kBT

m
dtmw. (20)
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For T = 5 µK, dtho = 0, and dtmw = 80 µs we obtain σmw = 2.5 µm. For short times, the last term in the equation
above dominates (as it is the case for our parameters). The displacement of the atoms during the mw pulse can then
be approximated by a Gaussian function fmw of r.m.s. width σmw.

2. Movement of atoms during the imaging pulse - σtm

During the imaging pulse of duration dtim, the atoms move ballistically by an average distance σtm given by

σtm = g(dtho + dtmw)dtim +
1

2
g · dt2im +

√
2kBT

m
· dtim (21)

due to gravity and thermal motion. For dtim = 40 µs we get σtm = 1.3 µm. Again, for short times the atomic density
distribution after the imaging pulse can be approximated by a Gaussian ftm with r.m.s. width σtm.

3. Diffusive movement of atoms due to photon scattering - σps

During the imaging laser pulse of duration dtim, the atoms randomly scatter photons. The associated momentum
recoils lead to a diffusive motion of the atoms, which leads at the end of the pulse to an average displacement
perpendicular to the line of sight of5

σps =

√
2

3
·
√
Np
3
· vrec · dtim,

where vrec = ~k/m = 5.9 mm/s is the atomic recoil velocity for 87Rb, and Np the number of scattered photons, with
Np = (Γ/2) dtim s/(1 + s) and the natural linewidth Γ = 2π× 6.1 MHz. For our experimental parameters (saturation
parameter s = I/Isat = 1, dtim = 40 µs) we get σps = 2.2 µm.

4. Effective spatial resolution seff = 2σeff

The effective resolution can approximately be calculated by the convolution feff = fopt ∗ [fps ∗ (ftm ∗ fmw)], where
fopt approximates the point spread function of the imaging system by a Gaussian fopt with σopt = 2 µm. As a result,
we get σeff = 4.1 µm. We take as the effective resolution for our parameters seff = 2σeff = 8.2 µm.

5. Imaging noise

The noise on the absorption images is important for the sensitivity of our technique. It determines the minimum
number of atoms N2,min that has to be transferred by the mw into the F = 2 manifold during dtmw in order for the mw
field to be detectable. We currently use an Andor iKon-M camera with a quantum efficiency of 90% for absorption
imaging6. The optical resolution of our imaging system is sopt = 4 µm, the imaging pulse duration dtim = 40 µs, and
we are imaging at saturation intensity (s = I/Isat = 1). With these parameters, we calculate an uncertainty in the
number of atoms detected in an area Aeff = πσ2

eff of 1.4 atoms r.m.s. We measure a value of σN,psn = 2.0 atoms. The
difference can be explained by interference fringes on the image. This additional noise could certainly be decreased
further.

Quantum projection noise due to the probabilistic nature of the measurement process is an additional contribution
of noise on the images. The measurement process projects the atomic superposition state onto the F = 1 and F = 2
states, resulting in a number of atoms of N1 and N2 in the two states, respectively. Even if the total number of atoms
N = N1 +N2 is the same in each shot, N1 and N2 will show (anticorrelated) fluctuations. This projection noise has an

r.m.s. amplitude of σN1 = σN2 =
√
N · p2 · (1− p2), where σNi denotes noise in Ni and p2 = N2/N . The total noise

on N2 is thus σN,tot =
√
σ2
N,psn + σ2

N2. We find that in order to obtain a signal-to-noise-ratio SNR ≡ N2/σN,tot > 1,

we have to have N2 > N2,min = 3.
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6. Microwave field sensitivity

In the experiment described in the main paper, we trap about N = 9 × 103 atoms in the magnetic trap. The
trapping frequencies are ωx = 2π×27 Hz and ωy ≈ ωz = 2π×680 Hz. We calculate the average atomic density in the

trap to n = 2.2× 1011/cm3.5 The trapped cloud has a 1/e-radius of ρ =
√

2kBT
m

1
ωy

= 7.2 µm along the y-axis, which

is the direction of the imaging beam. If we image the atoms with dtho = 0, we have about N = 170 atoms inside a
cylinder of radius σeff and height 2ρ. The mw magnetic field which transfers on average N2,min = 3 atoms to F = 2
is obtained by requiring that

N2 = N sin2

[
1

2
|Ωγ |dtmw

]
!
= N2,min. (22)

For the three transitions ω = ω−, ω = ωπ, and ω = ω+, this is equivalent to

NF=2 = N sin2

[
1

2

(µB
~
√

3B−

)
dtmw

]
≈ N

[
1

2

(µB
~
√

3B−

)
dtmw

]2
!
= 3, (23)

NF=2 = N sin2

[
1

2

(
µB
~

√
3

4
Bπ

)
dtmw

]
≈ N

[
1

2

(
µB
~

√
3

4
Bπ

)
dtmw

]2

!
= 3, (24)

NF=2 = N sin2

[
1

2

(
µB
~

√
1

2
B+

)
dtmw

]
≈ N

[
1

2

(
µB
~

√
1

2
B+

)
dtmw

]2

!
= 3. (25)

Solving the above equations with dtmw = 80µs, we get B− = 2.2 · 10−8 T, Bπ = 4.4 · 10−8 T, and B+ = 5.4 · 10−8 T.
Note that the projection noise σN2 slowly increases with increasing N2. Therefore, the absolute mw field resolution

of our method decreases with increasing values of B.
The consideration above relies on the assumption that we can achieve perfect resonance ω = ωγ . Solving Eq. (22)

for N2,min, we obtain |Ωγ |/2π = 0.53 kHz for N2 = 3. A change in ωγ/2π of 0.53 kHz corresponds to a magnetic
field instability of 2.5× 10−8 T for Ω−, 3.8× 10−8 T for Ωπ and 7.6× 10−8 T for Ω+. Inside the magnetic shielding
surrounding our experiment, we achieve a stability of B0 of 2×10−8 T r.m.s., which could certainly be improved such
that the effect can be neglected.

The sensitivity of our field imaging technique can be increased by using colder or denser clouds. Suitable techniques
to reduce the temperature further are adiabatic relaxation of the trap or further forced evaporative cooling.

E. Measurement of the microwave field with trapped atoms

There are further operation modes of our field imaging method. Instead of releasing the atoms from the trap, it
is also possible to prepare a Bose-Einstein condensate (BEC)5 in a trap (either magnetic or optical) or in an array
of traps (e.g. an optical lattice) and scan its position spatially from shot to shot. The position can be scanned on
a µm length scale in all three dimensions. A typical stepsize is given by twice the Thomas-Fermi radius rTF of the
BEC.5 If the BEC is held in a magnetic trap, transitions between |1,−1〉 and |2,m2〉 are detected via loss of atoms,
because |2,m2〉 with m2 = −2,−1, 0 are magnetically non-trappable states. If the BEC(s) are held in an optical trap
or optical lattice, then transitions to the F = 2 manifold can be detected via state-selective imaging.

F. Tunability of transition frequencies ω−, ωπ and ω+

1. 87Rubidium atoms

The transition frequencies ω−, ωπ, and ω+ between the initial state |1,−1〉 and the target states |2,−2〉, |2,−1〉,
and |2, 0〉, respectively, can be adjusted by changing the static magnetic field B0. For small magnetic fields (i.e.
ωL � 2π × 6.8 GHz) the transition frequencies are approximately given by ω− = ω0 − 3ωL, ωπ = ω0 − 2ωL and
ω+ = ω0 − ωL, where ω0 = 2π × 6834.682610 MHz and ωL = µBB0/2~.
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For larger values of B0 a more accurate calculation is required. The 52S1/2 ground state hyperfine structure of
87Rb is described by the Hamiltonian2

H = AhfsI · J + µBB0(gJJz + gIIz), (26)

with I the nuclear spin operator and J the operator for the total electronic spin, Ahfs = ~ω0/2, gI = −0.000995141,
and gJ = 2.002331.7 Even though gI

gJ
≈ 5 · 10−4, the coupling of I to the magnetic field becomes important for large

values of B0. An analytical formula exists for the ground state manifold of a D transition (as it is the case for our
states of interest), the Breit-Rabi formula7:

EF,mF = − Ahfs

(2I + 1)
+ gIµBmFB ±Ahfs

(
1 +

4mFβ

2I + 1
+ β2

)1/2

, (27)

where β = (gJ−gI)µBB0

2Ahfs
, mF = mI±mJ (the ± sign is the same as in eq. 27). The resulting transition frequencies ω−,

ωπ, and ω+ as a function of B0 are illustrated in Fig. 4. For 87Rb, the transition frequencies ωγ/2π can be tuned over

FIG. 4. Transition frequencies ω−, ωπ and ω+ for 87Rb as a function of B0. The individual transition frequencies can be tuned
by up to 10 GHz with magnetic fields of up to 0.5 T.

a range of more than 10 GHz using technically feasible magnetic fields. Note that for B0 > 0.1 T we start entering
the Paschen-Back regime, where the matrix elements of Eqs. (8) - (10) change and the theory has to be modified.

2. Other atomic species

By using atomic species other than 87Rb, different frequency ranges become accessible, e.g. 9.2 GHz for Cs or
1.7 GHz for Na.

G. Ramsey interferometry and off-resonant probing

Instead of having ω resonant with a hyperfine transition frequency, it is also possible to probe an off-resonant mw
or light field (or anything else that causes a differential energy shift between the involved hyperfine levels) using a
scheme based on Ramsey interferometry.8 In Ramsey interferometry, the interaction with the mw field of duration
Tint is enclosed by two π

2 -pulses. The first pulse prepares the atoms in an equal superposition of two hyperfine states
such as

|ψ1〉(t = 0) = 1√
2

(
|1,−1〉+ ie−iφmw |2,m2〉

)
. (28)
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During time Tint both states accumulate a differential phase shift ∆φ =
∫ Tint

0
Ediff

~ dt. Ediff is the differential potential
between the two hyperfine levels involved and is in general state-dependent. The state after this interaction is

|ψ1〉(t = Tint) = 1√
2

(
|1,−1〉+ ie−i∆φ−iφmw |2,m2〉

)
. (29)

After applying the second π
2 -pulse, the state is

|ψ2〉 = 1
2

[(
1− e−i∆φ

)
|1,−1〉+ ie−iφmw

(
e−i∆φ + 1

)
|2,m2〉

]
, (30)

where φmw is the phase of the resonant mw in a frame rotating at the atomic transition frequency. The probabilities
to detect an atom in state |1,−1〉 and |2,m2〉 are then given by

p1(r) = 1
2 (1− cos(∆φ)) , (31)

p2(r) = 1− p1(r) = 1
2 (1 + cos(∆φ)) . (32)

By measuring the relative populations p1(r) and p2(r) after the second π
2 pulse, it is possible to determine the value

of ∆φ and thereby Ediff . Details on the effect of an off-resonant mw field are discussed in9.
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4M.O. Scully, and M.S. Zubairy Quantum Optics (Cambridge University Press, Cambridge, U.K., 1997).
5W. Ketterle, D.S. Durfee, and D.M. Stamper-Kurn Making, probing and understanding Bose-Einstein condensates. (IOS Press, Amster-
dam, 1999).

6The images in the main paper were taken with another camera with lower quantum efficiency. For the estimate of the achievable resolution
presented here, we use the parameters of the state-of-the-art camera that we currently employ in the experiment.

7D.A. Steck http://steck.us/alkalidata/, version 2.1.2 (2009).
8N.F. Ramsey Molecular Beams (Clarendon Press, Oxford, 1956).
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