
ar
X

iv
:1

01
0.

29
81

v1
  [

m
at

h-
ph

] 
 1

4 
O

ct
 2

01
0

Time–lagged covariance estimator for i.i.d. Gaussian assets

Andrzej Jarosz∗

The Henryk Niewodniczański Institute of Nuclear Physics,

Polish Academy of Sciences, Radzikowskiego 152, 31–342 Kraków, Poland

I apply the method of planar diagrammatic expansion to solve the problem of finding the mean
spectral density of the non–Hermitian time–lagged covariance estimator for a system of i.i.d. Gaus-
sian random variables. I confirm the result in a much simpler way using a recent conjecture about
non–Hermitian random matrix models with rotationally–symmetric spectra. I conjecture and test
numerically a form of finite–size corrections to the mean spectral density featuring the complemen-
tary error function.

PACS numbers: 02.50.Cw (Probability theory), 05.40.Ca (Noise)

I. INTRODUCTION

An important problem in various fields of science in-
vestigating systems of time–dependent random variables
is to unravel correlations between these variables at dis-
tinct time moments. Speaking quantitatively, suppose
one looks at a system of N random variables (labeled by
i = 1, 2, . . . , N), and for each one of them one possesses
a historical time series of length T of its values at con-
secutive time moments a = 1, 2, . . . , T ; let these values
be denoted by Xia, which constitutes an N × T matrix
X. A typical example would be a system of financial
assets [1], though manifold other applications are also
possible, such as brain science [2] or meteorology [3].

A convenient estimator, based on the historical data
contained in X, of the covariance which exists between
asset i and asset j over time span t is defined as

clag t
ij ≡ 1

T − t

T−t
∑

a=1

XiaXj,a+t. (1)

This estimates the “true” covariance, stemming from the
j.p.d.f. P (X) of the variables,

C lag t
ij ≡ 〈XiaXj,a+t〉 , (2)

where translational invariance in time is assumed, hence
(2) does not depend on a, only on the lag t. The estima-
tor (1) reproduces the true value (2), however, it is addi-
tionally marred by measurement noise due to finiteness
of the time series; only for T → ∞ would the measured
and true quantities coincide. However, a more practically
relevant regime is when both N and T are large and of
comparable magnitude, such as several hundred financial
assets sampled daily over a few years,

N → ∞, T → ∞, r ≡ N

T
= finite. (3)

∗Electronic address: jedrekjarosz@gmail.com

This “thermodynamic limit” will be assumed throughout
the paper, with r quantifying the noise–to–signal ratio.

A crucial question is to devise means to unveil the
true covariance from behind the statistical blur present
in the estimator. This challenge can be helped by solv-
ing the inverse problem: Assuming a certain form of
the j.p.d.f. (possibly described by some parameters),
P (X; {parameters}), and deriving statistical properties
of the estimator (1). Eventually, by fitting these proper-
ties to experimental data, one may assess the parameters
of the considered form of the underlying j.p.d.f.

II. PROBLEM

A. Probability distribution

In this letter, I show how to solve the inverse problem
in the simplest case of the assets being i.i.d. Gaussian
random numbers. The same technique can then be ap-
plied to more complicated situations, which will be the
subject of subsequent articles. This present case serves
thus as an introduction to the method of solution, as well
as may be considered as the “zeroth–order hypothesis”:
even if a system exhibits correlations between its con-
stituents, it is profitable to compare it to a system of
independent assets, any deviation providing information
about the correlations.

I also make a simplifying assumption that the assets
are complex (all the real and imaginary parts being i.i.d.
Gaussian of mean zero and variance denoted by σ2/2);
I will explain (see the end of appendix A) that at the
leading order in the thermodynamic limit (3), the results
are the same as for real assets. Hence I take

P (X) ∝
N
∏

i=1

T
∏

a=1

e−
1

σ2
|Xia|2 = e−

1

σ2
TrX†

X, (4)

which is the well–known Girko–Ginibre random matrix
model [4].
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B. Estimator

I will consider the estimator (1) for time lag t = 1, since
I will explain (see the end of appendix B) that any t ≪ T
is equivalent to t = 1. Since T is large (3), I will change
the normalization 1/(T −1) into just 1/T , and moreover,
extend the sum in (1) to run from 1 to T , where the index
(T +1) is understood cyclically as 1. We should also take
into account that the assets are complex numbers. In
total, the estimator I consider reads, in matrix notation,

c ≡ 1

T
XDX

†, where Dab ≡ δa+1,b, (5)

and the index (T + 1) in the Kronecker delta means 1.

C. Mean spectral density

I will aim at computing a basic statistical property of
this N×N random matrix c, the “mean spectral density,”

ρc(λ, λ) ≡ 1

N

N
∑

i=1

〈

δ(2)
(

λ− λi, λ− λi

)

〉

. (6)

The complex Dirac delta is used because c is a non–
Hermitian matrix, with complex eigenvalues λi, coa-
lescing in the thermodynamic limit (3) into some two–
dimensional domain D.

One may conveniently encode the mean spectral den-
sity in an object called the “non–holomorphic Green
function” Gc(z, z) (see (A2)), which relates to it as

ρc(z, z) =
1

π

∂

∂z
Gc(z, z), for z ∈ D. (7)

Equivalently, one defines the “non–holomorphic M–
transform,”

Mc(z, z) ≡ zGc(z, z) − 1. (8)

These are extensions of the well–known concepts
from Hermitian random matrix theory of the Green
function GH(z) ≡ 1

N Tr〈(z1N −H)−1〉 and M–transform
MH(z) ≡ zGH(z) − 1.

III. RESULTS

A. Mean spectral density of c

The main result of this paper is that the eigenvalues
of the time–lagged covariance estimator c (5) for the
i.i.d. Gaussian assets (4) are scattered on average in-
side the centered circle of radius Rb = σ2

√

r(1 + r), and
their density stems via (7), (8) from the M–transform
M ≡ Mc(z, z) which obeys a third–order polynomial

(Cardano) equation,

4r3M3 + 4r2(1 + 2r)M2+

+ r

(

(1 + r)(1 + 5r) − |z|2
σ4

)

M+

+ (1 + r)

(

r(1 + r) − |z|2
σ4

)

= 0.

(9)

Notice in particular that (9) depends on z only through
|z|, and hence the density is rotationally–symmetric
around zero. Its test against Monte–Carlo simulations
is presented in figure 1, with excellent agreement every-
where except the borderline |z| = Rb.
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FIG. 1: The radial part of the mean spectral density,
2πRρc(z, z)||z|=R, for the estimator (1) with d = 1, σ = 1,
obtained from (9) (dashed lines) — verified against numerical
Monte–Carlo simulations (solid lines). The matrix dimen-
sions and the number of Monte–Carlo iterations in each case
are indicated in the inset.

A solution to this problem has been first presented
in [1], however in a form of an inverse Abel–transform
plus solving a fourth–order polynomial equation; besides
being much more complicated than (9), that prescription
seems to be incorrect [5].

B. Finite–size effects

Furthermore, taking after [6] (where the following has
been rigorously proven for the Girko–Ginibre model), I
conjecture that for finite N , T , the only modification
to (the radial part of) the mean spectral density is a
multiplicative factor of

fN,q,Rb
(R) ≡ 1

2
erfc

(

q (R−Rb)
√
N
)

, (10)

where q is a parameter to be adjusted by fitting to the
Monte–Carlo data, while erfc(x) ≡ 2√

π

´∞
x dt exp(−t2) is

the complementary error function. This proposal works
very well, see figure 2.
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FIG. 2: The radial part of the mean spectral density stem-
ming from (9), multiplied by the finite–size factor (10),
2πRρc(z, z)||z|=RfN,q,Rb

(R), for the same estimator as in fig-
ure 1 (dashed lines) — verified against numerical Monte–
Carlo simulations (solid lines). The least–square fits yield
the values of the parameter q ≈ 3.65, 1.10, 0.66, from top to
bottom.

C. Conjecture about rotationally–symmetric

spectra

I will present two derivations of (9). The first
one (appendix A) exploits Feynman diagrams and
Dyson–Schwinger (DS) equations, and is quite cum-
bersome. The second one (appendix B) is based on
our recent conjecture [7]: If any non–Hermitian ran-
dom matrix c has the mean spectrum rotationally–
symmetric around zero, which may be restated as
Mc(z, z) = Mc(|z|2) — then one can define the functional
inverse Mc(Nc(z)) = z (the “rotationally–symmetric
non–holomorphic N–transform”), and its relationship to
the N–transform of the Hermitian matrix c

†
c, defined as

Mc†c(Nc†c(z)) = z, is given by

Nc†c(z) =
z + 1

z
Nc(z). (11)

The matrix model c†c is Hermitian, and therefore may
be simpler to solve than the non–Hermitian c, whereupon
the conjecture (11) leads to the mean spectral density of
c. I will show a quick derivation, using the multiplication
law of free probability calculus, of the M–transform of
c
†
c for the estimator (5), from which (11) will reproduce

the main result (9).
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Appendix A: Diagrammatic derivation

I will now sketch a derivation of the main equation (9)
using Feynman–diagrammatic expansion and DS equa-
tions; this method is described in detail in appendix A
of the second position in [7]. First, I consider instead of
c the random matrix

c̃ ≡
(

0N
1
T XD

X
†

0T

)

, (A1)

which upon squaring yields a matrix with the same eigen-
values as c (counted twice), plus a number of zero modes,
but is linear in X. The non–holomorphic M–transforms
relate thus as Mc̃(z, z) = 2r

1+rMc(z2, z2). The four blocks
of this matrix and alike matrices will be denoted by NN ,
NT , TN , TT , according to their dimensions.

The goal is to find the “Green function matrix,”

G
D
c̃

(z, z) ≡ lim
ǫ→0

lim
N→∞

〈

(

Z
D
ǫ − c̃

D
)−1
〉

, (A2)

where the “Duplicated” matrices,

Z
D
ǫ ≡

(

z1N+T iǫ1N+T

iǫ1N+T z1N+T

)

, c̃
D ≡

(

c̃ 0N+T

0N+T c̃
†

)

.

(A3)
The four blocks here will be distinguished by placing a
bar over the indexes, ••, ••, ••, ••, from left to right.
The normalized trace of the upper left block of (A2) is
the desired non–holomorphic Green function.

The matrix c̃ has random entries being Gaussian,
so the full information about them is encoded in
the propagators. The Girko–Ginibre (4) propagators,
〈XiaXjb〉 = σ2δijδab, translate into

〈[c̃D]ia[c̃D]bj〉 =
σ2

T
δijDba, (A4a)

〈[c̃D]ia[c̃D]bj〉 =
σ2

T 2
δij [D

†
D]ba, (A4b)

〈[c̃D]ia[c̃D]bj〉 = σ2δijδab, (A4c)

〈[c̃D]ia[c̃D]bj〉 =
σ2

T
δij [D

†]ba. (A4d)

The next step is to expand (A2) in a power series
around z = ∞, and represent its terms as Feynman
fat diagrams. In the thermodynamic limit (3), only
planar graphs survive. In the Gaussian case, they are
rainbow graphs. One introduces the self–energy matrix
G

D =
(

Z
D −Σ

D
)−1

, where Z
D ≡ Z

D
ǫ=0, which is known

as the first DS equation.
The second DS equation pictorially reads

Σ
D = G

D

which, together with the propagators (A4a)–(A4d), leads
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to the following non–zero terms of the self–energy matrix,

Σij =
σ2

T
Tr
(

DG
TT
)

δij , (A5a)

Σba =
σ2

T
Tr
(

G
NN
)

Dba, (A5b)

Σij =
σ2

T 2
Tr
(

D
†
DG

TT
)

δij , (A5c)

Σba =
σ2

T 2
Tr
(

G
NN
)

[D†
D]ba, (A5d)

Σij = σ2Tr
(

G
TT
)

δij , (A5e)

Σba = σ2Tr
(

G
NN
)

δba, (A5f)

Σij =
σ2

T
Tr
(

D
†
G

TT
)

δij , (A5g)

Σba =
σ2

T
Tr
(

G
NN
)

[D†]ba. (A5h)

Plugging this into the first DS equation yields

G
D
c̃ =

















z1N − σ2

T Tr
(

DG
TT
)

1N 0 − σ2

T 2 Tr
(

D
†
DG

TT
)

1N 0

0 z1T − σ2

T Tr
(

G
NN
)

D 0 −σ2Tr
(

G
NN
)

1T

−σ2Tr
(

G
TT
)

1N 0 z1N − σ2

T Tr
(

D
†
G

TT
)

1N 0

0 − σ2

T 2 Tr
(

G
NN
)

D
†
D 0 z1T − σ2

T Tr
(

G
NN
)

D
†

















−1

.

(A6)
The matrix being inverted on the r.h.s. consists of four block, each being a diagonal four–block matrix. It may be
proven that a reshuffling of rows and columns is possible so that (A6) is equivalent to two matrix equations for 8
unknown matrices, GNN , . . . , GTT (the remaining 8 components of GD

c̃
are zero),

(

G
NN

G
NN

G
NN

G
NN

)

=





z1N − σ2

T Tr
(

DG
TT
)

1N − σ2

T 2 Tr
(

D
†
DG

TT
)

1N

−σ2Tr
(

G
TT
)

1N z1N − σ2

T Tr
(

D
†
G

TT
)

1N





−1

, (A7a)

(

G
TT

G
TT

G
TT

G
TT

)

=





z1T − σ2

T Tr
(

G
NN
)

D −σ2Tr
(

G
NN
)

1T

− σ2

T 2 Tr
(

G
NN
)

D
†
D z1T − σ2

T Tr
(

G
NN
)

D
†





−1

. (A7b)

I will now solve this set of equations
(A7a), (A7b), with the aim of finding
Mc̃(z, z) = z 1

N+T

(

Tr
(

G
NN
)

+ Tr
(

G
TT
))

− 1. Denote:
a1 ≡ Tr(DG

TT ), a2 ≡ Tr(D†
DG

TT ), a3 ≡ Tr(GTT ),
a4 ≡ Tr(D†

G
TT ).

On the r.h.s. of (A7a), each block is proportional to
the unit matrix, hence it is inverted as a 2 × 2 matrix,

G
NN =

1

WT

(

z − σ2

T
a4

)

1N , (A8a)

G
NN =

1

WT

σ2

T 2
a21N , (A8b)

G
NN =

1

WT
σ2a31N , (A8c)

G
NN =

1

WT

(

z − σ2

T
a1

)

1N , (A8d)

where WT ≡ (z − σ2

T a1)(z − σ2

T a4) − σ4

T 2 a2a3.
Substituting this to (A7b) and noting that D is unitary

allows to easily invert the matrix on the r.h.s.,

G
TT =

(

z −N
σ2

T

1

WT

(

z − σ2

T
a1

)

D
†
)

W
−1
N , (A9a)

G
TT = N

σ4

T 2

1

WT
a2W

−1
N , (A9b)

G
TT = N

σ4

T 2

1

WT
a3W

−1
N , (A9c)

G
TT =

(

z −N
σ2

T

1

WT

(

z − σ2

T
a4

)

D

)

W
−1
N , (A9d)

where [WN ]ab ≡ Aδab + Bδa+1,b + Cδa,b+1 (the in-
dices understood modulo T ), with A ≡ |z|2 + σ4r2 1

WT

,
B ≡ −σ2r 1

WT

z(z − σ2

T a4), C ≡ −σ2r 1
WT

z(z − σ2

T a1).
Taking the appropriate traces of (A9a)–(A9d) gives

four equations for four complex unknowns a1,2,3,4,

a1 = zT t2 −Nσ2 1

WT

(

z − σ2

T
a1

)

t1, (A10a)

a2 = N
σ4

T

1

WT
a2t1, (A10b)

a3 = N
σ4

T

1

WT
a3t1, (A10c)

a4 = zT t3 −Nσ2 1

WT

(

z − σ2

T
a4

)

t1, (A10d)
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where for short t1 ≡ 1
T Tr(W−1

N ), t2 ≡ 1
T Tr(DW

−1
N ),

t3 ≡ 1
T Tr(D†

W
−1
N ).

To solve this system, knowledge of the traces
t1,2,3 is required. They are found by diagonal-
izing WN = UΩU

† (which amounts to solving a
Fibonacci recurrence with cyclic boundary condi-
tions), with Uab = 1√

T
e2πi(a−1)(b−1)/T and the eigenval-

ues ωa = A + Be2πi(a−1)/T + Ce−2πi(a−1)/T , and approx-
imating (3) the sums over a by contour integrals over
w ≡ e2πi(a−1)/T , which runs counterclockwise along the
centered unit circle C(0, 1),

t1 =
1

T

T
∑

a=1

1

ωa
≈ 1

2πi

‰

dw

Bw2 + Aw + C
, (A11a)

t2 =
1

T

T
∑

a=1

e2πi(a−1)/T

ωa
≈ 1

2πi

‰

wdw

Bw2 + Aw + C
,

(A11b)

t3 =
1

T

T
∑

a=1

e−2πi(a−1)/T

ωa
≈ 1

2πi

‰

dw

w(Bw2 + Aw + C)
.

(A11c)

These integrals are computed by the method of residues.
A meaningful solution to (A10a)–(A10d) is checked to
be permitted only when one zero of Bw2 + Aw + C lies
within C(0, 1), and one outside. Then, for some s = ±1,

t1 =
s√

A2 − 4BC
, (A12a)

t2 =
1

2B

(

1 − sA√
A2 − 4BC

)

, (A12b)

t3 =
1

2C

(

1 − sA√
A2 − 4BC

)

. (A12c)

One sector of solutions to (A10a)–(A10d) is defined
by a2,3 = 0, as follows from (A10b), (A10c). Then one
verifies that also a1,4 = 0, and consequently Mc(z, z) = 0.
This “holomorphic solution” represent the outside of the
eigenvalues domain D.

Assuming a2,3 6= 0 (the “non–holomorphic solu-
tion”), (A10a)–(A10d) reduce to t1 = 1

σ4rWT , t2 = 1
σ2

z
z ,

t3 = 1
σ2

z
z , while Mc̃(z, z) = |z|2

σ4r(1+r)WT − 1. This
straightforwardly leads to the final result (9).

The matching condition between holomorphic and
non–holomorphic solutions gives the borderline of the
eigenvalues domain D: Setting M = 0 in (9) implies
|z| = σ2

√

r(1 + r), which means the eigenvalues of c fill
the centered circle of this radius.
Remark: For real instead of complex assets,

one has six additional non–zero propagators,

〈[c̃D]ia[c̃D]jb〉 = σ2

T δijDba, 〈[c̃D]ai[c̃
D]bj〉 = σ2

T δijDab,
〈[c̃D]ia[c̃D]jb〉 = σ2

T 2 δijδab, 〈[c̃D]ia[c̃D]jb〉 = σ2δijδab,
〈[c̃D]ai[c̃

D]bj〉 = σ2δijδab and 〈[c̃D]ai[c̃
D]bj〉 = σ2

T 2 δijδab.
This leads to eight additional blocks in the self–
energy matrix, Σ

NT = σ2

T 2 (GTN )T, Σ
TN = σ2(GNT )T,

Σ
NT = σ2(GTN )T, Σ

TN = σ2

T 2 (GNT )T,
Σ

NT = σ2

T (GTN )TDT, Σ
NT = σ2

T (GTN )TD,
Σ

TN = σ2

T D(GNT )T and Σ
TN = σ2

T D
T(GNT )T.

They have no traces, contrary to (A5a)–(A5h), hence
these new entries are smaller by factor N . The large–N
leading–order result (9) is therefore the same for complex
and real assets.

Appendix B: Free probability derivation

A much simpler solution is provided by Voiculescu free
probability theory [8] and the conjecture (11). It is eas-
ier to work with the matrix č ≡ 1

T X
†
XD, which differs

from c only by the order of terms and dimension, hence
Mč(z, z) = rMc(z, z).

Now consider the Hermitian matrix
č
†
č = 1

T 2D
†(X†

X)2D. By again changing the or-
der of the constituents, and using unitarity of D, there
is Mč†č(z) = MH2(z), where H ≡ 1

T X
†
X. Using the

general formula MH2(z2) = 1
2 (MH(z) + MH(−z)), as

well as the known result [9] (best derived using the free
probability’s multiplication law [8]) for the N–transform
NH(z) = σ2(1 + z)(r + z)/z, one finds

Nč†č(z) = NH2(z) =
σ4(1 + z)(r + z)(1 + r + 2z)2

z(1 + r + z)
.

(B1)

At this point, I assume that the average spectrum of
č is rotationally–symmetric around zero (which will be
verified a posteriori), and apply the conjecture (11) to get
from (B1) the rotationally–symmetric non–holomorphic
N–transform of č,

Nč(z) =
σ4(r + z)(1 + r + 2z)2

1 + r + z
. (B2)

Inverting it functionally, and translating into the M–
transform of c, reproduces the main equation (9).

Remark: If one permits an arbitrary time lag t in
the estimator, the r.h.s. of (B2) will have an additional
factor of (1 − τ/(1 + z))/(1 − τ)2, where τ ≡ t/T . Hence
for any t ≪ T there is τ = 0, and equation (9) stays the
same.
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