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Abstract. - In statistical physics, the conservation of particle number results in the equalization
of the chemical potential throughout a system at equilibrium. In contrast, the homogeneity of
utility in socio-economic models is usually thought to rely on the competition between individuals,
leading to Nash equilibrium. We show that both views can be reconciled by introducing a notion
of chemical potential in a wide class of socio-economic models, and by relating it in a direct way to
the equilibrium value of the utility. This approach also allows the dependence of utility across the
system to be determined when agents take decisions in a probabilistic way. Numerical simulations
of a urban economic model also suggest that our result is valid beyond the initially considered
class of solvable models.

Socio-economic sciences and statistical physics are both
interested in the evolution of systems characterized by a
large number of interacting entities. These entities can
for instance be economic or social agents in social sciences
[1–3], atoms or molecules in statistical physics [4–6]. The
question of the emergence of macroscopic patterns from
the interactions of a large number of microscopic agents is
studied by both fields of science. In statistical physics, a
quantitative framework has been developed over the last
century, allowing the equilibrium behaviour of large as-
semblies of atoms or molecules to be handled precisely [6].

In socio-economic models, the preferences of individuals
are usually characterized by a utility function, which de-
scribes their welfare with respect to their current situation
or environment. Each individual or agent wants to max-
imize his own welfare. Decisions (e.g., moving to a more
convenient place) are thus taken in a purely selfish way,
while in physics the motion of particles is governed by the
variation of the total energy. Recently, a global function
linking individual decisions to the variation of a global
quantity has been introduced to describe some classes of
socio-economic models [7]. This approach then allows such
models to be described with statistical physics tools. Im-
portantly, the equilibrium state can then be calculated by
maximizing a state function (akin to a free energy) in-
stead of having to solve a complicated Nash equilibrium
of strategically interacting agents.

The question we investigate in this letter is whether this
physical description of socio-economic models can be ex-
tended to other basic concepts of statistical physics, such
as the equalization of thermodynamic parameters like tem-
perature or chemical potential. The equalization of these
quantities throughout the system precisely results from
the conservation of the conjugated extensive quantities,
namely the energy or the number of particles. Although
there is no notion of energy in socio-economic models, the
dynamics indeed conserves the number of agents. A natu-
ral question is thus to know whether a chemical potential
can be defined in such models, and what would be its re-
lation to standard socio-economic concepts. This question
is further motivated by the following remark. In spatial
socio-economic models, the individual dynamics leads to
a Nash equilibrium, where no agent has an incentive to
move. If all agents are of the same type, the Nash equilib-
rium results in a spatially uniform utility, even if the en-
vironment is spatially inhomogeneous like in cities, where
the center plays a specific role. This uniformity property is
also expected from the chemical potential (if such a quan-
tity can be defined), suggesting a possible relation between
these two notions.

Here, we investigate this issue in the framework of a
generic class of exactly solvable models involving a popu-
lation of locally interacting agents. We define in a precise
way a chemical potential for this class of models, and pro-
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vide a direct link between the chemical potential and the
socio-economic utility. Two explicit examples from the
field of urban economics are also presented.

Model and dynamics. – This work deals with
socio-economic models characterized by a large number
of agents interacting on a network. Agents reside on the
nodes of the network, labeled by an index q = 1, . . . , Q
(Q is the total number of nodes) and are able to move
from one node to another in order to increase their utility.
They interact only with other agents on the same node. In
addition, agents belong to m different groups, according
for instance to their income, or to their cultural prefer-
ences. The variables used to describe the system are the
numbers nqi of agents of each group i = 1, . . . ,m at each
node q. The configuration of the system is described by
the set x = {nqi}. We assume that agents can move from
one node to another, but cannot change group, so that for
all i, the total number Ni =

∑

q nqi of agents of group i
is fixed. The satisfaction of agents of type i on node q is
characterized by a utility Uqi(nq1, ..., nqm) that depends
only on the numbers of agents of each group on the same
node q.
The model is defined with a continuous time dynamics

following the standard logit rule [8]. Agents can move from
a node q to a node q′ with a probability per unit time

W =
ν0

1 + e−∆U/T
, (1)

where ∆U = U ′
q′i −Uqi is the variation of the agent’s own

utility, with

U ′
q′i = Uq′i(nq′1, ..., nq′i + 1, ..., nq′m) (2)

Uqi = Uqi(nq1, ..., nqi, ..., nqm). (3)

The parameter T plays the role of an effective tempera-
ture, introducing noise in the decision process to take into
account other factors influencing choices [8], and ν0 is a
characteristic transition frequency.
In order to obtain analytical results, we assume that the

utility function is such that the change of individual utility
experienced by an agent during a move can be expressed
as the variation of a function of the global configuration
x = {nqi} [7]. More precisely, we assume that there exists
a function L(x) such that for each agent in group i, moving
from node q to node q′,

U ′
q′i − Uqi = L(y)− L(x) (4)

where y = (n11, . . . , nqi−1, . . . , nq′i+1, . . . , nQm) and x =
(n11, . . . , nQm) are the configurations of the system after
and before the move respectively. Such a function L(x)
thus provides a link between the individual behaviour of
agents and the evolution of the whole system. In physical
terms, it can be thought of as an effective energy.
The stationary probability distribution Ps({nqi}) =

Ps(x) is obtained by solving the master equation governing
the dynamics of the system [9]. If Eq. (4) holds, detailed

balance is satisfied [9,10], and we obtain the following ex-
pression for the distribution Ps(x):

Ps(x) =
1

Zs

eL(x)/T

∏

q,i nqi!

∏

i

δ

(

∑

q

nqi −Ni

)

(5)

where Zs is a normalization constant. The product of
Kronecker δ functions accounts for the conservation of the
total number of agents in each group. The different fac-
tors appearing in Eq. (5) can be given a simple interpre-
tation. The exponential factor directly comes from the
detailed balance associated to the logit rule Eq. (1), while
the product of factorials appearing at the denominator in
Eq. (5) results from the coarse-graining of configurations.
Namely, given the numbers of agents {nqi}, there are for
each group Ni!/

∏

q nqi! ways to arrange the agents of the
group. As the numbersNi are fixed, Ni! can be reabsorbed
into the normalization constant.
We now define a density of agents ρqi = nqi/H by

dividing the number of agents by a characteristic num-
ber H ≫ 1, for instance a maximal number of agents
on a node. The utility Uqi then becomes a function
uqi(ρq1, ..., ρqm) of the densities on node q. We further
assume that the function L(x) can be written in the form

L(x) = HL̃({ρqi}). (6)

In addition, the logarithm of the product of factorials in
Eq. (5) can be expanded for large H using Stirling’s ap-
proximation, leading to

ln
∏

q,i

nqi! ≈ H
∑

q,i

(

ρqi ln ρqi + (lnH − 1)ρqi
)

. (7)

The stationary probability distribution eventually takes
the form

P({ρqi}) =
1

Z
eH[L̃({ρqi})+TS({ρqi})]/T (8)

×
∏

i

δ
(

∑

q

ρqi −Qρi

)

where ρi = Ni/(QH) is the average density of agents from
group i. The ’entropic’ term S({ρqi}) is defined as

S({ρqi}) = −
∑

q,i

ρqi ln ρqi. (9)

Note that linear terms in ρqi have been reabsorbed into
the normalization constant Z.
To determine L̃, we combine Eqs. (4) and (6), and ex-

pand L̃ to leading order in 1/H , yielding

∂L̃

∂ρq′i
−

∂L̃

∂ρqi
= uq′i − uqi. (10)

By identification, we get for all q

∂L̃

∂ρqi
= uqi(ρq1, ..., ρqm). (11)
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As the r.h.s. of Eq. (11) only depends on densities of agents
on node q, L̃ necessarily takes the form

L̃({ρqi}) =
∑

q

lq(ρq1, ..., ρqm), (12)

and one has
∂lq
∂ρqi

= uqi. (13)

If there is a single group (m = 1), lq(ρq) is simply obtained
by integrating uq(ρq). In contrast, if m > 1, lq (and thus

L̃) only exists if the following condition, resulting from the
equality of cross-derivatives of lq, is satisfied:

∂uqi

∂ρqj
=

∂uqj

∂ρqi
, i 6= j. (14)

If this condition holds, the stationary distribution reads

P({ρqi}) =
1

Z

∏

q

eHfq(ρq1,...,ρqm)/T
∏

i

δ
(

∑

q

ρqi −Qρi

)

(15)
where fq is given by

fq(ρq1, ..., ρqm) = lq(ρq1, ..., ρqm) + Ts(ρq1, ..., ρqm), (16)

with

s(ρq1, ..., ρqm) = −
∑

i

ρqi ln ρqi. (17)

In analogy to physical systems, fq(ρq1, ..., ρqm) can be in-
terpreted as a local free energy (up to a change of sign),
and the term s(ρq1, ..., ρqm), which is multiplied by the
’temperature’ T , may be seen as an entropic contribution
associated to the node q.

Utility and chemical potential. – We now turn to
the main result of this letter. The configurations {ρ∗qi}
which maximize F =

∑

q fq under the constraints of fixed
global density

∑

q ρqi = Qρi are the most probable (or
equilibrium) configurations. Finding the equilibrium den-
sities of agents is then a constrained maximization prob-
lem. Let us introduce a Lagrangian

L({ρqi}, {λi}) =
∑

q

fq(ρq1, ..., ρqm) (18)

−
∑

i

λi

(

∑

q

ρqi −Qρi

)

,

where the parameters λi are Lagrange multipliers associ-
ated to the conservation of the number of agents in each
group. In physical terms, λi corresponds to the chemi-
cal potential1 of the agents of group i. The equilibrium

1An equivalent formulation is to define the chemical potential
λi as the logarithmic derivative of the partition function Z with
respect to Ni, a definition that can be extended to some classes of
nonequilibrium models [11]. Note also that the standard definition of
chemical potential for equilibrium systems differs by a conventional
factor −1/T with respect to the one we use here [6].

densities {ρ∗qi} are then determined from the conditions
∂L/∂ρqi = 0 for all (q, i), yielding

uqi(ρ
∗
q1, ..., ρ

∗
qm) + T

∂s

∂ρqi
(ρ∗q1, ..., ρ

∗
qm) = λi, (19)

which is the main result of this letter. Equation (19) thus
provides an answer to the question raised at the beginning
of this letter: there is indeed a direct relationship between
the socio-economic utility and the chemical potential de-
fined, in analogy to equilibrium physical systems, from
the conservation of the number of particles. At zero tem-
perature, both quantities can be identified. This result
might come as a surprise: utility is often thought to be
the socio-economic concept most similar to the physical
concept of energy (or more precisely, the opposite of the
energy), because agents seek to maximize their utility in
social systems and physical particles minimize the energy
in the zero temperature limit. Hence one might have in-
tuitively expected the homogeneity of utility to be linked
to a notion of temperature (the thermodynamic variable
conjugated to energy), rather than to a chemical potential.
Note also that the entropic correction to the utility does
not involve the local entropy s, but its derivative ∂s/∂ρqi.
Interestingly, Eq. (19) not only provides a link be-

tween two apparently unrelated concepts, but also yields
a non-trivial prediction on the variations of utility across
the system at non-zero temperature. As the chemical
potential remains uniform at any temperature, one sees
from Eq. (19) that the utility can be written as uqi =
λi − T∂s/∂ρqi, showing that utility becomes non-uniform
if T > 0, and that the corrections to uniformity are given
by the derivative of the local entropy.
In a statistical physics language, Eq. (15) corresponds

to the canonical ensemble, where the number of interact-
ing entities (agents or particles) is fixed. It is sometimes
convenient to consider the so-called grand-canonical en-
semble, where particles are exchanged with an external
reservoir. In the context of agent-based models, the reser-
voir corresponds to the external world. This means that
we implicitly consider a very large network (’the world’)
and focus only on a small subpart of it (’the system’), still
containing a large number of agents. Since the ’world’
has a fixed number of agents, it can be described by the
stationary distribution Eq. (5). Following standard statis-
tical physics methods [6], the probability distribution of
the considered subpart is given by

Pow({ρqi}) =
1

Zow

∏

q

eH[fq(ρq1,...,ρqm)−
∑

i
λiρqi]/T , (20)

where λi is the chemical potential of group i imposed by
the external world. Finding the most probable densities
ρ∗qi is now straightforward since the densities on different
nodes are independent. Maximizing the argument of the
exponential in Eq. (20), one recovers Eq. (19).
In the following, we give two examples of models be-

longing to the above generic class, in the context of urban
economics.
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A simple urban economics model. – The model
presented here is a simple model of land use and transport
interaction in urban economics [12]. In this model, a city
is described as a grid composed of Q blocks. In each block,
one or several agents (representing households) can live by
paying a rent to the landowner. A central business district
(CBD) is placed on the grid and all agents commute there
for their work (monocentric city model). A transport cost
c per unit distance is associated to this commuting. The
distance between a block q and the CBD is denoted by rq.
The size of the city is fixed: a constant radius rf defines
the urban fringe, out of which no agent lives2. All agents
have the same income Y , which is spent on transport, on
housing and on a composite good z representing all other
consumer goods. This gives a budget constraint for each
agent

Y = z + crq + σpq (21)

where σ is the surface of housing, and pq is the rent per
unit surface in block q. We first consider a simple model
where all agents have the same surface of housing. Each
block of the grid is composed of H cells of surface σ0. A
configuration of the city is then given by the number of
agents nq in each block q. We make the further simplifying
assumption that the price pq of housing in a block q only
depends on the density ρq = nq/H of agents in this block,
namely pq = p(ρq). Let us emphasize that this hypothe-
sis is an important simplification with respect to standard
urban economics models, in which the price emerges di-
rectly from the competition for land between agents, and
the density from their utility maximization with respect
to the surface of housing [12]. In cases where an explicit
expression is required, we will use a logarithmic form

p(ρq) = p0 ln(1 + ρq), (22)

where p0 is a positive constant.
The utility function has to be specified explicitly. It

should be an increasing function U(z) of the quantity of
composite good z each agent consumes, that we choose
to be simply U(z) = z. This means that, in the limit
T → 0, each agent wants to maximize the share of his
income which is left after transport and housing expenses.
Using Eqs. (21) and (22), the utility U becomes a function
uq(ρq) of the local density,

uq(ρq) = Y − crq − σ0p(ρq). (23)

Urban economics distinguishes closed city models,
where the total number N of agents is fixed, and open
city models, where N fluctuates due to exchanges with
the external world [12]. We start by considering the closed
city model. In the continuous limit where H and N → ∞

2In standard urban economics models, land is used for agriculture
outside the city, and the landowners then earn an agricultural rent
[12]. These landowners rent to the highest bidder, so that all prices
must be greater than the agricultural rent. However, to simplify the
presentation, we have dropped the agricultural rent parameter by
introducing a fixed city size.

with the average density ρ = N/(HQ) fixed, the station-
ary probability distribution takes the form Eq. (15), with
fq(ρq) given by

fq(ρq) =

∫ ρq

0

uq(ρ)dρ+ Ts(ρq) (24)

and s(ρq) = −ρq ln ρq.

The most probable density ρ∗q is then obtained as a func-
tion of λ from Eq. (19), namely

uq(ρ
∗
q) + T

ds

dρq
(ρ∗q) = λ. (25)

In the limit T → 0, often considered in socio-economic
models, one finds ρ∗q = ρ∗(rq, λ), with

ρ∗(rq, λ) = p−1

(

Y − crq − λ

σ0

)

, (26)

where p−1 is the reciprocal function of p. With the specific
form Eq. (22), we obtain that the density ρ∗q decreases
exponentially with the distance to the center, as reported
in the economics literature [13], which a posteriori justifies
the choice made for the function p(ρq).

The parameter λ is then determined from the density
constraint

∑

q ρ
∗
q = Qρ. Following standard literature

[12], we focus here on the simplest situation of a one-
dimensional city. Using the continuous approximation

1

Q

∑

q

ρ∗q ≈
1

rf

∫ rf

0

ρ∗(r, λ) dr, (27)

we compute the average density ρ(λ), and then determine
numerically the reciprocal function λ(ρ).

We now briefly turn to the open city model (similar to
the above ’open world’ case) where agents can also move
to or from a large number of other cities. The stationary
distribution is given by Eq. (20), which in the present open
city model simplifies to

Poc({ρqi}) =
1

Zoc

∏

q

eH[fq(ρq)−λρq ]/T . (28)

Finding the most probable density is then an uncon-
strained maximization problem. The relation dfq/dρq = λ
yields the same equation as (25), resulting in the same den-
sity profile (26) in the limit T → 0. For T > 0, the density
can be obtained from a numerical resolution of Eq. (25).
The results are presented on Fig. 1, for different tempera-
tures. One can see that increasing the temperature T pro-
gressively blurs the zero temperature exponential pattern
given by Eq. (26), eventually leading to a homogeneous
density. The same effect has been observed in urban eco-
nomics models [14]. As a consequence, the city is more
spread, leading to a utility gain for agents near the city
center, and to a loss for agents in the periphery.

p-4



Socio-economic utility and chemical potential
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Fig. 1: Evolution with temperature T of the density of agents
ρ∗q as a function of the distance rq to the center, in the open city
model with one type of agents. Parameters: T0 ≡ p0σ0 = 75,
c = 2, Y = 200, rf = 30, λ = 150.

Urban model with two types of agents. – In
this second model, two income groups are distinguished.
Rich agents (group 1) have an income Y1 and a surface of
housing σ1, while poor agents (group 2) have an income
Y2 < Y1 and a surface of housing σ2 < σ1. Each block
contains at most H agents, irrespective of their group.
A configuration of the city is described by the densities
ρq1 = nq1/H and ρq2 = nq2/H in each block q. The price
an agent pays for housing depends on his surface of hous-
ing and on the local density of poor and rich agents:

Pq1(ρq1, ρq2) = σ1 p̃(a1ρq1 + b1ρq2)
Pq2(ρq1, ρq2) = σ2 p̃(a2ρq1 + b2ρq2)

(29)

where a1, b1, a2 and b2 are given constants, and p̃ a func-
tion to be determined. The utility function of an agent of
group i = 1, 2 in block q has the form

uqi(ρq1, ρq2) = Yi − crq − Pqi(ρq1, ρq2). (30)

The model is analytically solvable if Eq. (14) is satisfied.
For this condition to hold, one can choose a1 = a2 and
b1 = b2. Then if σ1b1 = σ2a2, the function p̃ can take any
form, for instance the logarithmic form Eq. (22) used in
the previous model, in which case we get (choosing b1 = σ2

and a2 = σ1)

Pqi(ρq1, ρq2) = σi p0 ln(1 + σ1ρq1 + σ2ρq2). (31)

The stationary distribution is given by Eq. (15), with

fq(ρq1, ρq2) = lq(ρq1, ρq2) + Ts(ρq1, ρq2). (32)

The expression of s(ρq1, ρq2) is given by Eq. (17), with
m = 2. Expressing lq(ρq1, ρq2) explicitly, we get

lq(ρq1, ρq2) =

∫ ρq1

0

uq1(ρ, 0) dρ+

∫ ρq2

0

uq2(ρq1, ρ) dρ.

(33)

0 1r
q
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f

0
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ρ q,
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ρ q,
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(a) (b)

(c) (d)

Fig. 2: Density profile ρ∗qi as a function of rq for both groups of
agents (rich, full line; poor, dashed line) for different temper-
atures: T/T ′

0 = 0.0018 (a), 0.018 (b), 0.089 (c) and 0.36 (d),
with T ′

0 ≡ p0σ2. The dotted lines indicate the total density
ρ∗q1 + ρ∗q2. Parameters: p0 = 1.4, c = 0.4, Y1 = 452, Y2 = 301,
σ1 = 6, σ2 = 4, rf = 30, ρ

1
= ρ

2
= 0.13.

The validity of Eq. (13), as well as the symmetry of
Eq. (33) with respect to ρq1 and ρq2, can be checked using
Eq. (14). The equilibrium densities (ρ∗q1, ρ

∗
q2) are deter-

mined from Eq. (19), yielding a system of two non-linear
equations, to be solved numerically. The results of this
numerical resolution are shown on Fig. 2. One recovers at
low temperature the standard separation, typical of north-
american cities, between poor agents in the city center,
and rich agents in the periphery [12]. The effect of a tem-
perature increase is mainly to blur the zero temperature
pattern, hence avoiding total segregation.
Therefore, Eq. (19) provides a direct prediction for the

utility profile at arbitrary temperature T . It would be in-
teresting to know whether this result remains valid beyond
its a priori domain of validity, namely for models satisfying
Eq. (14) so that a function L̃ can be defined. Considering
again the above urban model with two types of agents, we
keep the logarithmic form Eq. (22) for p̃, and choose as an
example a1 = a2 = 1 and b1 = b2 = 0. These values imply
σ1b1 6= σ2a2 so that Eq. (14) is not satisfied, ruling out
the possibility to find a potential function L̃ and to get a
simple analytical solution of the model.
Performing numerical simulations of this agent-based

model with two income groups, in the case of a one-
dimensional closed city, we first validate it thanks to a
comparison with the above solvable case. Turning to the
non-solvable case, we test the validity of Eq. (19), that
is, whether the chemical potentials λi = uqi + T∂s/∂ρqi
(i = 1, 2) are uniform over the city for T > 0 (when T → 0,
the utility should be uniform anyhow). We indeed observe
that for a non-zero temperature, the chemical potentials
are homogeneous even in this non-solvable model, while
the utility is not (see Fig. 3).
The validity of Eq. (19) in this case can be understood
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 λ
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Fig. 3: Numerical simulations of the model with two types of
agents, when no potential function L̃ exists (one-dimensional
closed city). The utility uqi is plotted as a function of rq for
each group (i = 1, ∗; i = 2, ×). Adding to the utility the term
T∂s/∂ρqi yields the chemical potential λi (i = 1, �; i = 2,
♦), found to be constant throughout the system although the
analytical solution is not known. Parameters: T = 20, p0 = 70,
c = 2, Y1 = 482, Y2 = 301, σ1 = 6.4, σ2 = 4, rf = 50,
N1 = N2 = 2000, H = 200, Q = 51.

as follows. In this paper, we focused on cases when the
probability distribution has the factorized form Eq. (15),
which is a consequence of the existence of a potential func-
tion L̃. When no function L̃ exists, the stationary distri-
bution is no longer factorized, and we do not know its
functional form. However, if the stationary distribution
has only short range correlations, a chemical potential can
still be introduced, in the same way as a chemical poten-
tial can be defined in a physical system with short-range
interactions [6].

Discussion. – In this letter, we have provided a
clear relationship between the apparently unrelated no-
tions of socio-economic utility and chemical potential.
More specifically, we have shown that the uniformity of
utility across the social system can be traced back to the
conservation of the number of agents. This result not only
provides a conceptually interesting link, but also yields
non-trivial and testable predictions on the variations of
utility among choices (e.g., nodes, blocks) when T > 0.
We also found numerical evidence that our result extends
beyond the class of models in which it was initially derived.
It would thus be interesting to explore further its validity
through numerical simulations of more realistic models.

The idea of a non-uniform utility at equilibrium (Fig. 3)
may be counter-intuitive for economists. Indeed, Nash
equilibrium for homogeneous agents implies that all have
the same utility, which seems not to be the case here when
T > 0, since agents in the border of the city have a lower
utility than those at the center. However, when noise is
introduced in the decision process, a static equilibrium
picture is no longer valid. Noise allows agents to explore
the city, so that the time average value of utility is the

same for all agents, leading to a macrostate described by
Eq. (19) through the ergodic hypothesis linking time and
ensemble averages. The average utility of agents is then
a decreasing function of T . Note that this picture of a
“time-averaged agent” is close in spirit to the notion of
“representative agent” advocated in discrete choice the-
ory [8]. It would be interesting to investigate further the
relation between these two approaches.
Another interpretation of our result is to consider the

chemical potential λi as an effective utility. We first note
that the distribution P({ρqi}) at T > 0 can be obtained
from the zero-temperature distribution by replacing lq by
fq = lq + Ts [see Eqs. (15) and (16)], in the same way
as the macroscopic energy is replaced by the free en-
ergy in a physical system at finite temperature. Then,
changing lq into fq in Eq. (13), we get an effective utility
ueff
qi = ∂fq/∂ρqi. Hence the Nash equilibrium of an assem-

bly of fictitious agents having this utility would precisely
correspond to Eq. (19), namely ueff

qi = λi.
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