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Abstract. We present a generalization of continuous position measurements that

accounts for a spatially inhomogeneous measurement strength. This describes many

real measurement scenarios, in which the rate at which information is extracted about

position has itself a spatial profile, and includes measurements that detect if a particle

has crossed from one region into another. We show that such measurements can

be described, in their averaged behavior, as stochastically fluctuating potentials of

vanishing time average. Reasonable constraints restrict the form of the measurement

to have degenerate outcomes, which tend to drive the system to spatial superposition

states. We present the results of quantum-trajectory simulations for measurements

with a step-function profile (a “which-way” measurement) and a Gaussian profile. We

find that the particle can coherently reflect from the measurement region in both cases,

despite the stochastic nature of the measurement back-action. In addition, we explore

the connection to the quantum Zeno effect, where we find that the reflection probability

tends to unity as the measurement strength increases. Finally, we discuss two physical

realizations of a spatially varying position measurement using atoms.
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1. Introduction

Position measurements strike at the heart of what distinguishes quantum mechanics

from classical mechanics. Within classical mechanics, it is possible to localize particles

with arbitrarily fine precision for all times. In quantum mechanics, the back-action from

the measurement disturbs the particle and implies that there are fundamental limits to

measurement precision—limits that are being approached in current experiments [1, 2].

The usual formalism of projective measurements fails when applied to position

measurements: if a particle is reduced to an eigenstate of position it has an infinite

momentum uncertainty and hence infinite energy. Position measurements are best

described by considering the “weak” limit where the observer continuously extracts

information about the particle’s location at a given rate; in a small time interval only a

small amount of information is extracted.

Continuous measurements for quantum systems are usually phrased in the language

of stochastic master equations, where the system’s density matrix is updated based



Reflection of a Particle from a Quantum Measurement 3

on random measurement outcomes [3]. The stochastic master equation can also be

derived from a physical model for the interaction of the system with the measurement

apparatus [4]. The first model specifically for a continuous position measurement

accounted for the ensemble-averaged evolution of the density matrix [5]. This has been

developed further into the modern description in which stochastic master equations

(quantum trajectories) are used to continuously condition the quantum state based on

the output of a classical detector that is correlated with the system’s position [6]. The

observer can equivalently monitor the status of a large bath with which the system

interacts. The scenario in which the resonance fluorescence of an atom is monitored to

gather position information is one example of this [7, 8]. A similar approach is used

to treat measurements of the position of an atom interacting with the field mode of an

optical cavity [9–11] .

Continuous measurements have an important role in quantum control and in

the transition to the classical limit of quantum mechanics. Continuous position

measurements in particular can be employed in feedback control loops for cooling

quantum systems [11]. This has been applied to atoms in cavities [12–15], trapped

ions [16, 17], and nanomechanical resonators [18]. In addition to seeking to control

quantum systems, continuous position measurements also provide one path through the

quantum-to-classical transition. In particular, continuously monitored quantum systems

are able to exhibit chaotic behavior [19, 20], in contrast to closed quantum systems.

Considering the importance of position measurements, it is necessary to develop

the theory to account for realistic constraints applicable to any experimental realization

of a position measurement. In particular, in any real position measurement the particle

can only be detected within a limited region. If the particle leaves this region, the

observer gains no further knowledge of the particle’s position. This can be modeled

by a space-dependent coupling of the particle to a bath, such as the radiation field.

When the strength of the coupling to the bath, and thus the measurement strength, is

itself a function of the position, it is, in fact, this function of the position that becomes

the measured observable. The coupling correlates the bath with that function of the

particle’s position, and so monitoring the bath allows the observer to gather information

about that function.

The average dynamics of the measured particle (that is, the motion of the particle

averaged over all the possible measurement results) can be reproduced by a fluctuating

potential with the same position dependence as the measurement. Thus, as far as

the average motion is concerned, the measurement acts like a stochastic force. This

fluctuating potential provides an alternate, intuitive physical picture for understanding

the measurement back-action. We expand on this unitary “unraveling” of the average

motion in Sec. 2.2.

It has been shown previously by a number of authors that a measurement that

determines whether a particle is on one side of a dividing line or the other can exclude

the wave-function from the region in which the particle is initially absent [21–29]. This

causes the particle to reflect from the dividing line, and is due to the quantum Zeno
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effect. In our case this corresponds to a measurement with the following two properties:

1) the measurement strength takes one of just two values, and makes a jump from one

value to the other at the dividing line (the measurement strength is a step function);

2) the measurement strength (equivalently, the size of the step) is much greater than

the kinetic energy of the incoming particle, suitably scaled. In this case the bath exerts

a large back-action on the particle, providing the momentum transfer required for the

reflection. While this Zeno effect has been discussed previously, we examine it here

to connect it with the stochastic master equation formalism. We do this by deriving

an analytic expression for reflection probability in Sec. 4. We also perform numerical

simulations of a measurement with a step-function profile, for comparison to a localized

measurement with a Gaussian profile.

A position measurement can be physically realized by monitoring the resonance

fluorescence of an atom interacting with a resonant light field. The profile of the

light becomes the measurement function, and the measurement strength is proportional

to the overall intensity. As a consequence of the aforementioned effects, the atom

will coherently reflect from the resonant light field for a sufficiently large intensity,

despite the absence of a mean dipole force, and despite the stochastic nature of

resonant atom–light interactions that tend to heat the atom. This phenomenon, besides

being somewhat counterintuitive, has implications in situations where atoms encounter

localized, resonant, optical-pumping fields—as occurs, for example, in implementations

of one-way barriers for atoms [30–33]. We present further details on this realization in

Sec. 5.1, along with another example of an atom interacting with an off-resonant cavity.

We begin in the next section by deriving the stochastic master equation that

describes a continuous position measurement with a spatially varying measurement

strength, and elucidate some of its key properties. In Sec. 3 we perform simulations

of a particle incident on measurements with two kinds of spatial profiles, showing the

behavior of the particle on individual realizations of the measurement, which may involve

either reflection or transmission, as well as the ensemble-averaged behavior. In Sec. 4

we discuss the quantum Zeno effect, in Sec. 5.1 we present two physical realizations of

a spatially varying measurement, and in Secs. 6 and 7 we finish with some concluding

remarks.

2. Equations of Motion

2.1. Derivation

In this section we will derive the equation of motion describing a spatially varying

position measurement. Our measurements are usually made by monitoring a large bath

that interacts irreversibly with the system. The position measurement arises from a

spatially-dependent potential that couples the particle to the bath. The bath then

becomes correlated with a real function of the particle’s position µ(x) and we can

distinguish different positions by how strongly they interact with the bath. Although
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µ is real, we will keep our notation general because later we will add a complex local-

oscillator amplitude to µ. We will start our derivation from the positive-operator-valued

measure for a measurement with two outcomes in each infinitesimal time-step, dt (note

that our treatment and superoperator notation parallels that of Ref. [34]). We will refer

to the two outcomes respectively as “no detection,” and “detection”. (We choose this

nomenclature due to the formal similarity to photodetection, though these outcomes

are not necessarily tied to a photodetector.) The measurement operators that describe

the two outcomes are

Ω0 = 1− i

~
H dt− κµ†(x)µ(x) dt (1)

Ω1 =
√

2κ dt µ(x), (2)

where H = p2/(2m)+V (x) is the free Hamiltonian for the system, κ is the measurement

strength, Ω0 corresponds to “no detection”, and Ω1 to a “detection”. The detection

outcome occurs with probability Tr[Ω†1Ω1ρ] = 2κ〈µ†(x)µ(x)〉 dt. The evolution that

occurs between detections is due to Ω0,

ρ→ Ω0ρΩ†0

Tr[Ω†0Ω0ρ]
= ρ− i

~
[H, ρ] dt− κH[µ†(x)µ(x)]ρ dt, (3)

where the H super-operator is defined as

H[c]ρ = cρ+ ρc† − 〈c+ c†〉ρ. (4)

If detection occurs the density matrix changes according to

ρ→ Ω1ρΩ†1

Tr[Ω†1Ω1ρ]
=

µ(x)ρµ†(x)

Tr[µ†(x)µ(x)ρ]
. (5)

We can represent all of this evolution in a single stochastic master equation (SME):

dρ = − i
~

[H, ρ] dt− κH[µ†(x)µ(x)]ρ dt+ G[µ(x)]ρ dN, (6)

where

G[c]ρ =
cρc†

Tr[c†cρ]
− ρ. (7)

Here, dN is a Poisson process [35, 36], where dN = 1 with probability 2κ〈µ†(x)µ(x)〉 dt
and is zero otherwise. If we mix in a “local oscillator” with this signal, then we pass

over to a master equation similar in form to the usual position-measurement master

equation [8]. This corresponds to the transformation

µ → µ+
α√
2κ

(8a)

H → H − i~
√

2κ

2
(α∗µ− αµ), (8b)

where α = |α|eiφ is the complex amplitude of the local oscillator, which leaves

the unconditioned evolution (that is, the evolution averaged over all the possible

measurement results) unchanged. For large |α|, we can pass over to the white noise limit.



Reflection of a Particle from a Quantum Measurement 6

When the detection rate becomes fast on the time scale of the particle’s motion, the

central limit theorem allows us to replace dN by a mean drift and Gaussian fluctuations,

dN =

〈〈
dN

dt

〉〉
dt+

√〈〈
dN

dt

〉〉
dW, (9)

where double angle brackets denote the ensemble average for the random variable,

and dW is Ito white noise, with 〈〈dW 〉〉 = 0 and dW 2 = dt [35, 36]. We apply the

transformations in Eqs. (8a), (8b), and the white noise limit of Eq. (9), to the jump

master equation (6). In the large |α| limit, the resulting white noise master equation is

dρ = − i
~

[H, ρ] dt+ 2κD[µ(x)]ρ dt+
√

2κH[e−iφµ(x)]ρ dW, (10)

where the D superoperator is defined as

D[c]ρ = cρc† − 1

2

(
c†cρ+ ρc†c

)
. (11)

For φ = 0, Eq. (10) is simply the standard stochastic master equation that describes the

measurement of the observable O = µ(x) [8]. Thus the case µ(x) = x recovers the usual

master equation for a measurement of position. The continuous stream of measurement

results, often referred to as the measurement record, is given by

dr = 〈µ(x)〉dt+
dW√

8κ
, (12)

where dr is the result in the time interval dt.

The unconditioned dynamics are given by the master equation

∂tρ = − i
~

[H, ρ]− κ[µ(x), [µ(x), ρ]], (13)

where we have taken an ensemble average over all possible noise realizations.

2.2. Stochastic Potential

An alternative interpretation is suggested if we choose a different phase for the local

oscillator. If we instead choose φ = π/2, the master equation becomes

dρ = − i
~

[H dt+
√

2κ~µ(x)dW, ρ] + 2κD[µ(x)]ρ dt, (14)

= − i
~

[H dt+
√

2κ~µ(x) ◦ dW, ρ], (15)

where the first equation is in Ito form, and in the second equation ◦ dW denotes

Stratonovich white noise [35, 36]. This phase choice corresponds to measuring the other

bath quadrature [37], yielding information about the measurement backaction rather

than position. The effect of the bath here is formally equivalent to a stochastic potential.

The spatial dependence µ(x) of the coupling to the bath determines the profile of the

stochastic potential. The term in D[µ(x)] is the Ito correction to the Stratonovich

fluctuating potential. When averaged over all noise realizations, this master equation

recovers the unconditioned evolution given by Eq. (13).
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This view is particularly apparent if we look at the input-output formulation of a

homodyne measurement [38]. The measurement arises from a linear coupling between

the observable and the bath,

HSB dt = µ(x)(dBin + dB†in), (16)

where dBin is a white noise bath operator due to the sum over bath modes, all evolving

at different frequencies [39]. This interaction term correlates the state of the bath with

µ(x). The key observation is that since the interaction Hamiltonian is proportional

to µ(x), the noise in the bath drives the system through µ(x). The bath therefore

exerts a stochastic force on the particle whenever µ(x) is inhomogeneous. Note that

any measurement of µ(x) that is mediated by a bath must have an interaction of this

form [40]. This in turn implies that there must be a stochastic force of the same form.

As a concrete example, a two-level atom interacting with a resonant laser field feels the

stochastic dipole force due to spontaneous emission [41].

2.3. Effects of Measurement

We can gain insights into the dynamics induced by a spatially varying position

measurement by examining the lowest few terms in the Taylor expansion of µ(x) about

the current mean position 〈x〉. If µ(x) is constant then the post-measurement state is

completely unaffected, and the measurement does nothing.

The linear term in the Taylor expansion acts as a standard position measurement.

The measurement can then be approximated by
√

2κµ(x) ≈
√

2κµ′(〈x〉)(x− 〈x〉), (17)

which defines the effective local measurement strength, where µ′(x) ≡ dµ/dx. The

constant 〈x〉 term again has no effect. This linear approximation is valid if the particle

is well-localized on the scale of the measurement function. This relation provides the

link between a general, inhomogeneous measurement of position and the usual, linear

position measurement.

The quadratic term in the Taylor expansion is important at the maxima and minima

of the measurement function where the linear term vanishes. The effective measurement

is
√

2κµ(x) ≈
√

2κµ′′(〈x〉)(x− 〈x〉)2, (18)

which drives the state to spatial superpositions since the measurement result cannot

distinguish 〈x〉 + x from 〈x〉 − x [42]. Once the components of the superposition move

away from the extremum, the local measurement for each component becomes linear.

Each component will then evolve under their respective effective measurements.

2.4. Form of the Measurement Function

We now derive the conditions that the measurement function µ(x) must satisfy for it to

correspond to a position measurement that acts only in a limited region of space. First
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Figure 1. Possible measurement functions realizing a position measurement within a

bounded region. The local measurement strength is proportional to the derivative of

µ(x). (a) Measurement function with different asymptotic values. (b) Measurement

function with a discontinuous return to zero. (c) Continuous measurement function

with same asymptotic values.

we expand the measurement terms in the master equation (10) in the position basis,

with ρ(x, x′) = 〈x|ρ|x′〉:

dρ(x, x′) = − κ[µ(x)− µ(x′)]2ρ(x, x′) dt

+
√

2κ [µ(x) + µ(x′)− 2〈µ〉] ρ(x, x′) dW. (19)

The leading term leads to decay of coherence between positions x and x′ where µ differ.

If we enforce µ(x) = µ(x′), then the measurement cannot distinguish between x and x′.

This implies that µ(x) should be constant outside the measurement region.

Inside the measurement region, the measurement function µ(x) should be linear

to act as a standard position measurement. However, if µ(x) does not return to the

same value on either side of its linear section (as in Fig. 1(a)), then the measurement

would collapse superpositions that are on either side of, and completely outside the

linear measurement region. This is not what one normally means when restricting a

measurement to a particular region. For example, a photodetector of some finite size

placed well within the arms of an optical interferometer should not collapse the fringes by

giving which-way information, but this is precisely the case for the function in Fig. 1(a).

Thus, for a measurement to truly act only within some bounded region, the function

must take on the same value everywhere outside that region. We may take this value

to be zero, since shifting µ(x) by a constant has no effect on the dynamics.

Generally speaking, µ(x) will be the profile of some continuous (e.g., laser) field.

Thus, a discontinuous return of the measurement function to the external value, as in

Fig. 1(b), is at best an idealization of a more physical, continuous measurement function.

Along the same lines, the measurement should also be finite in extent. Measurement

functions of the type in Fig. 1(a) must therefore also be idealizations of measurement

functions that are eventually zero, though possibly only returning to zero far away from

the location of the measured particle.

The strictly physical form of the measurement function must therefore be

continuous and return to the same constant value on both sides of the measurement

region, as shown in Fig. 1(c). In particular, this means that there will always be

indistinguishable positions x1, x2, where µ(x1) = µ(x2) within the measurement

region, corresponding to the same measurement outcome. At any given instant, the
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measurement cannot distinguish between the positions x1, x2, even if the measurement

is not symmetric on either side of the extremum, for example if µ′(x1) 6= µ′(x2). The

measurement will thus create a superposition. However, if we also account for the

Hamiltonian evolution then the backaction from an asymmetric measurement can give

the components of the superposition differing momenta, and hence different positions at

later times. Hence over an extended period of time the measurement could distinguish

between the two positions. Likewise, we have argued that for a single measurement

channel, a strictly physical measurement function must result in positions that are

indistinguishable. However, multiple position-measurement channels—each with their

own ambiguities—may be combined to remove all the ambiguities. These are examples

of combining multiple measurements to gain information that cannot be gleaned from

either measurement separately. A more familiar example is that information from

position measurements at two different times may be combined to obtain information

about momentum.

2.5. Mean Momentum and Kinetic Energy

We can derive equations of motion for the two lowest-order moments of the momentum

probability density based on Eq. (10). If we assume the particle Hamiltonian is given

by

H =
p2

2m
+ V (x), (20)

we obtain

d〈p〉 = − 〈∂xV 〉 dt+
√

2κ[〈µp+ pµ〉 − 2〈µ〉〈p〉] dW (21)

d〈p2〉 = − 〈p∂xV + ∂xV p〉 dt+ 2~2κ〈(∂xµ)2〉 dt
+
√

2κ[〈µp2 + p2µ〉 − 2〈µ〉〈p2〉] dW. (22)

In an ensemble average d〈〈p〉〉 = −〈∂xV 〉 dt, so the average momentum is not changed by

the measurement. For a free-particle ensemble, the average momentum is conserved—

during a single trajectory, the measurement can exert a force, but the force vanishes

on average. The measurement back-action enters as diffusion in the ensemble-averaged

moment evolution,

d
〈〈
p2
〉〉

= 2~2κ〈(∂xµ)2〉 dt, (23)

with momentum diffusion coefficient Dp = 2~2κ〈(∂xµ)2〉. This reflects that it is the

gradient in µ(x) that gives relative position information.

3. Simulations

We now present some quantum-trajectory simulations that reveal some of the novel

dynamics that occur under inhomogeneous position measurements. In the simulations,

the particle starts in a minimum-uncertainty, Gaussian state with mean position

〈x〉 = x0, mean momentum 〈p〉 = p0 and root-mean-square width σx. It is incident
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on a measurement function µ(x) from outside the measurement region, from the left-

hand side. Since the atom starts in a pure state we initially have maximal knowledge

about the atom. Our results focus on the case when p0/σp � 1, which corresponds to

a well-defined momentum. In the limit of small κ, the particle simply passes through

the measurement region with mild heating, so we also restrict ourselves to the regime

of strong measurements, κ > p2
0/(2m~).

Our simulations use a split-operator Fourier method to propagate the stochastic

Schrödinger equation associated with Eq. (10). We have set ~ = m = 1 throughout our

presentation here. We visualize the evolution of the particle under the measurement

using the Wigner function for the particle [43].

3.1. Step function

We will first consider a step measurement function

µ(x) = θ(x) =
{ 1 x > 0

0 x < 0,
(24)

which is simple and analytically tractable. It also affords a comparison with a familiar

example from textbook quantum mechanics: the potential step. This corresponds to

the limit of an arbitrarily large gradient for a continuous measurement. This limit is

unphysical, strictly speaking, but it is useful as an idealization of a strong measurement

over a small region.

Fig. 2 shows the temporal evolution of a wave packet incident on a static potential

step V (x) = V0θ(x), with no measurement, as a context for understanding the

measurement-driven evolution. The evolution can be described by the Schrödinger

equation, or by setting κ = 0 in the measurement master equation (10), and including

the potential V (x). The height of the potential barrier in this case is smaller than the

kinetic energy of the wave packet, so the particle can transmit over the barrier. The wave

packet splits into two pieces, reflected and transmitted. The reflected wave packet has

exactly the opposite momentum of the inbound wave packet. However, the transmitted

wave packet is slower, since the particle lost energy climbing the potential step. The

striated red and blue regions denote interference. The fringes between the reflected

and transmitted wave packets show that they represent a coherent superposition. Note

that the fringes between the two coherent components are oriented along the direction

between them. This corresponds to the fact the fringes would yield an interference

pattern in the appropriate marginal probability distributions [43]. Missing fringes

indicate a classical mixture of the two states.

Fig. 3 shows the evolution of a wave packet incident on a measurement step

µ(x) = θ(x), but for a free particle with no explicit potential. The step measurement

distinguishes whether the particle is on the left- or the right-hand side of the origin, but

it does not resolve different positions on a given side. This means that superpositions

confined to one side are unaffected by the measurement, while superpositions on different

sides of the origin will collapse. This measurement is analogous to a “which-way”
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Figure 2. Wigner functions for a particle incident on a static potential step with

height V0 = 0.5, and without measurement. The wave packet has initial momentum

p0 = 1, width σx = 5, and initial position x0 = −3σx. Time is measured in units

of σx/p0. Red values are positive, blue values are negative, and black is zero. The

corresponding animation is included in the supplementary data.
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Figure 3. Wigner functions for a particle incident on a step-function measurement

profile µ(x) = θ(x) with κ = 5; the profile is the same as the potential in Fig. 2. The

trajectories are generated with a white-noise-measurement unraveling, as given by the

Eq. (10). The initial conditions are the same as in Fig. 2. (a) Single trajectory with

reflecting measurement outcome. (b) Single trajectory with transmitting measurement

outcome. (c) Ensemble average over measurement realizations. Red values are positive,

blue values are negative, and black is zero. The corresponding animations are included

in the supplementary data.
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measurement in that it has only two outcomes: left or right. The two possible

measurement outcomes correspond to reflection or transmission of the wave packet.

Fig. 3(a) shows a single trajectory where the wave packet reflects from the

measurement. Initially, we know the particle is to the left of and propagating towards

the step in the measurement function. As the wave packet evolves, we never measure

it to be on the other side, and this measurement outcome effectively forces the wave

packet to reflect. The momentum transfer for the reflection comes from the back-action

of the measurement. As noted in Sec. 2.2, a spatially dependent measurement implies

a spatially varying back-action on the system.

Fig. 3(b) shows an example where the particle transmits through the measurement

step. The wave packet starts to reflect, but still has a small evanescent tail that

penetrates the x > 0 region. The interference between the reflected and initial wave

packets, before transmission occurs, can be seen in Fig. 4. Random measurement

outcomes consistent with the particle being in the x > 0 region are rare at first since the

evanescent tail represents a small probability. Once they occur, however, these outcomes

can increase the amplitude of that part of the wave function. This can lead to a runaway

process where future measurement results are more likely to indicate the particle is in the

x > 0 region, and thereby collapse the particle entirely into this region. This process

occurs continuously on a time scale κ−1. Since the measurement time scale is faster

than that of the motion in the strong-measurement limit, the particle is localized in the

small, evanescent tail before it can propagate away. The particle will now have a broad,

positive momentum distribution and will propagate away from the step, as shown after

transmission occurs in Fig. 4. The transmission process is incoherent: the state of the

particle is entangled with the state of the bath, which destroys any interference with

the incident wave packet. Since transmission occurs at random times, the transmitted

wave packets will have different phases and propagate away at different times.

Fig. 3(c) shows an ensemble average of 104 trajectories for particles incident on

the step measurement. Note that the specular component of the reflection survives the

ensemble average, while other features related to the measurement noise are washed out

in the average. The transmitted parts show no coherence with one another or with the

reflected parts. The incoherent parts of both reflected and transmitted wave packets

show heating from the measurement back-action.

Surprisingly, part of the reflection is coherent. It is possible to see interference

between the reflected and incident wave packets, even though the reflection is caused by

the back-action of a measurement, which conventionally leads to diffusion or heating.

The interference is marked by the alternating positive and negative regions centered at

p = 0 in the Wigner function. The interference fringes have the same phase for each

member of the ensemble—that is, they are the same for each possible, random outcome

of the measurement—producing the coherent reflection.

The measurement-induced reflection is analogous to interaction-free measure-

ments [44]. In those experiments, light detects the presence of an absorber in the arms

of a polarization interferometer without ever interacting with the absorber. An optical
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Figure 4. Position and momentum distributions for a particle before and after it

transmits through the step measurement. The initial conditions are the same as in

Fig. 2. The time elapsed between “before” and “after” is ∆t = 0.4κ−1. Note that this

is not the same trajectory as in Fig. 3(b), but it displays a similar behavior. Inset: log

plot of the same momentum distribution.

example of an interaction-free measurement closely related to the reflection phenomenon

here is that of a high-finesse Fabry–Perot cavity [45, 46]. An empty cavity transmits

light almost perfectly, but when an absorber is placed in the cavity to “detect” the light,

a large fraction of the light instead reflects from the cavity, although the reflected part

has not interacted with the absorber.

3.2. Gaussian measurement

We now consider the case of a Gaussian measurement function. This is an even function

of position, so we expect this measurement to tend to drive the particle towards spatial

superposition states. In addition, if we consider the resonance-fluorescence scenario,

a laser probe with a Gaussian profile would realize this Gaussian measurement. The

measurement function is

µ(x) = exp

[
− x2

2σ2
µ

]
, (25)
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where σµ sets the width of the measurement. Note that we take µ(x) to be dimensionless,

which is important to keep in mind when comparing to standard measurements µ(x) =

x, which makes sense only when x is taken to be dimensionless.

Fig. 5 shows a wave packet incident on a Gaussian potential barrier without any

measurement. The wave packet has enough potential energy to cross the barrier (without

tunneling). As with the step potential, the wave packet coherently splits into reflected

and transmitted components. Note that in this case, both parts of the wave packet have

the same asymptotic momentum after scattering from the potential barrier.

Fig. 6(a) shows a single trajectory where the majority of the wave packet reflects

from the Gaussian measurement, without an explicit potential. Since the Gaussian is a

smooth function, the wave packet readily enters regions where the measurement strength

is small. The Gaussian function lacks a sharp edge, and it is possible to get a series

of results that weakly localize the atom in the soft edges of the function. A small part

transmits through on this particular trajectory, as indicated by the striations showing

the coherence between the reflected and transmitted parts of the wave packet.

Fig. 6(b) shows an alternative case where the wave packet is localized by the

Gaussian measurement. The sides of the Gaussian act as a linear measurement for

wave packets confined to one side. Each side can distinguish different positions within

that side and act to localize the wave packet inside the measurement region. The wave

packet then diffuses around from the momentum kicks of the measurement. This has

occurred by t = 4 in Fig. 6(b). If the wave packet passes over the peak of the Gaussian

then it will be driven to a superposition state, since the measurement is locally even

in x at the maximum. If the wave packet is moving quickly then the superposition

will tend to be biased in the direction of motion. The creation of a superposition state

is probabilistic, and depends both on localizing the wave packet, and the wave packet

diffusing over the peak of the measurement function. After the superposition forms, the

two components diffuse away from the peak of µ(x). The symmetry of the measurement

ensures that the superposition is not disturbed once it is created. A superposition state

has been created by t = 6 in Fig. 6(b).

Fig. 6(c) shows the ensemble average over 104 trajectories for a Gaussian

measurement. Once again, the coherent reflection survives the ensemble average. The

interference fringes between the reflected and incident wave packets are easier to see,

since the incoherent features from weak localization and partial transmission have

averaged out. Both the reflected and transmitted parts of the wave packet have an

incoherent, heated part; this comes from realizations where the particle is localized and

split into a superposition state. In general, the phase of each superposition is random

and the superpositions are created at random times, so the coherent features of each

superposition are washed out in the ensemble average. The ensemble-averaged results

do not condition on any measurement scheme, and correspond to the unconditioned

density operator—the solution to the unconditioned master equation (13). Thus we

will see coherent reflection from any process that realizes master equation (13) in the

ensemble average.



Reflection of a Particle from a Quantum Measurement 15

p

-4

-3

-2

-1

0

1

2

3

4

x
-20 -10 0 10 20

t=2 t=4 t=6 t=8

0

1

V
 (
x
)/

V
0

Figure 5. Wigner functions for particle incident on a static Gaussian potential, with

potential width σµ = 1 and height V0 = 0.25, without measurement. The wave packet

has initial momentum p0 = 1, width σx = 5, initial position x0 = −3(σx + σµ). Time

is measured in units of (σx+σµ)/p0. Red values are positive, blue values are negative,

and black is zero. The corresponding animation is included in the supplementary data.

t=2

(a)

t=4 t=6 t=8

t=2

(b)

t=4 t=6 t=8

p

-4

-3

-2

-1

0

1

2

3

4

x
-20 -10 0 10 20

t=2

(c)

t=4 t=6 t=8

Figure 6. Wigner functions for particle incident on a Gaussian measurement with

measurement width σµ = 1 and strength κ = 5; the profile is the same as the potential

in Fig. 5. The initial conditions are the same as in Fig. 5. The trajectories are

generated with a white-noise-measurement unraveling, as given by the Eq. (10). (a)

Single trajectory with reflection from measurement. (b) Single trajectory producing

a spatial superposition state. (c) Ensemble average of measurement. Red values are

positive, blue values are negative, and black is zero. The corresponding animations are

included in the supplementary data.
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3.3. Heating

We can estimate the momentum transferred by the measurement by considering the

Fourier transform of the measurement function. This is related to the transverse

momentum distribution of the bath particles that interact with the particle undergoing

the position measurement. In the resonance-fluorescence example, the bath particles

are photons that form the mode profile of the intensity distribution which becomes

the measurement function µ(x). We obtain the rate of momentum disturbance by

multiplying the Fourier transform of µ(x) by the measurement rate κ, which is the

rate at which we gather position information—and hence disturb momentum. The

approximate final momentum distribution will be the convolution of the particle’s

momentum distribution with the Fourier transform of the measurement function.

For example, the Fourier transform of the step function θ(x) is∫
dk θ(x)eikx = πδ(k) + i

P.V.

k
, (26)

where P.V. denotes the Cauchy principal value. The sharp edge of the step implies

an arbitrarily fine resolution of how close the particle is to the edge, which implies

a divergent momentum disturbance. The convolution with 1/k leads to long tails in

momentum space and a divergent momentum uncertainty.

The convolution of momentum distributions as a result of “which-way”

measurements has been noted before in the context of projective measurements [47]

and transverse momentum transfer. The convolution result is exact for a projective

measurement, but must incorporate dynamical evolution for continuous measurement.

The Fourier transform of a Gaussian is also Gaussian, so the momentum transfer

in this case is finite. The width of the momentum distribution scales as the inverse of

the width of the measurement resolution. A narrow measurement function constitutes

a locally stronger measurement of position and hence a larger disturbance.

There is an alternative, measurement-theoretic explanation for the heating. A

strong measurement ensures that we detect if the particle crosses between regions of

differing µ(x). Consider the time when the particle begins to cross into the next region,

as in the t = 2 and t = 4 panels of Fig. 3(b), or the t = 2 panel of Fig. 6(b). If the

measurement record does not yet indicate that the particle has crossed through, then

the particle can only have penetrated a small distance into the next region. Then, when

the measurement indicates that the particle has passed into the next region, the state

collapses down to the small part that penetrated the next region. Since this part is

tightly confined in position, there now is a large uncertainty in momentum. The wave

function is effectively multiplied by µ(x), and so the wave function will acquire the

same character in momentum space. This is apparent, for example, in the t = 4 frame

of Fig. 6(b).
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Figure 7. Measurement-induced reflection probabilities for a wave packet with σx =

10 incident on µ(x) = θ(x). Numerical simulations (averaged over 256 trajectories) are

compared with the analytical result from Eq. (32).

4. Quantum Zeno Effect

Despite the heating, a particle will almost certainly reflect from a strong measurement.

As Fig. 7 shows, the probability for reflection tends to unity as the measurement strength

increases. This is a manifestation of the quantum Zeno effect [21–24, 48, 44, 49].

A simple argument in the case of a step-function measurement µ(x) = θ(x), as

in Sec. 3.1, demonstrating this in the limit of a sequence of projective measurements

separated by infinitesimal time intervals (κ −→ ∞) is as follows [29]. We assume that

at time t the particle is completely confined to the region x < 0, as enforced by the

projective measurement in the immediate past. The operator for evolution between

measurements is

U(dt) = exp

(
−iH

~
dt

)
= 1− iH

~
dt. (27)

The Hamiltonian is responsible for any evolution that could transfer the wave packet

into the region x > 0. The term proportional to dt is the probability amplitude for

the particle to cross into the region x > 0 during the infinitesimal time step, while the

amplitude for staying in the x < 0 region is unity. The probability of detecting the

particle in the region x > 0 is thus O(dt2) = 0 for the next projective measurement,

resetting the particle to the x < 0 region and thus confining it there. A similar argument

has been made before from the perspective of a “gap” in quantum mechanics [50].

A more quantitative argument can be used in the case of finite measurement

strength. This is related to quantum reflection of atoms dropped at grazing incidence

onto ridged surfaces [51, 52]. This “quantum reflection” has been related to the Zeno

effect since the ridges act heuristically as absorbers for the atoms, and thus increase

the reflection probability from the surface [53]. This treatment misses the measurement

back-action and heating that we consider here. Our calculation here also makes a

rigorous connection of this absorber model to continuous-measurement theory.
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Here we will model the evolution by a jump-process realization for µ(x) = θ(x),

d|ψ〉 = − i p
2

2m~
|ψ〉 dt− κ

(
θ2(x)− 〈θ2(x)〉

)
|ψ〉 dt

+

(
θ(x)|ψ〉

〈ψ|θ(x)|ψ〉1/2
− |ψ〉

)
dN, (28)

where dN is a Poisson process with mean

〈〈dN〉〉 = 2κ〈θ2(x)〉 dt. (29)

This stochastic Schrödinger equation gives the same unconditioned evolution as the

white-noise unraveling in Eq. (10). We will model the incoming wave packet as a

unit-amplitude plane wave, which gives the correct reflection coefficient as long as the

momentum distribution is narrow compared to the mean incident momentum.

We can use a linear trajectory and solve for the between-jump evolution (the

nonlinear term represents the probability of the particle to be detected in the region

x > 0, which is precisely what we are computing here). The linear, between-jump

evolution is governed by

i~∂t|ψ〉 =

[
p2

2m
− i~κθ(x)

]
|ψ〉. (30)

We assume the particle is initially located on the left with mean energy p2
0/2m, and

enforce continuity of the wave to match the incoming wave with a reflected wave of the

same energy and a decaying solution for x > 0, which gives the total probability for the

particle to be in the “transmitted” region. This is used along with the mean detection

rate to find the total detection probability:

Pdet = 2κ

∞∫
−∞

dx θ(x)|ψ(x)|2 (31)

=
2
√

2ξ/χ(√
2 + ξ2/χ2

)2
+ χ2

, (32)

where ξ := 2m~κ/p2
0 is the measurement strength scaled in units of the incident kinetic

energy, and χ :=
√√

1 + ξ2 − 1. For large κ the detection probability, and thus the

transmission probability, vanishes as κ−3/2.

In this linear-trajectory picture, the measurement can be viewed as an imaginary

potential that absorbs particles. The absorbed particles are detected inside the x > 0

region, and their wave functions are modified according to

|ψ〉 → θ(x)|ψ〉
〈ψ|θ(x)|ψ〉1/2

. (33)

The remainder of the particles coherently reflect from the measurement with a

probability given by the norm of the state.

In Fig. 7 we have counted only the coherent part of the reflection by computing
+3σp∫
−3σp

dp |φ(−p0 + p)|2, where φ(p) is the momentum-space wave function. This omits the
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contribution from the diffusely reflected parts. As the initial momentum increases, the

particle penetrates farther into the x > 0 region, and hence the transmission probability

increases.

This calculation works because the step measurement is a two-outcome

measurement—as soon as the particle is detected it collapses into the measurement

region. This is analogous to the calculations that can be made for the probability of

spontaneous emission from a two-level atom [54]. This approach can in principle be used

to calculate the coherent reflection probabilities given that the particle remains outside

the measurement region for a general measurement function.

Although the reflection probability can approach unity, the ensemble-averaged

momentum is conserved, as shown in Eq. (21). The conservation of mean momentum

ties together the observation of increasing reflection and the heating of the transmitted

wave as κ increases. As κ increases the probability for reflection increases as the wave

packet is excluded from the measurement region. Concomitantly, any increase in κ

increases the heating from the measurement since the evanescent tail in the absorbing

region is more tightly confined. This offsets the decrease in mean momentum from the

reflection.

The Zeno effect has also been noted when combining a continuous position

measurement of µ(x) = x with a double-well potential [6]. For moderate measurement

strengths, the position measurement localizes the particle in one well and inhibits the

tunneling between the two wells. This breaks down for large measurement strengths

since the heating from the measurement boosts the energy of particle above the barrier

in the middle. In our case the Zeno effect arises because of the inhomogeneity of the

measurement function, rather than the inhomogeneity of the potential.

5. Physical Realizations

5.1. Stochastic Dipole Force

The above effects can be realized by coupling a two-level atom to a high-intensity

light field with position-dependent Rabi frequency. This can be viewed in terms of

the stochastic dipole force [41]. We write the position-dependent Rabi frequency as

Ω(x) = |Ω|g(x), where |Ω| = |deg · E|/~, |E| is the maximum electric field amplitude,

and g(x) is a complex, dimensionless mode profile with |g(x)| ≤ 1. The atom obeys

∂tρ = −i
[
p2

2m~
+ ∆σ†σ +

1

2

[
Ω∗(x)σ + Ω(x)σ†

]
, ρ

]
+ ΓD[σ]ρ, (34)

where Γ is the excited state decay rate. In the high intensity limit, the dressed states

|±〉 are approximately equal superpositions of the ground state |g〉 and the excited state

|e〉, and vice versa. Each spontaneous-emission event projects the atom into the ground

state, and thus into an equal superposition of the dressed states. The atom therefore

sees both shifts ±~|Ω(x)|/2 of the respective dressed states |±〉. The interpretation is
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as follows: after each spontaneous emission event, the atom sees a force

F = ∓~∇|Ω|
2

, (35)

where the sign is chosen randomly, but with equal probability for the two possibilities.

Assuming the atom is moving slowly, the momentum change associated with a single

spontaneous-emission event is

∆p = ∓~∇|Ω|
2

ξ (36)

where ξ is the time until the next spontaneous emission event, which is a random variable

(ξ > 0) of mean 2/Γ and exponential probability density

f(ξ) =
Γ

2
exp

(
−Γ

2
ξ

)
. (37)

To take into account the randomness of the sign, we can write

∆p =
~∇|Ω|

2
ξ′ (38)

where ξ′ ∈ R has a two-sided exponential probability density

f±(ξ′) =
Γ

4
exp

(
−Γ

2
|ξ′|
)
. (39)

Then the mean-square kick is

〈(∆p)2〉 =
~2(∇|Ω|)2

4
〈ξ′2〉 =

2~2(∇|Ω|)2

Γ2
, (40)

where

〈ξ′2〉 =
Γ

4

∫ ∞
−∞

dξ′ exp

(
−Γ

2
|ξ′|
)
ξ′2 =

8

Γ2
. (41)

The diffusion rate is the mean-square step divided by the average step time ∆t = 2/Γ,

so

Dp =
〈(∆p)2〉

∆t
=

~2(∇|Ω|)2

Γ
=

~2|Ω|2

Γ
|g′(x)|2. (42)

This heuristic result agrees with the high-intensity limit of more rigorous but

cumbersome calculations [55, 41, 56].

Since the mean time Γ/2 between changes in the force is much smaller than

typical time scales for the motion of cold atoms, we can think of the atomic motion

in a temporally coarse-grained sense. Then the stochastic evolution of the atomic

motion over a time interval of interest involves many transitions of the potential. The

momentum changes have finite variance, so we can invoke the central limit theorem,

and treat the force fluctuations as (Gaussian) white noise. An equivalent, Stratonovich

stochastic potential that gives rise to the same diffusion rate is thus

V (x, t) =
|Ω|√

Γ

√
|g(x)|2 ◦ dW

dt
, (43)

where we have dropped the mean dipole potential, which vanishes on resonance ∆ = 0.

We can see that this form of the potential is correct by comparing Eqs. (14) and (15),
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so that the Ito form of the SME has the same form as Eq. (14), with κ = |Ω|2/2Γ and

µ(x) =
√
g†(x)g(x), where the sign of µ(x) is defined such that |µ′(x)|2 = |g′(x)|2. We

can then read off the momentum-diffusion coefficient using Eq. (23) to see that it agrees

exactly with Eq. (42).

It is interesting to note that in this high-intensity regime, the stochastic potential

represents an interplay between the fluctuations in the atomic dipole and the field

intensity. That is, this effect is due to fluctuations in the atom–field interaction

Hamiltonian itself. As such, it does not saturate for high intensities, as does spontaneous

emission.

A measurement interpretation of the stochastic dipole force is as follows. The

dipole force for an atom in a particular dressed state arises due to coherent scattering of

photons between different wave vectors of the driving field. In principle, this coherent

redistribution of light can be measured to obtain information about the position of the

atom in the field, as for example is the case in recoil-induced resonances [57]. However,

on resonance, the atom flips randomly between the dressed states, so that the mean

redistribution of photons (and hence the mean dipole force) vanishes. The measurement

information is instead encoded in the variance of the redistributed light.

Note that a low-intensity jump decomposition of resonance fluorescence has been

considered in the context of realizing imaginary potentials [58], though without exploring

the consequences for the atomic dynamics. Unfortunately, in the low-intensity limit the

spontaneous emission recoil obscures the measurement effects, and this model can break

down when pushed to the high intensities required for a large measurement strength.

5.2. Cavity Quantum Electrodynamics

A spatially varying position measurement can also be realized in the interaction of a

two-level atom with the field of an optical cavity, which is in turn driven by a classical

field. Due to a large detuning, and a large cavity decay rate we can eliminate the

atom’s internal dynamics and the cavity dynamics, leaving the only the center-of-mass

motion of the atom. In this case the cavity mode function becomes the measurement

function [9, 13, 14]. The simulations from Sec. 3.2 correspond to Gaussian mode of a

ring cavity.

We assume that the cavity is being monitored by homodyne detection, so the system

obeys the following master equation [14]

dρ = − i
~

[H, ρ] dt+ ΓD[σ]ρ dt+ γD[a]ρ dt+
√
γH[a]ρ dW, (44)

where Γ is the free-space spontaneous emission rate, γ is the cavity decay rate, and a is

the cavity annihilation operator. The total Hamiltonian is given by

H =
p2

2m
+~ωCa

†a+~ωAσ
†σ+~g(x)(a†σ+aσ†)+~E(aeiωCt+a†e−iωCt), (45)

where ωC is the cavity mode resonance, ωA is the atomic transition frequency, g(x) is

the cavity mode profile, and E =
√
γP/~ωC is the amplitude for the classical driving



Reflection of a Particle from a Quantum Measurement 22

field, where P is the power in the driving field. If we transform to a rotating frame,

we can remove the free evolution due to the cavity. Since the classical driving field is

resonant with the cavity, we can then write

H =
p2

2m
+ ~∆σ†σ + ~g(x)(a†σ + aσ†) + ~E(a+ a†), (46)

where ∆ = ωA − ωC. In the limit ∆ � g(x), γ,Γ,p2/(2m~), we can adiabatically

eliminate the excited state. This amounts to replacing σ and σ† with 〈σ〉 and 〈σ†〉. (For

a more rigorous approach see Ref. [9].) In this limit the effective Hamiltonian is given

by

Heff =
p2

2m
+ ~

g2(x)

∆
a†a+ ~E(a+ a†), (47)

and the spontaneous emission terms can be dropped since the effective decay rate is

O[∆−2]. If we further assume that the cavity is strongly damped such that γ �
g2/∆, E,p2/(2m~), we can also eliminate the cavity. The final result is the following

master equation for the center-of-mass dynamics,

dρ = − i
~

[Heff , ρ] dt+ 2κD[µ(x)]ρ dt+
√

2κH[µ(x)] dW, (48)

where

Heff =
p2

2m
+ ~

α2g2
0

∆
µ(x)

κ =
α2g4

0

∆2γ

µ(x) =
g2(x)

g2
0

,

(49)

where α = 2E/γ, and g0 = max[g(x)]. The mean potential in the effective Hamiltonian

can be cancelled by the Stark shift from an off-resonant classical field that does not

resonate with a cavity. This interaction has the form

HStark = −~ |Ω(x)|2

4δ
. (50)

Cancelling the mean potential allows the measurement effects we have discussed to come

to the fore. The master equation then has the same form as Eq. (10).

5.3. Imaginary Potentials

Measurements can also be viewed as imaginary (absorbing) potentials, as seen in Sec. 4.

Imaginary potentials have been used to coherently diffract atomic beams [59, 60] and

reshape wave functions to counteract the expansion of a free particle [61]. A resonant

standing wave of light acts like an imaginary potential for two-level atoms. When the

atom absorbs a photon from the resonant standing wave, it will decay to another state,

thus being effectively absorbed from the initial beam. The diffraction and reshaping

both rely on post-selecting atoms that have not undergone spontaneous emission. The

surviving atoms are thus most likely to be near the nodes of the standing wave. For
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an atomic beam, the standing wave acts as a diffraction grating and enables Bragg

diffraction for atomic beams. This so-called “anomalous diffraction” has been further

explained in terms of degeneracies of the imaginary Hamiltonian [62, 63]. The shaping

can be viewed as conditioning on null detection of a sin2(kx) measurement of position,

while the diffraction is a consequence of scattering off the periodic array of nodes.

6. Analogies

The coherent reflection from a measurement is analogous to the coherent back-scatter

of light from a disordered atomic medium [64]. The analogy is clearer from the

fluctuating-potential picture, since the paraxial wave equation is the same as the

Schrödinger equation with time replaced by the propagation direction. Under the same

correspondence, the fluctuating potential in time becomes a disordered potential in

space. In the ensemble average the fluctuating potential also yields a coherent reflection,

since it obeys the same unconditioned equations as the measurement.

An alternative analogy is the reflection of a photon from a conducting surface. The

large complex permittivity—whose imaginary part represents absorption—leads to a

rapid extinction of the wave inside the conductor if the conductivity is large. This is

analogous to a large measurement strength for detecting the electromagnetic wave inside

the region. This leads to the large reflection probability for light from the surface of a

good conductor, even though it is a good absorber for waves inside the medium.

The above examples capture the coherence of the reflection, but miss the

transmission aspects of the measurement since the inbound particle is absorbed by the

interaction. Unlike photons, atoms are not destroyed upon detection, so the form of the

transmitted wave packet is necessary for a complete picture of measurement-induced

reflection.

7. Outlook

We have outlined a theory of continuous position measurements that describes a spatially

varying measurement strength. The effects shown here require the measurement gradient

to dominate over all other dynamics. It is only in the limit of a large measurement

gradient on the scale of the atom, large intensities and small velocities that coherent

reflection can take place. This work can be extended to include other couplings and

position measurements such as atoms coupled to micro-toroidal resonators [65], and the

effect of measurements when the particle is confined to a potential. The case of both an

inhomogeneous measurement and potential is of interest, for example, for studying the

quantum–classical transition for classically chaotic systems. Future work will extend

the idealized theory presented here to account for the imaging setup, diffraction effects

and realistic photo-detection.
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