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CONSTRAINED NONSMOOTH UTILITY MAXIMIZATION

ON THE POSITIVE REAL LINE

By Nicholas Westray ∗

and Harry Zheng

Humboldt Universität and Imperial College

We maximize the expected utility of terminal wealth in an in-
complete market where there are cone constraints on the investor’s
portfolio process and the utility function is not assumed to be strictly
concave or differentiable. We establish the existence of the optimal
solutions to the primal and dual problems and their dual relationship.
We simplify the present proofs in this area and extend the existing
duality theory to the constrained nonsmooth setting.

1. Introduction. Utility maximization is a classical theme in mathe-
matical finance and there is already a substantial body of literature devoted
to the study of the problem in both complete and incomplete semimartin-
gale models. We refer the reader to Karatzas and Žitković [17] as well as
Kramkov and Schachermayer [18] for an excellent overview of research to
date. The purpose of the present article is to extend the existing duality
theory to the situation where there are cone constraints on the investor’s
portfolio as well as a utility function which is neither smooth nor strictly
concave. To set the context for this paper we first review previous work in
the area which is of immediate interest.

Cvitanić, Schachermayer and Wang [7] solve the utility maximization
problem with a bounded random endowment. They prove that the usual
duality relations hold but to achieve this it is necessary to enlarge the dual
domain from L1(P) to L∞(P)∗, the topological dual of L∞(P). In [17] these
ideas are extended further to include intertemporal consumption. More re-
cently Hugonnier and Kramkov [15], using some elegant techniques from
convex analysis, generalize the results of [7] to the case of unbounded ran-
dom endowment.

There has been some work on applying duality theorems in utility max-
imization. Bellini and Frittelli [1] as well as Biagini and Frittelli [2] show
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that a version of the Fenchel duality theorem can be combined with a char-
acterization of conjugate functionals in L∞(P)∗ due to Rockafellar [27] to
efficiently establish the existence of a dual solution as well as the equality
of the value functions.

The introduction of constraints on the investor’s portfolio in a general
semimartingale model is relatively new. Mnif and Pham [22] as well as
Pham [23] provide a solution to the problem when the underlying market
is modelled by a continuous semimartingale with positive definite quadratic
variation matrix.

A standard assumption in almost all papers is that the utility function
be strictly concave and continuously differentiable. In the present article we
are interested in advancing the general theory and so want to consider the
situation where this may not be the case. Cvitanić [6] first addresses this
when considering a framework similar to [23] but where the loss function is
neither strictly concave nor differentiable. He derives solutions using subdif-
ferential calculus together with convex analysis. The first nonsmooth utility
maximization problem appears in Deelstra, Pham and Touzi [9] (see also
Bouchard [4] as well as Bouchard, Touzi and Zeghal [5]). Their solution uses
the quadratic inf convolution method which, whilst mathematically very
satisfying, leads to lengthy and involved proofs.

This article contributes in several ways to the existing literature. Firstly
we incorporate the distinct features of [1, 7, 9] into a single model and
extend the setting further by allowing for cone constraints on the portfolio.
We use a technique due to Kramkov and Schachermayer [19] (see also [4]
as well as Westray and Zheng [29]) to prove directly the existence of a
solution to the primal problem and thus remove the need for quadratic inf
convolution, simplifying the existing proofs in this area. Secondly we apply a
new result from Czichowsky, Westray and Zheng [8], in conjunction with the
constrained optional decomposition theorem of Föllmer and Kramkov [12],
to show that the restrictive assumptions on the underlying asset in [22, 23]
are redundant. Finally we use a version of the Fenchel duality theorem due
to Rockafellar [25], different from that in [1, 2], to give a simple proof of the
existence of a dual solution.

This paper is organised as follows. Section 2 introduces the model for-
mulation. Section 3 discusses the dual problem and provides the essential
results on constrained super replication. Section 4 contains the main result,
Theorem 4.1, together with its proof.

2. Model Formulation. The setup is the standard one in mathemat-
ical finance. There is a finite time horizon T and a market consisting of one
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bond, assumed constant, and d stocks, S1, . . . , Sd modelled by a (0,∞)d-
valued, semimartingale on a filtered probability space (Ω,F , (Ft)0≤t≤T ,P),
satisfying the usual conditions. We also assume, for simplicity, that the ini-
tial σ-field F0 is trivial. We write X for the process (Xt)0≤t≤T and “for
all t” implicitly meaning “for all t ∈ [0, T ]”. For a predictable S-integrable
process, we use H · S to denote the stochastic integral with respect to S
and refer the reader to Jacod and Shiryaev [16] and Protter [24] for further
details.

We want to define those investment strategies which are admissible. In
the current setting there are constraints, modelled by the set K ⊂ R

d.

Assumption 2.1. K is a closed convex cone such that there exist m ∈ N

and k1, . . . , km in K with

K =

{

m
∑

i=1

µiki : µi ≥ 0

}

.

This assumption states that K is a polyhedral convex cone, see Rockafellar
[26] Theorem 19.1. This class of sets contains some interesting examples,
including no short selling of the first m assets, K = R

m
+ × R

d−m.
It is known that to prevent arbitrage we must exclude some trading strate-

gies such as doubling. We define H, the set of admissible trading strategies,
as follows.

H := {H : H predictable and S-integrable,Ht ∈ K P-a.s. for all t

and there exists c ∈ R+ with (H · S)t ≥ −c for all t} .

Next we introduce the cone of random variables which can be dominated
(super replicated) by terminal wealths obtained from admissible strategies.

R := {R : R ≤ (H · S)T for some H ∈ H} .

Since 0 ∈ K it follows that L0
−(P) ⊂ R. We define

C := R ∩ L∞(P).

The set C contains all those random variables which are bounded and super-
replicable. Our agent has preferences modelled by a utility function U , in-
creasing, concave and satisfying

int
(

Dom(U)
)

= {x ∈ R : x > 0},
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where int
(

Dom(U)
)

is the interior of the domain of U . To avoid any ambi-
guity we set U(x) = −∞ for x < 0. Observe that we do not insist that U
be strictly concave or differentiable. We make the following assumption, the
nonsmooth analogue of the Inada conditions.

Assumption 2.2.

inf
⋃

x∈R+

∂U(x) = 0, sup
⋃

x∈R+

∂U(x) = ∞,

where ∂U(x) denotes the subdifferential (subgradient) set of U at x, i.e.,
∂U(x) := {ξ ∈ R : U(y) ≤ U(x) + ξ(y − x), ∀y ∈ R}.

The agent starts with an initial capital x, may choose strategies from H,
and aims to maximize the expected utility of terminal wealth subject to
a random endowment B ∈ L∞(P) with b := ‖B‖L∞(P). This leads to the
following formulation of the primal maximization problem.

(2.1) u(x) := sup
R∈R0(x)

E
[

U(x+R−B)
]

,

where R0(x) is the set containing all those R ∈ R for which the above
expectation is well defined for a given x.

Remark 2.3. Let us expand slightly on this final point. The expectation
in (2.1) will be well defined if and only if both E

[

U(x + R − B)+
]

and
E
[

U(x + R − B)−
]

are not equal to +∞. Since U(x) = −∞ for x < 0
and a priori R may contain random variables which take negative values
or large positive values with positive probability, it may happen that this
expectation fails to be well defined. We restrict to R0(x) to ensure that this
situation does not arise.

We write Ũ for the conjugate (or dual) of U defined by

Ũ(y) = sup
x∈R+

{

U(x)− xy
}

.

This is a convex and decreasing function with Dom(Ũ)∩ (−∞, 0) = ∅. From
[18] it is known that to guarantee the existence of an optimal solution we
must impose a condition on the asymptotic elasticity of the utility function
U . In [9] the authors show that, for a nonsmooth utility function, these
should be put on the dual function. Define

(2.2) AE(Ũ) := lim sup
y→0

sup
q∈∂Ũ(y)

|q|y

Ũ(y)
.

We shall need the following.
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Assumption 2.4. AE(Ũ) <∞.

3. Dual Domain and Dual Characterization of R. With the pri-
mal problem formulated and the dual of the utility function introduced,
we move to consider the domain of the dual problem. In our setting there
is a bounded random endowment so we shall follow Biagini, Frittelli and
Grasselli [3] as well as [7] and formulate the dual domain as a subset of
L∞(P)∗.

We first provide an introduction to the relevant theory of the topological
dual of L∞(P), for further details see Hewitt and Stromberg [14] as well
as Hewitt and Yosida [31]. We write ba(P) for the set of bounded, finitely
additive measures, absolutely continuous with respect to P and ba+(P) for
the nonnegative elements of ba(P). We shall indirectly use the following
important decomposition theorem.

Theorem 3.1 (Yosida and Hewitt [31] Theorem 1.23). If ν ≥ 0 is in
ba+(P) then there exist unique νc ≥ 0, νf ≥ 0, both in ba+(P), such that νc
is countably additive, νf purely finitely additive and ν = νc + νf .

One can develop a theory for the integration of bounded random variables
with respect to finitely additive measures, see [14] for details. It then follows
that each ν ∈ ba(P) induces a linear functional ψν : L∞(P) → R defined by

ψν(G) =

∫

Ω
Gdν.

It is shown in [14] Theorem 20.35 that the mapping which takes ν to ψν is an
isometric isomorphism between ba(P) and L∞(P)∗. We may thus identify the
set of bounded finitely additive measures with the topological dual of L∞(P),
i.e., L∞(P)∗ ∼= ba(P). Furthermore L1(P) is isomorphic to the subspace of
ba(P) containing all countably additive measures, i.e.,

L1(P) ∼= {ν ∈ ba(P) : νf = 0}

and so we may view L1(P) as a subspace of ba(P). This leads to the following
useful expression for a random variable G ∈ L∞(P) and a countably additive
element ν ∈ ba+(P),

(3.1) ψν(G) =

∫

Ω
G
dν

dP
dP = E

[

dν

dP
G

]

.

With the necessary preliminaries covered let us introduce the dual do-
main,

M := {ν ∈ ba(P) : ψν(G) ≤ 0 for all G ∈ C}.
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We first collect some important observations about M. Since L∞
− (P) ⊂ C,

M is a cone contained in ba+(P). In fact M = (C)0, the polar of C with
respect to the dual system

(

L∞(P), ba(P)
)

, see Heuser [13] for background
on the theory of dual systems. Note that unlike [7] it is not assumed that
all the elements in M have norm 1. The set of countably additive elements
of M is defined by

Mc := {ν ∈ M : νf = 0},

which one could think of as “M ∩ L1(P)”, equivalently all those measures
in M which have a Radon-Nikodym derivative.

In the context of this article it is necessary to extend the definition of ψν ,
when ν ∈ M, to elements X ∈ L0(P) which are P-a.s. bounded below. Set

ψν(X) := lim
n→∞

ψν(X ∧ n).

In particular, using the monotone convergence theorem, for ν ∈ Mc and
X ∈ L0(P) bounded below

ψν(X) := lim
n→∞

E

[

dν

dP
(X ∧ n)

]

= E

[

dν

dP
X

]

.

Thus relation (3.1) continues to hold for the extension. We shall need the
following.

Assumption 3.2. There exists ν1 ∈ M with

E

[

Ũ

(

dν1c
dP

)]

<∞.

Remark 3.3. The above is to ensure that the dual problem is finite for
all x > 0. A well known consequence of Assumption 2.4 is that

(3.2) E

[

Ũ

(

r
dν1c
dP

)]

<∞ for all r > 0.

We shall return to this result later.

There is a subset of M which plays a key role in defining those x for
which the primal problem is finite,

(3.3) Msup := {ν ∈ Mc : ν > 0 and ν(Ω) = 1} .

Using an identical proof to that of [2] Proposition 6 it is possible to show
that when ν is countably additive and ν(Ω) = 1, ψν(G) ≤ 0 for all G ∈ C if
and only if H · S is a ν-supermartingale for all H ∈ H. Therefore we have

Msup = {ν ∈ ba+(P) : ν is a probability measure equivalent to P and

H · S is a ν-supermartingale for all H ∈ H }.
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Assumption 3.4.
Msup 6= ∅.

Remark 3.5. Suppose that we have no constraints, so that K = R
d.

Our situation is now identical to [7] modulo the smoothness of the utility
function. Consider the set

Mloc := {ν ∈ ba+(P) : ν is a probability measure equivalent to P and

H · S is a ν local martingale for all H ∈ H }.

In [7] the authors assume that Mloc 6= ∅. We want to compare this to our
Assumption 3.4 when there are no constraints. If S is locally bounded then it
is known that both are equivalent. In the case where S is not locally bounded
then we have Mloc ⊂ Msup and this inclusion may be strict. Thus it appears
that our assumption is slightly weaker, however both these assumptions
imply that the subset of Mc consisting of equivalent measures is nonempty
and from this point of view may be regarded as equivalent. In particular all
the results in [7] would hold under our Assumption 3.4.

We look for a description of R in terms of a budget constraint inequality.
To this end we appeal to the ideas of [12]. Define the set

S := {H · S : H ∈ H},

and consider the following assumption,

Assumption 3.6 ([12] Assumption 3.1 ). If (Hn ·S)n∈N is a sequence in
S which is uniformly bounded from below and converges in the semimartin-
gale topology to a process X, then X ∈ S.

For details on the semimartingale topology we refer the reader to Émery
[11] and Mémin [21]. In our setting and notation [12] Theorem 4.1 reads as
follows.

Theorem 3.7 ([12] Theorem 4.1). Suppose that Msup 6= ∅ and S sat-
isfies Assumption 3.6. Then for a process V locally bounded from below the
following are equivalent:

(i) There exist HV ∈ H and an increasing nonnegative optional process
CV such that

V = V0 +HV · S − CV .

(ii) V is a ν-local supermartingale for all ν ∈ Msup.
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Our aim is to prove a super replication result via Theorem 3.7. We know
that Msup is nonempty, thus the only outstanding issue is to verify that
S satisfies Assumption 3.6. By Assumption 2.1 K is a polyhedral cone and
thus we may apply [8] Theorem 3.5 to show that there exists an H0 ∈ H
such that X = H0 · S. Therefore S satisfies Assumption 3.6.

Remark 3.8. In [17] the authors consider a situation similar to ours
however they do not make any assumptions on the cone K. They implicitly
assume that S satisfies Assumption 3.6. This is in fact false as a counterex-
ample in [8] shows. Our results can therefore be viewed as augmenting [17]
and show that Assumption 2.1 is not innocuous and that one must place
some restrictions on K.

We now give a key dual characterization of R.

Lemma 3.9. Suppose R− ∈ L∞(P). Then R ∈ R if and only if ψν(R) ≤ 0
for all ν ∈ Mc.

Proof. Suppose R ∈ R and R− ∈ L∞(P). Then R ∧ n ∈ C and we have
by the definition of M

ψν(R ∧ n) ≤ 0 for all ν ∈ Mc.

Now let n tend to infinity to get the result.
Conversely suppose that R− ∈ L∞(P) and ψν(R) ≤ 0 for all ν ∈ Mc. In

particular, from (3.3), this implies that we have

ψν(R) = E

[

dν

dP
R

]

≤ 0, for all ν ∈ Msup.

We may apply [12] Lemma A.1 to show that the process V R defined by

V R
t := ess sup

ν∈Msup

E
[

dν
dP
R | Ft

]

E
[

dν
dP

| Ft

]

with

V R
0 = sup

ν∈Msup

E

[

dν

dP
R

]

= sup
ν∈Msup

ψν(R) ≤ 0

is a ν-supermartingale for all ν ∈ Msup. Note that here we have used the
assumption that F0 is trivial.
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Using Theorem 3.7 we get the existence of an HR ∈ H and a nonnegative
optional process CR such that V R = V R

0 +HR ·S−CR. Recall that V R
0 ≤ 0

and so at T ,

(HR · S)T ≥ V R
0 + (HR · S)T ≥ V R

0 + (HR · S)T −CR
T = R,

that is, R ∈ R. The proof of the lemma is now complete.

The dual problem in the present setting is the following

w(x) := inf
ν∈M

(

E

[

Ũ

(

dνc
dP

)]

− ψν(B) + xν(Ω)

)

.

We have omitted the derivation of the dual problem. For an excellent overview
of how one should proceed given a general primal problem we refer to Rogers
[28]. For more details on the present situation see [7].

4. Main Result and its Proof. Having collected all the necessary
preliminaries we may state our main result.

Theorem 4.1. Suppose that Assumptions 2.1, 2.2, 2.4, 3.2 and 3.4 hold.
For x > supν∈Msup ψν(B),

(i) u(x)=w(x).
(ii) There exists ν∗ ∈ M optimal for w(x), i.e.,

w(x) = E

[

Ũ

(

dν∗c
dP

)]

− ψν∗(B) + xν∗(Ω).

(iii) There exists H∗ ∈ H optimal for u(x), i.e.,

u(x) = E
[

U
(

X∗ −B
)]

,

where X∗ = x+ (H∗ · S)T is the optimal terminal wealth.
(iv) The following relations hold,

ψν∗
f

(

X∗ −B
)

= 0, ψν∗
(

X∗
)

= xν∗(Ω), X∗ −B ∈ −∂Ũ

(

dν∗c
dP

)

.

Remark 4.2. When there is no random endowment (B ≡ 0) (iv) implies
that ψν∗

f

(

X∗
)

= 0 and ψν∗c

(

X∗
)

= xν∗(Ω). In particular we could formulate

our dual problem in L1(P) and omit the singular measure νf , as in [5, 18, 29].
When ν∗ 6= 0 (a sufficient condition for this is U(∞) = ∞) we may

normalize ν∗ to get an equivalent probability measure (with regular and
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singular parts). If we denote y∗ = ν∗(Ω) > 0 we can express parts (ii)
and (iv) above in the standard form as those in the utility maximization
literature.

Westray and Zheng [30] show that when B ≡ 0 the conditions on budget
equality, subdifferential relation and feasibility are the minimal sufficient
conditions for X∗ being a primal optimizer if the utility function U is not
strictly concave. In this sense, Theorem 4.1 is almost a necessary and suffi-
cient optimality condition if a dual optimizer is known to exist.

We prove our result in three steps. First we apply a version of the Fenchel
duality theorem, Theorem 4.4, to show the existence of a dual solution and
the equality of the value functions. We then adapt a technique from [19] to
find a primal optimizer. The proof is concluded by using convex analysis to
show that the three equalities of Theorem 4.1 (iv) hold. For ease of exposition
each of the three steps is broken up into a series of lemmata.

Step I - Equality of the Value Functions and Existence of an Optimal Dual
Solution. We begin by showing that in the primal problem it is sufficient
to take the maximum over C. Recall that C = R ∩ L∞(P) and R0(x) is the
subset of R for which the expectation in (2.1) is well defined. Note that
if G ∈ C then it is bounded and E

[

U(x + G − B)+
]

is always finite. We
therefore avoid the problems related to the restriction from R to R0(x), see
Remark 2.3.

Lemma 4.3. For all x ∈ R

u(x) = sup
R∈R0(x)

E
[

U(x+R−B)
]

= sup
G∈C

E
[

U(x+G−B)
]

.

Proof. Fix x ∈ R and observe that since C ⊂ R0(x) it is only necessary
to show that

sup
R∈R0(x)

E
[

U(x+R−B)
]

≤ sup
G∈C

E
[

U(x+G−B)
]

.

We may suppose in addition that

sup
R∈R0(x)

E
[

U(x+R−B)
]

> −∞,

otherwise the inequality is immediate. For each ε > 0 we can find Hε ∈ H
such that

E
[

U(x+ (Hε · S)T −B)
]

≥ sup
R∈R0(x)

E
[

U(x+R−B)
]

− ε.
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Since Hε ∈ H we have that (Hε · S)T ∧ n ∈ C for all n ∈ N. If we show that
there exists n0 such that

E
[

U(x+ (Hε · S)T ∧ n0 −B)
]

> −∞,

then we may apply the monotone convergence theorem and deduce,

sup
G∈C

E
[

U(x+G−B)
]

≥ lim
n→∞

E
[

U(x+ (Hε · S)T ∧ n−B)
]

≥ sup
R∈R0(x)

E
[

U(x+R−B)
]

− ε.

This then provides the required inequality.
To find such an n0 we first observe that E

[

U(x+ (Hε · S)T −B)
]

> −∞,
which implies

(4.1) E
[

U(x+ (Hε · S)T −B)−
]

<∞.

A consequence of the definition of the subgradient for the concave function
U is that for two points z1 and z2 with z1 < z2,

inf ∂U(z1) ≥ sup ∂U(z2).

From Assumption 2.2 we can now deduce that

lim
x→∞

inf ∂U(x) = 0

and thus we may choose n0 ∈ N with sup ∂U(x+ n0 − b) ≤ 1. Observe that
from the subgradient inequality

U(x+(Hε ·S)T −B) ≤ U(x+(Hε ·S)T ∧n0−B)+q
(

(Hε ·S)T−(Hε ·S)T ∧n0
)

,

for any q ∈ ∂U
(

x+(Hε ·S)T ∧n0−B
)

. This continues to hold if we multiply
both sides by 1{(Hε·S)T≥n0}. Since on {(Hε · S)T ≥ n0} we have that any
q ∈ ∂U

(

x+ (Hε · S)T ∧ n0 −B
)

satisfies |q| ≤ 1 we deduce that

U(x+ (Hε · S)T ∧ n0 −B)1{(Hε·S)T≥n0}

≥
(

U(x+ (Hε · S)T −B)− 2|(Hε · S)T |
)

1{(Hε·S)T≥n0}.

On the set {(Hε · S)T < n0} we have that (Hε · S)T = (Hε · S)T ∧ n0.
Combining the above two estimates gives

U(x+ (Hε · S)T ∧ n0 −B)− ≤ 2
(

U(x+ (Hε · S)T −B)− + |(Hε · S)T |
)

.

It now follows from (4.1) together with Hε ∈ H that U(x+(Hε ·S)T ∧n0−
B)− ∈ L1(P). It then must be the case that

E
[

U(x+ (Hε · S)T ∧ n0 −B)
]

> −∞.

This provides the existence of such an n0 and completes the proof.
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We use the method of [1, 2] to establish Theorem 4.1 (i) and (ii). The key
result needed in the proof is the following Fenchel Duality Theorem, stated
for the dual system

(

L∞(P), ba(P)
)

.

Theorem 4.4 (Rockafellar [25] Theorem 1). Suppose α : L∞(P) → R ∪
{+∞} and β : L∞(P) → R ∪ {−∞} are respectively proper convex and
concave functionals. If either α or β is continuous at some point where both
functions are finite then

sup
G∈L∞(P)

{β(G) − α(G)} = min
v∈ba(P)

{α∗(ν)− β∗(ν)},

where the functionals α∗ and β∗ are respectively the Fenchel convex conjugate
and Fenchel concave conjugate defined on ba(P) by

α∗(ν) := sup
G∈L∞(P)

{ψν(G) − α(G)} and β∗(ν) := inf
G∈L∞(P)

{ψν(G)− β(G)}.

The importance of Theorem 4.4 is that it not only shows the equality of
the primal and dual value functions but also establishes the existence of the
optimal dual solution. The following result provides the details.

Theorem 4.5. For x > supν∈Msup ψν(B) we have

u(x) = w(x) = min
ν∈M

(

E

[

Ũ

(

dνc
dP

)]

− ψν(B) + xν(Ω)

)

.

Proof. Let x1 := supν∈Msup ψν(B) so that x > x1 and define the concave
functional IUx,B : L∞(P) → R ∪ {−∞} by

IUx,B(G) := E
[

U(x+G−B)
]

.

We write δC for the indicator function in the sense of convex analysis, so
that

δC(G) =

{

0 for G ∈ C,
∞ for G /∈ C.

Using Lemma 4.3 we can write

u(x) = sup
G∈L∞(P)

{IUx,B(G) − δC(G)}.

We first construct an RB for which RB ∈ C,
∣

∣IUx,B (RB)
∣

∣ < ∞ and IUx,B is
continuous at RB . We can then apply Theorem 4.4 to get

(4.2) u(x) = min
ν∈ba(P)

{δ∗C(ν)− I∗Ux,B (ν)}.
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Proceeding as in Lemma 3.9 we deduce the existence of HB ∈ H such that
x1 + (HB · S)T ≥ B. Since ‖B‖L∞(P) := b <∞, for m ≥ b− x1 we have

x1 + (HB · S)T ∧m ≥ B.

Pick such an m0 and write RB = (HB · S)T ∧m0, an element of C. We have
the following inequalities for IUx,B(RB),

U(x− x1) ≤ IUx,B(RB) ≤ U(x+m0 + b).

This implies that

∣

∣IUx,B (RB)
∣

∣ ≤ max{|U(x +m0 + b)|, |U(x − x1)|} <∞.

We now show that IUx,B is continuous at RB with respect to the norm
topology on L∞(P). Suppose (Gn)n∈N is a sequence in L∞(P) converging to
RB and set ε0 := (x−x1)/2. For ‖Gn−R

B‖L∞(P) < ε0 we have the estimate

∣

∣U(x+Gn −B)
∣

∣ ≤ max{|U(x+m0 + ε0 + b)|, |U(ε0)|}.

The dominated convergence theorem now implies that IUx,B is continuous
at RB . The conditions of Theorem 4.4 are now satisfied and (4.2) follows.

The next step is to prove that

min
ν∈ba(P)

{δ∗C(ν)− I∗Ux,B(ν)} = min
ν∈M

(

E

[

Ũ

(

dνc
dP

)]

− ψν(B) + xν(Ω)

)

.

Using the fact that C is a cone one can show

(4.3) δ∗C(ν) = sup
G∈C

{ψν(G)} = δ(C)0(ν).

Here (C)0 denotes the polar of the cone C. In addition we have

I∗Ux,B(ν) = inf
G∈L∞(P)

{ψν(G)− IUx,B(G)}

= I∗U (ν) + ψν(B)− xν(Ω),(4.4)

where we have performed the change of variables F := x+G−B and defined

IU (F ) := E[U(F )].

Now IU is a normal concave integrand in the sense of [27]. To characterize
I∗U we use [1] Lemma 3.1, derived from [27] Theorems 1 and 2. It states that

(4.5) I∗U (ν) = IU∗(νc)− δ∗Dom(IU )(−νf ) for ν ∈ ba(P),
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where IU∗(νc) := E[U∗(dνc/dP)] and

(4.6) U∗(y) := inf
x>0

{xy − U(x)} = − sup
x>0

{U(x) − xy} = −Ũ(y).

Combining (4.3), (4.4), (4.5) and (4.6) we see that

min
ν∈ba(P)

{δ∗C(ν)− I∗Ux,B (ν)}

= min
ν∈ba(P)∩(C)0

(

E

[

Ũ

(

dνc
dP

)]

− ψν(B) + xν(Ω) + δ∗Dom(IU )(−νf )

)

.

Suppose ν ∈ M = (C)0, we want to show that δ∗Dom(IU )(−νf ) = 0. Indeed,

as L∞
− (P) ⊆ C we know that ν ≥ 0. In particular this implies that νf ≥ 0

and so ψνf (G) ≥ 0 for all G ∈ L∞
+ (P). Observe that U(x) = −∞ for x < 0

and so it must be the case that Dom(IU ) ⊆ L∞
+ (P). The above discussion

allows us to conclude

ψνf (G) ≥ 0 for all G ∈ Dom(IU ) and ν ∈ M.

As we have −ψνf (G) = ψ−νf (G) we see that

δ∗Dom(IU )(−νf ) = sup
G∈Dom(IU )

{ψ−νf (G)} ≤ 0.

However, for all ε > 0 we have that ε ∈ Dom(U) and hence for all ν ∈ M,

−ενf (Ω) ≤ δ∗Dom(IU )(−νf ) ≤ 0.

We then conclude that δ∗Dom(IU )(−νf ) = 0 for all ν ∈ M. Thus we can write

(4.2) as

u(x) = min
ν∈M

(

E

[

Ũ

(

dνc
dP

)]

− ψν(B) + xν(Ω)

)

.

This completes the proof of items (i) and (ii).

Remark 4.6. In [1] the authors apply a version of the Fenchel dual-
ity theorem from Luenberger [20] for which it is necessary that the set
Dom(IU ) ∩ Dom(δC) contains an interior point. This is nontrivial to check
and we therefore choose to use an alternative version of the Fenchel duality
theorem, Theorem 4.4, and prove the existence of a continuity point directly.
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Step II - Existence for the Primal Problem. Key in the proof of the
existence of a primal optimizer and corresponding replicating strategy is the
“dual” representation of R given in Lemma 3.9, the following is the crucial
result.

Lemma 4.7. For each x > supν∈Msup ψν(B) there exists H∗ ∈ H such
that

u(x) = E
[

U
(

x+ (H∗ · S)T −B
)]

.

Proof. We know from Lemma 4.5 that |u(x)| <∞ for x > supν∈Msup ψν(B).
In addition since B ≥ −b and Msup ⊂ ba+(P) we have

x > sup
ν∈Msup

ψν(B) ≥ −b,

so that x+ b > 0. Now fix x and take a sequence (Rn)n∈N with each Rn ∈ R
such that

lim
n→∞

E[U(x+Rn −B)] = u(x).

Since U(x) = −∞ for x < 0, by passing to a subsequence if necessary, we
may assume that

x+Rn −B ≥ 0 a.s. for all n.

In particular the sequence (Rn)n∈N is bounded below by a constant, uni-
formly in n. We may now apply Delbaen and Schachermayer [10] Lemma
A1.1 to find, for each n ∈ N, a sequence of convex combinations (λn,m)m≥n

and a random variable R∗ such that

R1
n :=

∑

m≥n

λn,mRm −→ R∗ a.s.

Each R1
n ∈ R and the sequence (R1

n)n∈N is bounded from below, uniformly
in n, and thus, for ν ∈ Mc,

ψν(R
1
n) = E

[

dν

dP
R1

n

]

≤ 0.

Applying Fatou’s lemma we see that

ψν(R∗) = E

[

dν

dP
R∗

]

≤ 0 for all ν ∈ Mc.

From Lemma 3.9 we deduce that R∗ ∈ R. Using the concavity of U we have
the following,

u(x) ≥ E[U(x+R1
n −B)] ≥

∑

m≥n

λn,mE[U(x+Rm −B)].



16 NICHOLAS WESTRAY AND HARRY ZHENG

This implies that
(

E[U(x+R1
n−B)]

)

n∈N
also converges to u(x). Exactly as

in [19] Lemma 1 if we show that
(

U(x+R1
n−B)+

)

n∈N
is uniformly integrable

the proof will be complete. For then, by reverse Fatou’s lemma and noting
R∗ ∈ R,

u(x) = lim sup
n→∞

E[U(x+R1
n −B)] ≤ E[U(x+R∗ −B)] ≤ u(x).

As R∗ ∈ R we know there exists some H∗ ∈ H with (H∗ · S)T ≥ R∗. Since
U is increasing this provides

u(x) = E[U(x+R∗ −B)] ≤ E
[

U
(

x+ (H∗ · S)T −B
)]

≤ u(x).

The statement of the lemma then follows.
Thus we suppose for a contradiction that the uniform integrability fails.

Exactly as in [19] we may find a sequence of disjoint sets (An)n∈N contained
in F and an ε > 0 such that, after possibly passing to a subsequence, again
indexed by n,

(4.7) E

[

U
(

x+R1
n −B

)+
1An

]

≥ ε.

Using the ν1 from Assumption 3.2, together with (3.2) and Lemma 4.5 we
see that for all r > 0 and z > supν∈Msup ψν(B),

(4.8) u(z) = w(z) ≤ E

[

Ũ

(

r
dν1c
dP

)

+ r(b+ z)
dν1c
dP

]

<∞.

For z sufficiently large u(z) ≥ U(z−b) ≥ 0 so that combining this with (4.8)
we deduce,

0 ≥ lim sup
z→∞

u(z)

z
≥ lim inf

z→∞

u(z)

z
≥ 0.

If U(z) ≤ 0 for all z > 0 then U+ is identically 0 and the uniform integrability
is immediate, hence we may assume there exists z > 0 such that U(z) > 0.

Define x2 <∞ by

x2 := inf{z ≥ x : U
(

z − 2(b+ x)
)

> 0},

as well as the sequence (R2
n)n∈N via

R2
n :=

n
∑

m=1

R1
m1Am .
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As each R1
m ≥ −(x+ b) and x+ b > 0 we have R2

n ≥ −(x+ b) for all n ∈ N

and

R2
n ≤

n
∑

m=1

(

R1
m + (x+ b)

)

1Am ≤
n
∑

m=1

R1
m + n(x+ b).

Let ν ∈ Mc, from the above we see that

ψν

(

R2
n − n(x+ b)

)

≤
n
∑

m=1

E

[

dν

dP
R1

m

]

≤ 0.

Using Lemma 3.9 we see that for each n ∈ N, R2
n − n(x+ b) ∈ R. We claim

that, in addition, for each n ∈ N,

(4.9) U(x2 +R2
n −B) ≥

n
∑

m=1

U
(

x+R1
m −B

)+
1Am.

Indeed, let us fix n ∈ N. If ω /∈ Am for all m then the right hand side is 0
and the left hand side satisfies

U(x2 +R2
n −B) ≥ U

(

x2 − (x+ b)− b
)

≥ 0.

If ω ∈
⋃n

m=1Am then since the sequence of sets (An)n∈N is mutually dis-
joint ω ∈ Am0

for some unique m0 satisfying 1 ≤ m0 ≤ n. As x2 ≥ x by
construction and U is increasing,

U(x2 +R2
n −B) = U

(

x2 +R1
m0

−B
)

≥ U
(

x+R1
m0

−B
)

.

Since R1
n ≥ −(x+ b) for all n we see from the definition of x2 that U

(

x2 +
R1

m0
−B

)

≥ 0. It follows that (4.9) holds. Recalling that R2
n −n(x+ b) ∈ R

as well as using (4.7) and (4.9) we have that

lim sup
z→∞

u(z)

z
≥ lim sup

n→∞

E
[

U
(

x2 + n(x+ b) +R2
n − n(x+ b)−B

)]

x2 + n(x+ b)

≥ lim sup
n→∞

nε

x2 + n(x+ b)
=

ε

x+ b
> 0.

This is our contradiction and completes the proof of item (iii).

Step III - The Duality Relations.

Lemma 4.8. Let ν∗ be the optimal dual solution and X∗ = x+(H∗ ·S)T
be the optimal terminal wealth as in Lemma 4.7 then we have

ψν∗
f

(

X∗ −B
)

= 0, ψν∗
(

X∗
)

= xν∗(Ω), X∗ −B ∈ −∂Ũ

(

dν∗c
dP

)

.
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Proof. Since Dom(U) ⊂ R+ and
∣

∣E
[

U
(

X∗ −B
)]∣

∣ < ∞ we have X∗ −
B ≥ 0. This implies that ψν∗

f

(

X∗−B
)

≥ 0. Now suppose for a contradiction

that this is strict. As
(

(H∗ · S)T
)−

∈ L∞(P) we have that (H∗ · S)T ∧ n is
in C for all n. Since ν∗ ∈ M this implies that ψν∗

(

(H∗ · S)T ∧ n
)

≤ 0 and
hence ψν∗

(

(H∗ · S)T
)

≤ 0. Using this together with the conjugate relations
we have,

u(x) = E
[

U
(

X∗ −B
)]

≤ E

[

Ũ

(

dν∗c
dP

)]

+ ψν∗c

(

X∗ −B
)

< E

[

Ũ

(

dν∗c
dP

)]

− ψν∗(B) + xν∗(Ω) = w(x).

Since we have proved that u(x) = w(x) we have our contradiction.
We know that ψν∗

(

(H∗ · S)T
)

≤ 0. To show that ψν∗
(

(H∗ · S)T
)

= 0
assume for a contradiction that the inequality is strict. We now have, using
ψν∗

f

(

X∗ −B
)

= 0,

u(x) ≤ E

[

Ũ

(

dν∗c
dP

)]

+ ψν∗c

(

X∗ −B
)

< E

[

Ũ

(

dν∗c
dP

)]

− ψν∗(B) + xν∗(Ω) = w(x).

This is again a contradiction. To establish that X∗ − B is in the appropri-
ate subgradient, we use [26] Theorem 23.5. This states that for conjugate
functions U and Ũ ,

U(x) ≤ Ũ(y) + xy for all y ≥ 0,

U(x) = Ũ(y) + xy if and only if x ∈ −∂Ũ(y).

Assume for a contradiction that the set

Λ :=

{

ω ∈ Ω : X∗(ω)−B(ω) /∈ −∂Ũ

(

dν∗c (ω)

dP

)}

,

satisfies P(Λ) > 0. We now have, using ψν∗
f

(

X∗ − B
)

= 0 and ψν∗
(

(H∗ ·

S)T
)

=0,

u(x) < E

[

Ũ

(

dν∗c
dP

)]

+ ψν∗c

(

X∗ −B
)

= E

[

Ũ

(

dν∗c
dP

)]

− ψν∗(B) + xν∗(Ω) = w(x).

This is again a contradiction and the proof of the item (iv) is complete.
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