
ar
X

iv
:1

01
0.

19
94

v1
  [

q-
fin

.G
N

]  
11

 O
ct

 2
01

0

The Gompertz-Pareto Income Distribution

F. Chami Figueiraa, N.J. Moura Jr.b, M.B. Ribeiroc,∗

aChemical School, Federal University of Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
bBrazilian Institute for Geography and Statistics-IBGE, Rio de Janeiro, Brazil

cPhysics Institute, Federal University of Rio de Janeiro-UFRJ, CxP 68532, Rio de Janeiro, RJ 21941-972, Brazil

Abstract

This work analyzes the Gompertz-Pareto distribution (GPD)of personal income, formed by the combination of the
Gompertz curve, representing the overwhelming majority ofthe economically less favorable part of the population of
a country, and the Pareto power law, which describes its tinyrichest part. Equations for the Lorenz curve, Gini coeffi-
cient and the percentage share of the Gompertzian part relative to the total income are all written in this distribution.
We show that only three parameters, determined by linear data fitting, are required for its complete characterization.
Consistency checks are carried out using income data of Brazil from 1981 to 2007 and they lead to the conclusion
that the GPD is consistent and provides a coherent and simpleanalytical tool to describe personal income distribution
data.
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1. Introduction

The mathematical characterization of income distributionis an old problem in economics. Vilfredo Pareto [1]
was the first economist to discuss it in quantitative terms and it bears his name the law he found empirically in which
the tail of the cumulative income distribution, formed by the richest part of the population of a country, follows a
power law pattern. Since then, thePareto power lawfor income distribution has been verified to hold universally, for
various countries and epochs [2]. Despite the empirical success of this law, the characterization of the lower income
region, representing the overwhelming majority of the population in any country, remained an open problem. Various
functions with an increasing number of parameters were proposed by economists to represent the lower part, or the
whole, of the income distribution [3]. However, no consensus emerged on what would be the most suitable way of
representing the whole income distribution of countries.

In the middle 1990s physicists became interested in problems which until then were considered the exclusive realm
of economists. Econophysicists approached these problemsin a data driven mode [4, 5, 6, 7], that is, with none, or
little, consideration to the typical neoclassical economics mind-frame in which axiomatic, some would say ideological
[8, 9], considerations take precedence over real data [6, 10]. Ignoring this empirically flawed mindset [11, 12, 13, 14,
15, 16, 17, 18], efforts have been made by econophysicists, helped later by a fewnon-representative economists, to
carefully study real data of economic nature. This gave a newimpetus to the income distribution problem due to an
emerging body of fresh results, as well as hints from statistical physics on how it could be dynamically modeled [19].

Drăgulescu and Yakovenko [20, 21, 22] advanced an exponential type distribution of individual income similar to
the Boltzmann-Gibbs distribution of energy in statisticalphysics. Chatterjee et al. [23] discussed an ideal gas model
of a closed economic system where total money and agents number are fixed. Clementi et al. [24, 25, 26] proposed
the k-generalized distribution as a descriptive model for the size distribution of income, based on considerations of
statistical physics. Willis and Mimkes [27] used log-normal and Boltzmann distributions to argue in favor of a separate
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treatment of waged and unwaged income. Moura Jr. and Ribeiro[28] showed that the Gompertz curve combined with
the Pareto power law provide a good descriptive model for thewhole income distribution and where the exponential
appears as an approximation for the middle portion of the individual income data. In this model the Gompertz curve
represents the overwhelming majority of the economically less favorable part of the population, whereas the Pareto
law describes the richest part.

Regarding the related phenomenon of wealth distribution, related because income and wealth are not the same
quantity and, therefore, should not be confused (see [28] and §4 below), Solomon [29] argued that a power-law
wealth distribution implies in Levy-flights returns, whereas Bouchaud and Mézard [30] reached a Pareto power-law
wealth distribution in a model containing exchange betweenindividuals and random speculative trading. Solomon
and Richmond [31] used a generalized Lotka-Volterra model to show that the wealth distribution among individual
investors fulfills a power law, Repetowicz et al. [32] studied a model of interacting agents that allows agents to both
save and exchange wealth, Coelho et al. [33] revealed the existence of two distinct power law regimes in wealth
distribution, one for the super-rich and another with smaller Pareto exponents for the top earners in income data sets,
and Scafetta et al. [34] used a two-part function stochasticmodel to discuss trade and investment dynamics of a society
stratified in two distinct classes (more on this in§4 below). Further references on income and wealth distribution can
be found in Yakovenko and Rosser [22], as well as in [28] and [35].

The aim of this paper is to discuss further the model advancedby Moura Jr. and Ribeiro [28]. We show here
that this combined model, named asGompertz-Pareto distribution(GPD), provides a simple way of modeling income
distribution since it is formed by simple functions and is fully characterized by three positive parameters which can be
determined by linear data fitting. We discuss simple consistency tests in order to ascertain whether or not the results
produced by the model can recover basic features of the original distribution, namely the Lorenz curves, the Gini
coefficients and the percentage share of the Gompertzian population relative to the total income of the country. We
conclude that the GPD is consistent and provides a coherent and conveniently very simple way of modeling income
data.

The GPD is a power-law tailed distribution and, as such, it islikely to have a larger set of applications than just
income distribution. This is so because a very wide range of observed phenomena in physical, biological and social
sciences are known to be described by power-law tailed distributions. For instance, in physical sciences this is the
case of galaxy distribution [36, 37], relativistic cosmology [38, 39, 40, 41, 42, 43] and turbulence [44]. In human
activities these distributions are found in citation of scientific papers [45], intensity of wars [46] and their military
and civilian casualties [47, 48], population of cities [49]and stock prices [50]. In biological sciences, power-law
tailed distributions were found in botany [51], genomics [52] and branching networks of biological systems [53].
Refs. [54] and [55] provide several other examples of physical, biological and social systems exhibiting power-law
tailed distributions. The Gompertz curve is known to be a good descriptor of population dynamics, mortality rate and
growth processes in biology [see 28, and references therein]. Therefore, a system whose distribution is characterized
by the combination of the Gompertz curve and a power-law tailsuggests that growth may possibly be one of the main
dynamical components of its underlying complex system dynamics.

The plan of the paper is as follows. In§2 we review the basic equations for modeling income distribution data.
Section 3 presents the equations for the GPD of individual income and extends the model to describe the most basic
descriptive tools used to measure income inequality, namely the Lorenz curve and the Gini coefficient. We also discuss
how the GPD has an exponential type behavior in its middle part. Section 4 applies the model to the income data of
Brazil from 1981 to 2007 and also presents new results not available in [28]. Consistency checks are provided by
re-obtaining the Lorenz curves, Gini coefficients and the percentage share of the Gompertzian part of the distribution.
These are derived from the parameters of the model and compared with the original, not model based, equivalent
results. It is shown that the results coming from the GPD are self-consisted. Section 5 ends the paper with the
conclusions.

2. Basic Equations

This section reviews very briefly the most essential quantities and functions necessary for the analytical description
of the individual income distribution. We followed the comprehensive treatment provided by Ref. [2], although a
slightly different notation and normalization was adopted to match similar choices made in Ref. [28].
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Let us defineF (x) to be thecumulative income distributiongiving the probability that an individual receives an
income less than or equal tox. Then thecomplementary cumulative income distribution F(x) gives the probability
that an individual receives an income equal to or greater than x. It follows from these definitions thatF (x) andF(x)
are related as follows,

F (x) + F(x) = 100, (1)

where the maximum probability was taken as 100%. Herex is a normalized income, obtained by dividing the nominal,
or real, income values by some suitable nominal income average [28]. If both functionsF (x) andF(x) are continuous
and have continuous derivatives for all values ofx, we have that,

dF (x)/dx= f (x), dF(x)/dx= − f (x), (2)

and
∫ ∞

0
f (x) dx= 100, (3)

where f (x) is theprobability density function of individual income, defined such thatf (x) dx is the fraction of indi-
viduals with income betweenx andx+ dx. The expressions above bring about the following results,

F (x) − F (0) =
∫ x

0
f (w) dw, (4)

F(x) − F(∞) =
∫ ∞

x
f (w) dw. (5)

The boundary conditions below approximately apply to our problem,
{

F (0) = F(∞) � 0,
F (∞) = F(0) � 100.

(6)

Clearly bothF (x) andF(x) vary from 0 to 100. It is simple to see that these conditions,together with the definitions
(2), lead the normalization (3) to be written as follows,

∫ 100

0
dF = −

∫ 0

100
dF =

∫ ∞

0
f (x) dx= 100. (7)

The average income of the whole population may be written as,

〈x〉 =

∫ ∞

0
x f(x) dx

∫ ∞

0
f (x) dx

=
1

100

∫ ∞

0
x f(x) dx, (8)

whereas the first-moment distribution functionF1(x) is given by,

F1(x) = 100

∫ x

0
w f(w) dw

∫ ∞

0
w f(w) dw

=
1
〈x〉

∫ x

0
w f(w) dw. (9)

Thus,F1(x) varies from 0 to 100 as well.
One of the most common tools to discuss income inequality is theLorenz curve, comprising of a 2-dimensional

curve whose x-axis is the proportion of individuals having an income less than or equal tox, whereas the y-axis is the
proportional share of total income of individuals having income less than or equal tox. In other words, the horizontal
coordinate of the Lorenz curve represents the fraction of population with income belowx and the vertical coordinate
gives the fraction of total income of the population receiving income belowx, as a fraction of the total income of
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this population [2, p. 30]. Analytically, the cumulative income distributionF (x) given by equation (4) and boundary
condition (6) defines thex-axis of the Lorenz curve, that is,

F (x) =
∫ x

0
f (w) dw, (10)

whereas they-axis of the Lorenz curveis defined by the first-moment distribution functionF1(x) given by equation
(9). The curve is usually represented in a unit square, but due to the normalization (3) above, here the square where
the Lorenz curve is located has area equal to 104.

The Lorenz curve allows us to define another commonly used index to measure the inequality of the income
distribution, the Gini coefficient. This is constructed with the ratio of the area between the egalitarian line, defined
as the diagonal connecting points (0,0) and (100,100), and the Lorenz curve to the area of the triangle beneath the
egalitarian line [2, pp. 32, 71]. The expression of this coefficient under the currently adopted normalization may be
written as,

Gini = 1− 2× 10−4
∫ 100

0
F1 dF = 1− 2× 10−4

∫ ∞

0
F1(x) f (x) dx. (11)

3. The Gompertz-Pareto Income Distribution

It was advanced in Ref. [28] that the complementary cumulative income distribution is well described by two
components. The first, representing the overwhelming majority of the population (∼ 99%), is given by aGompertz
curve, whereas the second, representing the richest tiny minority (∼ 1%), is described by thePareto power law. Then,
the complementary cumulative distribution yields,

F(x) =















G(x) = ee(A−Bx)
, ( 0 ≤ x < xt), (Gompertz)

P(x) = β x−α, (xt ≤ x ≤ ∞), (Pareto)
(12)

and the cumulative income distribution may be written as below,

F (x) =















G(x) = 100− ee(A−Bx)
, ( 0 ≤ x < xt),

P(x) = 100− β x−α, (xt ≤ x ≤ ∞).
(13)

Herext is the income value threshold of the Pareto region. It follows from these equations that the probability density
income distributions of both components may be written according to the expressions below,

f (x) =















g(x) = B e(A−Bx) ee(A−Bx)
, ( 0 ≤ x < xt),

p(x) = α β x
−(1+α)

, (xt ≤ x ≤ ∞).
(14)

This distribution is seemingly characterized by five parameters: A, B, xt, α, β. There are, however, two addi-
tional constraints and one restriction which reduce the parametric freedom of the distribution. Firstly, the boundary
conditions (6) determine the value ofA. Indeed, we have that,

F(0) = 100 =⇒ A = ln (ln 100) . (15)

Secondly, the normalization (3) of the probability density, written as,
∫ xt

0
B e(A−Bx) ee(A−Bx)

dx+
∫ ∞

xt

α β x
−(1+α)

dx= 100, (16)

and the continuity of the functions (12) across the frontierbetween the Gompertz and Pareto regions, defined asx = xt,
both lead to the determination ofβ by means of the following constraint equation,

β = (xt)α ee(A−Bxt)
. (17)
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In addition, considering eqs. (8) and (14), it is simple to show that the average income of the whole population in the
GPD may be written as follows,

〈x〉 =
1

100

[

I(xt) +
α β

(α − 1)
xt
−(α−1)

]

, (18)

whereI(x) is given by the following, numerically solvable, integral,

I(x) ≡
∫ x

0
w g(w) dw=

∫ x

0
w B e(A−Bw) ee(A−Bw)

dw. (19)

Clearly the average in eq. (18) will only converge if

α > 1. (20)

As discussed in Ref. [28], although extremely rich individuals do exist, there are limits to their wealth and, hence, the
average income cannot increase without bound.

Summarizing,the Gompertz-Pareto distribution is fully characterized by three parameters under the following
restrictions,



















α > 1,
xt > 0,
B > 0.

(21)

These parameters can be determined directly from observed data, that is, from a sample ofn observed income values
x j , such that,

{x j} : ( j = 1, . . . , n), (x1 = xmin). (22)

Inasmuch as both equations (12) can be linearized, we can determine the unknown parameters by linear data fit-
ting. It should be noted, however, that minimal 3-parameters fits also appear in other models of income and wealth
distribution, like in Scafetta et al. [34] and Banerjee and Yakovenko [35].

3.1. Exponential Approximation

It is known that the middle section of the income distribution data from various countries can be modeled by
exponential-type functions [21, 22, 23, 24, 26, 34]. Under suitable approximation the GPD does allow for this empir-
ical feature to hold [28]. For large values ofx the termBx dominates over the parameterA in the first equation (12),

allowing us to write thatG(x) ≈ ee−Bx
. In addition, whene−Bx < 1, the Taylor expansion below holds,

ee−Bx
= 1+ e−Bx+

1
2

(

e−Bx
)2
+

1
6

(

e−Bx
)3
+ . . . (23)

The densityg(x) in eq. (14) can also be similarly approximated and, therefore, we can write the following exponential
approximations for the middle and upper sections of the GPD,

{

G(x) ≈ 1+ e−Bx,

g(x) ≈ B e−Bx.
(24)

These approximations hold only in the Gompertzian part of the distribution, i.e., forx < xt.

3.2. The Lorenz Curve

As discussed above, the first-moment distribution functionF1(x) given by equation (9) defines the y-axis of the
Lorenz curve, whereas the cumulative income distribution functionF (x) given by eq. (10) defines the x-axis. Applying
equations (14) to these definitions and considering eqs. (15), (18) and (19), the axes of the Lorenz curve for the GPD
yield,

F (x) =















100− ee(A−Bx)
, (0 ≤ x < xt),

100− ee(A−Bxt)
− β (x−α − xt

−α) , (xt ≤ x < ∞),
(25)
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and

F1(x) =







































I(x)
〈x〉
, (0 < x < xt),

100+
α β

(1− α)
x(1−α)

〈x〉
, (xt ≤ x < ∞; ).

(26)

3.3. Gini Coefficient

The Gini coefficient as defined by equation (11) must now take into consideration the results appearing in equations
(14) and (26). Thus, in the GPD, equation (11) becomes,

Gini = 1− 2× 10−4



















B
〈x〉

xt
∫

0

I(x) e(A−Bx)ee(A−Bx)
dx+ 100β xt

−α +
α2β2 xt

(1−2α)

〈x〉(α − 1)(1− 2α)



















. (27)

4. Application to the Brazilian Data: 1981 - 2007

The income distribution of Brazil from 1978 to 2005 was detailed studied by Moura Jr. and Ribeiro [28], where
it was shown that the GPD provides a good representation for the Brazilian income data. All parameters of this
distribution were fitted to this time span, although it became clear that the results for 1978 and 1979 were prone to
large errors resulting from probable inconsistencies in the original sample. Due to this, here we shall disregard the data
for these two years, but include previously unpublished results for 2006 and 2007. Table 1 presents the parameters of
the Gompertz-Pareto income distribution for Brazil from 1981 to 2007, as well as values foru, thepercentage share
of the Gompertzian part of the income distribution, and the Gini coefficient.

At this point it is important to note that the Gini coefficients can be obtained without any assumption regarding the
shape and functional form of the income distribution, that is, they can be obtained independently of the GPD. Similarly,
althoughxt is used as a cut-off income value necessary to obtainu, its evaluation does not require information about
the shape and form of the distribution and, hence, it is also model independent. Theseoriginal values forGini and
u obtained directly from the data, are shown unmarked in columns 6 and 7 from left to right in Table 1. These
remarks make it possible to check the consistency of the Gompertz-Pareto representation of the Brazilian income
distribution by rebuilding the Lorenz curves for each year,re-obtaining the Gini coefficients by means of equation
(27) and comparing with the original ones.

Similar calculation is possible to do withu once we note that, by definition, we may write the following equation,

u = F1(xt). (28)

Considering eqs. (17) and (26), we reach an expression linking the percentage share of the lower income class with
the parameters of the GPD. It may be written as follows,

u = 100−
α

(α − 1)
xt

〈x〉
ee(1.52718−Bxt)

. (29)

Figure 1 shows the Lorenz curves for Brazil obtained from theGPD using the values ofα, xt andB provided in
Table 1 in equations (25) and (26). Vertical and horizontal error bars obtained by standard error propagation techniques
are provided as a general indication of uncertainties. The plots show that the curves are consistent with the behavior
one would expect of the Lorenz curves and compare satisfactorily with the original ones presented in Ref. [28].

The results for the Gini coefficient and the percentage share of the Gompertzian part obtained by using the pa-
rametersα, xt andB of Table 1 in equations (27) and (29) are shown at the last two columns on the right in Table 1.
These werecalculatedby assuming the GPD and are shown asGini∗ andu∗. Uncertainties were also calculated by
standard error propagation techniques, but should not be viewed at their face values, but just as general indications
of error margins since we are not dealing with experimental errors stemming from experimental devices in carefully
controlled environments available in laboratories where measurement limitations can be precisely determined. How-
ever, one can see by comparingGini with Gini∗ andu with u∗ that in general the calculations recover both quantities,
indicating an overall consistency between the GPD and the individual income data of Brazil from 1981 to 2007.
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Table 1: Parameters of the GPD for the income data of Brazil. The results from 1981 to 2005 were first shown in Ref. [28], whereas for 2006 and
2007 are new. The theoretically predicted valueA = 1.52718 in eq. (15) was found with a maximum discrepancy of 2.15%. B, xt andα were
obtained by linear data fitting andβ was found by means of the constraint equation (17), where thetheoretical result forA was used. Lorenz curves
were generated from the data for each year, allowing the calculation of the Gini coefficients. Oncext was found, it became possible to determine
u, the percentage share of the Gompertz part of the income distribution, directly from the data. See [28] for details on these calculations. The last
two columns on the right show the results for the Gini coefficient and the percentage share of the Gompertzian segment calculated by usingα, xt

andB in equations (27) and (29). These calculated values are denoted asGini∗ andu∗ in order to differentiate them from the original valuesGini
andu obtained without assuming the GPD. Errors forGini∗ andu∗ were estimated by quadratic propagation and are provided here just as a general
indication of uncertainties since we are not dealing with a tightly controlled experimental environment. Comparison of both Gini coefficient values
show that the originalGini results fall under the calculated errors ofGini∗ . If we dismiss these uncertainties, we note that the values of Gini∗ have
a maximum discrepancy of 7% to the originalGini ones. Similarly,u∗ was calculated by means of equation (29) and uncertainties were obtained
by quadratic propagation where we allowed for a 2.15% uncertainty in A (see above). If one dismisses the uncertainties inu∗, one can verify that
the discrepancies betweenu andu∗ are not higher than 6%, a result which indicates a good consistency between the GPD and Brazil’s income data.

year B xt α β Gini u Gini∗ u∗

1981 0.342± 0.016 7.533 2.839± 0.109 438± 98 0.574 87.7 0.613± 0.088 82.5± 5.1
1982 0.342± 0.015 7.473 2.677± 0.057 312± 38 0.581 87.1 0.615± 0.049 82.0± 3.2
1983 0.330± 0.010 6.910 2.636± 0.047 261± 25 0.584 85.5 0.611± 0.039 81.6± 2.8
1984 0.332± 0.013 7.388 2.839± 0.109 434± 96 0.576 87.2 0.611± 0.087 82.4± 5.1
1985 0.329± 0.010 7.490 2.656± 0.052 311± 34 0.589 85.8 0.614± 0.044 81.9± 3.0
1986 0.344± 0.013 7.112 2.567± 0.034 229± 17 0.580 85.2 0.615± 0.031 81.6± 2.5
1987 0.343± 0.016 7.626 2.724± 0.070 354± 52 0.592 85.9 0.615± 0.059 82.2± 3.7
1988 0.324± 0.015 8.140 2.874± 0.122 576± 149 0.609 85.4 0.614± 0.102 82.6± 5.8
1989 0.317± 0.010 7.856 2.777± 0.086 448± 81 0.628 82.5 0.612± 0.072 82.3± 4.3
1990 0.335± 0.016 8.074 2.636± 0.047 335± 36 0.605 85.9 0.618± 0.044 81.8± 3.0
1992 0.364± 0.019 7.635 2.636± 0.047 283± 30 0.578 87.0 0.619± 0.044 81.8± 2.9
1993 0.330± 0.008 7.674 2.567± 0.034 270± 19 0.599 84.1 0.616± 0.030 81.6± 2.4
1995 0.333± 0.012 7.887 2.777± 0.086 432± 78 0.596 85.9 0.615± 0.072 82.3± 4.3
1996 0.347± 0.020 8.163 2.749± 0.077 421± 71 0.598 86.7 0.619± 0.068 82.1± 4.1
1997 0.338± 0.016 7.935 2.617± 0.043 310± 30 0.598 86.1 0.618± 0.040 81.8± 2.8
1998 0.326± 0.009 7.628 2.677± 0.057 338± 40 0.597 84.5 0.614± 0.048 81.9± 3.2
1999 0.331± 0.013 7.811 2.777± 0.086 426± 77 0.590 86.0 0.614± 0.072 82.3± 4.3
2001 0.335± 0.011 7.774 2.724± 0.070 375± 55 0.592 85.2 0.615± 0.059 82.1± 3.7
2002 0.339± 0.015 7.878 2.777± 0.086 424± 77 0.586 86.4 0.615± 0.073 82.3± 4.3
2003 0.333± 0.009 7.374 2.777± 0.086 381± 67 0.579 85.4 0.612± 0.070 82.3± 4.2
2004 0.342± 0.015 7.653 3.104± 0.226 775± 358 0.582 87.2 0.611± 0.175 83.1± 9.7
2005 0.326± 0.009 7.403 2.839± 0.109 444± 97 0.580 86.2 0.610± 0.087 82.4± 5.0
2006 0.327± 0.014 7.910 3.749± 0.561 3295± 3824 0.581 87.9 0.605± 0.408 84.2± 22.4
2007 0.334± 0.009 6.934 2.839± 0.109 385± 82 0.572 85.7 0.608± 0.084 82.3± 4.9
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Figure 1: Lorenz curves for Brazil from 1981 to 2007 obtainedby using the GPD parameters of Table 1 in equations (25) and (26). The small
arrows indicate the approximate point of transition from the Gompertz region to the power-law regime. Vertical and horizontal error bars represent
uncertainties calculated by standard error propagation techniques. They are divided in two groups according to how well similar curves collapse to
a single curve. The top left graph shows the curves from 1981 to 1998, whereas the top right plot presents the Lorenz curvesfrom 1999 to 2007,
except 2004 and 2006 which are both shown separately at the bottom. The plots themselves show clearly that, excluding 2004 and 2006, all other
curves fall in two distinct groups, since the collapsed curves become very well defined. The Brazilian Lorenz curves present a remarkable stability
in their respective time frames, even considering the hyperinflation period, which is included in the top left plot. The graphs for 2004 and 2006
are shown individually at the bottom because in these volatility is highest. This is a consequence of the fact that the Brazilian agency responsible
for collecting income data carried out a much more restricted sampling in those years, resulting in much shorter Pareto tails and, hence, higher
fluctuations, as compared to the other years. Since the Gompertz curve is a double exponential, larger fluctuations are greatly amplified at the
middle upper range of the Gompertzian section of the distribution.
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Figure 2 shows a plot for both originalGini and calculatedGini∗ coefficients appearing in Table 1. One can verify
a general agreement between both results, indicating a goodconsistency between the GPD and the Brazilian personal
income data in the studied time span. A better comparison is shown in Fig. 3 where the curves were zoomed in and
error bars removed for better clarity. It is clear from this plot that our calculatedGini∗ values were systematically
overestimated as compared the originalGini. However, this difference is small, having a maximum discrepancy of
7%. That might be a result of a possible statistical bias, probably present in the original estimation of the GPD
parameters. In any case, one can verify a general agreement in the evolving tendency of the two curves. From 1983 to
1993 there are visible high fluctuations in the original Ginicoefficients, a period which is within the high inflationary
period Brazil went through by the end of the last century. In fact, the peak of this period is 1989, when Brazil suffered
from hyperinflation reaching almost three digits per month.After 1994, the year when inflation came to an abrupt
end, the two lines tend to follow each other with a systematic, but stable, difference.
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G
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Figure 2: Plots comparing the original Gini coefficients with the calculated ones in Table 1. One can see a general agreement between both sets of
points, indicating consistency between the GPD and Brazil’s personal income data in the period analyzed here.

The results for the percentage share of the Brazilian population whose income is inside the Gompertzian part of
the distribution are shown in Fig. 4. There we can see again a general consistency between the originalu values
with the calculatedu∗ of Table 1. Figure 5 shows the same results, but zoomed in and without error bars. Similarly
to the Gini coefficients, one can verify a systematic difference between both lines, but now the calculated valuesu∗

are underestimated as compared to the original ones. We can again see high fluctuations in the original values from
1988 to 1994, a period within the high inflationary era in Brazil. The deepest valley occurs in 1989, the year of
highest hyperinflation in Brazil. Nevertheless, the two curves tend to evolve in a similar fashion, also featuring an
approximately stable discrepancy whose maximum is 6%.

As final comments, one may ask if a combined two-part functionis more appropriate to describe income distribu-
tion rather than a single function, no matter how complicated. It was argued in Ref. [28] that from an econophysical
viewpoint the paramount objective of an accurate empiricalcharacterization of income distribution is to reveal the
underlying dynamics of this system and its governing differential equations. On this point one should mention the
model advanced by Scafetta et al. [34] [see also 56, 57] wherethe distribution ofwealth, not income, can be explained
by a two-part function, where the low to medium range is fittedto the gamma function and the high wealth is fitted to
the Pareto power-law. If the less wealthy has in trade the origin of their resources, with trade being statistically biased
in favor of the poor, and the rich obtain their resources frominvestment, then the model reproduces the stratification
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Figure 3: This graph shows the same results of Fig. 2, but zoomed in and without error bars for better clarity. High fluctuations can be seen from
1983 to 1993 in the originalGini values, a period which coincides with very high inflation, peaking with hyperinflation in 1989, the highest peak of
the lower curve. The plot also shows a systematic difference between both lines for most of the studied time span, varying mostly from 0.02 to 0.03
and reaching its maximum of 0.041 in 1992 which is within the strong inflationary period Brazil experienced at that time. Despite this systematic
difference, which might be a result of some statistical bias present in the original determination of the GPD parameters, onecan observe a general
consistency between both curves, especially if we bear in mind that this discrepancy does not go higher than a 7%, a value which could possibly be
taken as the upper limit of this possible bias.
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Figure 4: This graph shows the evolution ofu, the percentage share of the total income of the Gompertzianpart of the distribution, originally
obtained without assuming the GPD, as compared with the calculated ones listed asu∗ in Table 1 and obtained using the fitted GPD parameters.
Similarly to the case of the Gini coefficients, one can see a general consistency between both results, although a systematic discrepancy is also
present (see Fig. 5).
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Figure 5: This graph shows the same results of Fig. 4, but zoomed in and with error bars removed for better clarity. We can verify that there is a
systematic underestimation of the calculated results foru∗ as compared to the original ones listed asu in Table 1. This discrepancy has, however,
a maximum value of 6%, being, therefore, very close to the onefound in the Gini coefficients (see Fig. 3). One can also see high fluctuations in
the original results during the inflationary period of Brazil. However, here these fluctuations seem to be restricted to the somewhat shorter period
lasting from 1988 to 1994. The deepest valley occurs in 1989,the year when Brazil was hit by hyperinflation. Since this systematic discrepancy is
small and mostly stable, the results indicate that overall the GDP provides a good and consistent way of modeling income distribution data.

of society into a small upper class comprising about 1% of thepopulation and the remaining 99% forming a large
middle class together with a poor class. So, two functions mean two different, but inter-related, dynamics: the gamma
function would represent returns in trade and the Pareto power-law returns in investment. So, the less wealthy trade
with an advantage their only low-return resource, their ownlabor.1

To reach these conclusions, Ref. [34] developed a stochastic model built upon some economic concepts which
may provide useful in further studies of the dynamics of income distribution. Thus, wealth should not be confused
with income, since, although related, the former comprisesall assets and liabilities of a person reported at a certain
moment, e.g., at the person’s death, whereas income is the quantity of money, or its equivalent, a person receives in a
certain period of time in exchange for sale of goods or property, services, labor or profit from financial investments. So,
similarly to [28], it seems reasonable to state that income is a flux of money, or its equivalent, per time unit, whereas
wealth could be thought of as income less consumption integrated over a period of time plus a constant representing
assets obtained in a previous time period. In addition, Scafetta et al. [34] define investment as “any act that creates
or destroys wealth” and trade as “any type of economic transaction.” Accordingly, in a trade transaction the total
wealth is conserved and the rich receive their returns from investments as they own the means of large production.
They conclude by arguing that this trade bias in favor of the poor is not only possible, but necessary so that society is
stabilized in order to avoid the catastrophic situation where the entire wealth of the society becomes concentrated in
the hands of very few extremely wealthy people.

Therefore, a two-part function may provide important hintsto the underlying dynamics of income distribution,
hints on the relationship between the upper and lower sections of the distribution function which would otherwise
remain hidden if one were to use a single distribution function. This seems specially true when one considers that
society is formed by economically distinct classes that maybe better represented by distinct functions, which in turn
possess distinct, but inter-related, dynamics.

1We are grateful to a referee for pointing this out.
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5. Conclusions

In this paper we have studied the Gompertz-Pareto distribution (GPD), formed by the combination of the Gompertz
curve, representing the overwhelming majority of the economically less favorable part of the population of a country,
and the Pareto power law, describing its tiny richest part. We discussed how the GPD is fully characterized by
only three positive parameters, inasmuch as boundary and continuity conditions limit the parametric freedom of this
distribution, and which can be determined by linear data fitting. Equations for the cumulative income distribution,
complementary cumulative income distribution, income probability density, Lorenz curve, Gini coefficient and the
percentage share of the Gompertzian part were all written inthis distribution. We discussed how the GPD allows for
an exponential approximation in its middle and upper sections outside the Paretian region.

Application of this income distribution function was made to the Brazilian data from 1981 to 2005, previously
published by Moura Jr. and Ribeiro [28], with additional newresults for 2006 and 2007. Consistency tests were carried
out by comparing the Gini coefficients obtained directly from the original data, without any assumption for the shape
and form of the distribution, with results obtained by usingthe fitted parameters in order to re-obtain those coefficients.
Similar tests were made with the values of the percentage share of the Gompertzian part of the distribution. The results
indicate a general consistency between the original valuesof both quantities as compared to the calculated ones using
the GPD parameters, although we found a systematic, but mostly stable, discrepancy between these quantities in the
range of 6% to 7%. This small discrepancy might be due to some statistical bias possibly present in the original
calculation of the GPD parameters of Brazil.

In conclusion, the results presented in this paper suggest that the GPD does provide a coherent and analytically
simple representation for income distribution data leading to consistent results, at least as far as data from Brazil is
concerned.

We are grateful to 4 referees for their useful comments and suggestions, as well as for pointing out various
interesting papers which at the time of writing the first version of this article we were unaware of.
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