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Abstract

This short note suggests a heuristic method for detecting the dependence of random

time series that can be used in the case when this dependence is relatively weak and

such that the traditional methods are not effective. The method requires to compare

some special functionals on the sample characteristic functions with the same function-

als computed for the benchmark time series with a known degree of correlation. Some

experiments for financial time series are presented.
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This short note presents some statistical experiments with the purpose to estimate the

dependence for time series. We suggest to compare historical time series with a series

with given and known correlation using a functional formed from empirical characteristic

functions defined similarly to Hong (1999). It gives a simple empirical method that allows

to estimate the dependence by comparing the values of this functional for two time series.

The suggested test can be an addition to dependence and correlation tests such as Pearson

test, Hoeffding’s test, Spearman test, Kendall Tau Rank test, or chi-square test; see, e.g.,

Conover (1999) and Hollander and Wolfe (1999). In our experiments, we used a simple

autoregression as the benchmark process. We present some results of experiments for time

∗Accepted to ”Communications in Statistics – Theory and Methods”; in press. Submitted: 17 May 2010.

Revised: 21 September 2010

1

http://arxiv.org/abs/1010.2576v1


series with admittedly weak dependence such as financial time series for returns of stock

prices.

Note that the problem of detecting the serial correlations for financial series is very

important for applications in finance. In particular, this problem is related to the open

problem of validation of ”technical analysis” methods that offer trading strategies based

on historical observations. The main benefit is that these strategies are model-free: they

require only historical data. This is why they are so popular among traders. There are

many different strategies suggested in the framework of ”technical analysis”. Hsu and Kuan

(2005) mentioned that there are more than 18,326 different empirical trading rules being

used in practice. However, the question remains open if the main hypothesis of technical

analysis is correct. This hypothesis suggests that it is possible to make a statistically reliable

forecast for future stock price movements using recent prices, and, finally, to find ”winning”

in statistical sense trading strategies. However, the dependence from the past (if any)

if extremely weak for the stock prices, and this dependence is difficult to catch by usual

statistical methods. Statistical studies of historical prices made as early as in 1933 didn’t

support the hypothesis that there is significant dependence from the past and predictability

for the stock prices; see the discussion and the bibliography in Chapter 2, pp. 37-38, from

Shiryaev (1999). This is the reason why the most common and mainstream model for the

stock prices is the random walk or its modifications. Recently, new efforts were devoted

to this problem, and some signs of possible presence of statistically significant dependence

from the past were found (see, e.g., Lo et al. (2000), Hsu and Kuan (2005)), Lorenzoni et

al (2007)). In particular, Lorenzoni et al (2007) found that, for a certain models of stock

price evolution, there is a statistically significant informational content in some patterns

from technical analysis. The computational experiments with our tests also show that the

financial time series have some dependence.

The paper is organized as follows. In Section 1 we describe the method and collect the

notation and definitions. Sections 2 contains description of the experiments with financial

time series. Sections 3 contains conclusions and some suggestions for future research.
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1 The method

Clearly, if random variables ξ and η are independent, then

e(q) = |EeiξqEeiξq − Eei(ξ+η)q| ≡ 0, q ∈ R. (1)

In (1), E denote the expectation, i =
√
−1 is the imaginary unit. Condition (1) is a necessary

but not a sufficient condition of independence; see example in Hamedani and Volkmer (2009).

If (1) holds then ξ and η are said to be subindependent.

We suggest to measure the sample analog of the function (1) for the time series and

their past history and match it with the similar function for a benchmark AR(1) series with

given correlation coefficient.

Let Rt be a time series (not necessary a stationary time series). Let Gt = {Rk}k=t
k=−∞ =

(Rt, Rt−1, Rt−2, ....) represent the history of the series. We are interested in detecting the

dependence of the current value of the series from the history.

We denote by E the sample mean over available historical data. Let ℓ∞ denote the set

of all bounded sequences {xk}+∞
k=0 ⊂ R.

We suggest to calculate the values

e(h, F, q) =
∣∣∣Eeiqh(Gt−1)EeiqF (Rt) −Eeiqh(Gt−1)+iqF (Rt)

∣∣∣, (2)

where h : ℓ∞ → R and F : R → R are some real valued functions, q ∈ R.

If e(q) is sufficiently different from zero under some statistical degree, then one is provided

with empirical evidence in favor of dependence.

To measure the degree of the dependence, we suggest to compare a norm of function

(2) with the same norm of a similar function calculated for some benchmark the time series

{R̃t} with certain given level of correlations. We suggest to use as the benchmark series the

time series generates by autoregression AR(1)

R̃t = aR̃t−1 + εt, (3)

where a ∈ (−1, 1), εt are samples from independent identically distributed random variables

such that Eεt = 0. These series can be created using Monte-Carlo simulation.

Let G̃t = {R̃k}k=t
k=−∞ = (R̃t, R̃t−1, R̃t−2, ....) . Let ẽ(h, F, q, a) be the corresponding value

(2) calculated with (Rt, Gt) replaced by (R̃t, G̃t).
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The following definition is rather heuristic but still gives an idea how to measure the

dependence from the history.

Definition 1.1 (i) Let functions h and F be given. Let a sample {Rt} be given. and

let AR(1) autoregression {R̃t} be defined by (3) with some given coefficient a ∈ R.

We say that the sets of characteristics (h(Gt−1, F (Rt))) and (h(G̃t−1, F (R̃t))) have the

same level of dependence from the history given (h, F ) if e(h, F, q) is similar in some

sense to ê(h, F, q, a).

(ii) Let a set P of the pairs of functions (h, F ) be given. We say that the sample {Rt}
have the same level of dependence from the history as autoregression {R̃t} defined by

(3) with the coefficient â = â(P) if this |â| is the supremum over all |a| such that there

exists (h, F ) ∈ P such that (h(Gt−1, F (Rt))) and (h(G̃t−1, F (R̃t))) have the same level

of dependence from the history.

Remark 1.1 In Definition 1.1(i), the nature of the required similarity is not specified. In

the experiments described below, we have assumed that the similarity is achieved when the

supq∈[0,q̄] e(h, F, q) = supq∈[0,q̄] ê(h, F, a, q) for q̄ > 0 defined by computational abilities and

decay of the functions; the interval [0, q̄] should be large enough. In other words, we accepted

that the similarity is achieved when these functions have the same norm in L∞(0, q̄). So far,

we have not compare this choice with other possible choices such as comparison of integrals
∫ q̄

0 e(h, F, q))dq and
∫ q̄

0 e(h, F, q))dq.

Note that it follows from the definitions that e(h, F, q) ≡ e(h, F,−q) and ê(h, F, a, q) ≡
ê(h, F, a, q); therefore, it suffices to consider q ≥ 0.

2 Statistical experiments

We have carried out the following experiment for the time series representing the returns

for the historical stock prices, i.e., when Rt
∆

= St/St−1 − 1 where St are the stock prices.

Using daily price data from 1984 to 2009 for 19 American and Australian stocks (Citibank,

Coca Cola, IBM, AMC, ANZ, LEI, LLC, LLN, MAY, MLG, MMF, MWB, MIM, NAB,

NBH, NCM, NCP, NFM and NPC), we generated samples of price data for one synthetic

return as {Rt} ∆

= {St/St−1 − 1}, where St is the price at day t. In fact, the full 47 years of
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data was not available for all the stocks; we have the size of sample equal to 69,948. Since

a conclusion about a technical analysis strategy can only be made after one collects the

results of using it as many times as possible (i.e., either for different stocks or for different

time intervals), we claim that our model and our experiment are not unreasonable.

Let I denote the indicator function.

Let us describe the the analysis done for three possible choices of functions h and F .

Choice 1:

h(Gt−1) = Rt−1, F (Rt) = Rt. (4)

We found that a(h, F ) = 0.1 for this case (see Fig.1).

Choice 2:

h(Gt−1) = I{Rt−1>0}, F (Rt) = I{Rt−1>0}. (5)

We found that a(h, F ) = 0.1 for this case (see Fig.2).

Choice 3.

h(Gt−1}) =
1

2
I{Rt−1>0} +

1

22
I{Rt−2>0} + ....+

1

2d
I{Rt−d>0},

F (Rt) = I{Rt>0}, (6)

where d is given. We found that a(h, F ) = 0.15 for this case with d = +∞ (see Fig.3).

Figures 1-3 show the samples of e(h, F, q) and ê(h, F, a, q) for (h, F ) defined by (4)-(6)

respectively, and for a = a(h,H) that maxqe(h, F, q) = maxq ê(h, F ).

On the choice of (h, F )

The functions (h, F ) in Choices 1-3 were not selected by some optimal way; we leave it for

future research. However, there are certain reasons for the particular Choices 2-3 for the

functions h and F instead of more straightforward Choice 3. First, the binary characteriza-

tion of increments helps to reduce calculations. Second, the Choices 2-3 reduces the impact

of volatility and give more emphasize on price movement in the spirit of technical analysis

for stock trading, where the sign of the changes is crucial. Special selection of h in the

Choice 2 allows to take in account all the history of the signs of the price movements (i.e.,
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the history reduced to the binary characteristics); the impact of older movements decays

exponentially. In our experiments, we found that Choices 2 and 3 ensures the most robust

results; the corresponding curves on the graphs generated by the benchmark AR(1) series

behave very regularly with respect to small changes of |a|. It can be illustrated by Fig 3

and Fig 4, where the results for Choice 3 with a = 0.15 and a = −0.12 respectively are

presented. The conditions of the experiment were the same except the choice of a.

In some other experiments that we leaved outside of this paper, we found that different

combinations of h and F from Choices 1-3 also give robust results that are close to the

results presented here. (In particular, we used the pair consisting of function F from Choice

1 and function h from Choice 3).

The experiments show that the maximum matching value of a(h, F, q) can be achieved

for the choice of (h, F ) defined by (6). Moreover, this result is quite robust with respect to

variations of the parameters and data sets. The graphs are practically not changing if we

remove any subset from the set of 19 stocks.

For these experiments, we developed a simple MATLAB programm. This programm

cannot run over a set of a, so the graphs for every particular a were analyzed one by one.

For every particular a, this programm gives the answer for the question: Is dependence of

underlying time series is stronger or weaker that the dependence of AR(1) with the coefficient

a? Obviously, a better programm could make automatic calculation of the best matching a.

On the direct computing the correlation of coefficient

In addition, we tested the hypothesis that the series for Rt is described as linear AR(1)

autoregression

Rt = βRt−1 + εt.

The standard least square estimator gives the value β̂ = −0.005 that is too small to indicate

the presence of correlation. The same value β̂ = −0.005 was obtained from Pearson Product-

Moment Correlation test for Rt and Rt−1. Moreover, this value β̂ coefficient appears to be

non-robust with changes of the data set; it varies significantly if we add or delete a particular

stock.

On the other hand, we found, using our test, that the series Rt has the same degree of

dependence as AR(1) regression (3) with coefficient a = 0.15. Therefore, we can conclude
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that the dependence cannot be expressed via straightforward calculation of the correlation

as the coefficient for the linear autoregression model.

Selection of sign a and Var εt for the benchmark series

Remark 2.1 In our criterion, we use only the value |a| and ignore the sign for the coefficient

a that defines the correlation of the benchmark series. The reason is that, as we observed

in the experiments, the shape of ê(h, F, q, a) is very close to the shape of ê(h, F, q,−a). It

can be illustrated by Fig 3 and Fig 4, where the results for Choice 3 with a = 0.15 and

a = −0.12 respectively are presented. The conditions of the experiment were the same

except the selection of a. Other experiments showed the same independence from the sign

of a for other choices of (h, F ).

In the experiments, we considered benchmark series with R̂0 = 0. For the Choices 2 and

3, the results are not affected by the selection of the value for Var εt. We used Var εt = 1

for the Choices 2 and 3. For the Choice 1, the selection of Var εt defines the scaling of

the function ê(h, F, a, q): for instance, let the series εt generates the function ê(h, F, a, q).

If we replace εt by kεt for some k > 0, then the function ê(h, F, a, q) will be replaced by

the function ê(h, F, a, kq), i.e., the value of supq ε(h, F, q) will not be affected but the visual

image of the graph of the function will be changed.

We found that a convenient scaling can be achieved with Var εt = (1 − a2)V , where V

is the sample second moment for Rt. In this case, Var R̃t is asymptotically close to V , and

it ensures a satisfactory scaling.

3 Other choices of benchmark processes

We have suggested to use the simplest AR(1) series as the benchmark series {Rt}. Alter-

natively, other models with certain predetermined level of serial dependence can be used,

such as Markov chains with a given size of non-diagonal elements in the matrix transitional

probabilities, or with an ARCH or GARCH process, or with autoregression of a higher order.

These model with multidimensional parameters have more flexibility. However, it is more

difficult to use them to order the series Rt with respect to the degree of dependence.
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Consider, for example, ARCH series for the purpose to generate a benchmark depen-

dence. Let us consider the following model for the benchmark process:

R̃t+1 = aR̃t + σtεt, σt = b+ cε2t .

For this model, the degree of the dependence is defined by (a, b, c). The case of c = 0

corresponds to AR(1) model that was used above. Matching the degree of dependence for

the ARCH model and for the observed series {Rk} leads for situation when the same degree

of dependence can be achieved with selection of parameters (a1, b2, c1) and (a2, b2, c2), where

(a1, b2, c1) 6= (a2, b2, c2). For example, we obtained that (a, b, c) = (0.02, 1, 0.08Eε2t ) gives

the same maximum of ê as (a, b, c) = (0.1, 0, 0) (i.e., without ARCH), with (h, F ) defined by

Choice 1. The corresponding plot is shown on Fig. 5 below. Therefore, the presence of vector

parameters lead to analysis of one-dimensional surfaces {(a, b, c)} ∈ R3 that correspond to

different level of dependence of stock returns. We leave it for future research.

4 Conclusion

We suggested a method that allows to make a fast detecting of dependence from the past and

some estimate of the degree of dependence via comparison with a benchmark AR(1) series.

This method requires to compare visually the graphs for functions e and ê. This estimate

is not very precise; however, it is quite robust with respect to variations of the parameters

and data sets. We used this method in statistical experiments with stock prices. We found

that the result of the experiments support the hypothesis that there is certain dependence

for financial time series. It gives a reason in favor of an existence of a statistically winning

strategy based on observations of recent prices (i.e., a winning ”technical analysis” trading

strategy).
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Figure 1: Shapes for e(h, F, q) for (h, F ) defined by (4) and for ê(h, F, a, q) with a = 0.1,

q ∈ [0, 180), Var εt = (1− a2)V ; —–: values of e(h, F, q); − − −: values of ê(h, F, a, q).
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Figure 2: Shapes for e(h, F, q) for (h, F ) defined by (5) and for ê(h, F, a, q) with a = 0.10,

q ∈ [0, 50); —–: values of e(h, F, q); − − −: values of ê(h, F, a, q).
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Figure 3: Shapes for e(h, F, q) for (h, F ) defined by (6) with d = +∞ and for ê(h, F, a, q)

with a = 0.15, q ∈ [0, 50); —–: values of e(h, F, q); − − −: values of ê(h, F, a, q).
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Figure 4: Shapes for e(h, F, q) for (h, F ) defined by (6) with d = +∞ and for ê(h, F, a, q)

with a = −0.12, q ∈ [0, 50); —–: values of e(h, F, q); − − −: values of ê(h, F, a, q).
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Figure 5: Shapes for e(h, F, q) and for ê(h, F, a, q) with (h, F ) defined for Choice 1 and for

ARCH benchmark model with a = 0.02, b = 1, c = 0.08Eε2t ; —–: values of e(h, F, q); − − −:

values of ê(h, F, a, q).
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