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Abstract

The basic principles of classical and semi-classical theories of molecular optical activity are

discussed. These theories are valid for dilute solutions of optically active organic molecules. It

is shown that all phenomena known in the classical theory of molecular optical activity can be

described with the use of one pseudo-scalar which is a uniform function of the incident light

frequency ω. The relation between optical rotation and circular dichroism is derived from the basic

Kramers-Kronig relations. In our discussion of the general theory of molecular optical activity

we introduce the tensor of molecular optical activity. It is shown that to evaluate the optical

rotation and circular dichroism at arbitrary frequencies one needs to know only nine (3 + 6)

molecular tensors. The quantum (or semi-classical) theory of molecular optical activity is also

briefly discussed. We also raise the possibility of measuring the optical rotation and circular

dichroism at wavelengths which correspond to the vacuum ultraviolet region, i.e. for λ ≤ 150 nm.
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I. INTRODUCTION

In this study we discuss the classical theory of molecular optical activity. This theory was

originally developed for solutions of various optically active organic molecules. Our analysis

begins with the classical theory of optical activity based on the Maxwell’s equations for

electromagnetic fields. Any optical active substance is described in this theory with the use of

a few phenomenological parameters. The main goal of the classical theory of optical activity

is to derive some useful relations between these parameters in various cases. In general,

these parameters also depend upon frequencies and relations between such parameters take

different forms for different frequencies. We also consider semi-classical theory of optical

activity of molecules which was originally developed by Rosenfeld in [1]. In this theory

all molecules are considered as quantum systems, while radiation is considered classically.

This old theory is still widely used, since it produces a very good agreement with many

experimental results. In particular, the semi-classical theory of optical activity can be used

at short and very short wavelengths, e.g., for wavelengths which correspond to vacuum

ultraviolet. On the other hand, it is clear that the complete theory of optical activity can

be based only on quantum mechanics of molecules and quantum theory of radiation.

This work has the following structure. Basics of the classical theory of molecular optical

activity in dilute solutions of organic substances can be found in the next Sections. Here

we introduce the optical rotatory parameter β. The four Stokes parameters are defined in

Section III. These parameters are very convenient to describe quasi-monochromatic light.

The phenomenon of circular dichroism is described in Section IV. It appears that the two

fundamental ω−dependent functions (optical rotation and circular dichroism) which can be

defined for an arbitrary optically active solution can be written in the form of one complex

function. The well known Kramers-Kronig relation between the real and imaginary parts of

this functions must always be obeyed. For limited intervals of frequencies this produces a

very useful relation which allows to determine, e.g., the circular dichroism by using the known

expressions for optical activity. Tensor of molecular optical activity is explicitly defined in

Section V. The formulas obtained in this Section are very useful in applications, since they

allow to express the optical activity by using only the two basic molecular properties (the

electric dipole and magnetic dipole momenta). Concluding remarks can be found in the last

Section.
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II. CLASSICAL THEORY OF MOLECULAR OPTICAL ACTIVITY

Let us briefly discuss the classical theory of optical activity. In classical theory the op-

tical activity always denotes the ability of the material under study to rotate the plane of

polarization of the left- and right-circularly polarized light. Currently, the study of opti-

cal activity also includes optical rotation at different wavelengths, circular dichroism, and

differential scattering of left- and right-circularly polarized light. All these phenomena are

manifestations of natural optical activity which is a characteristic of chiral molecules (in

contrast with achiral or non-active molecules). Note that there are also various phenomena

which correspond to so-called induced optical activitivies. In such cases the achiral molecules

can show some optical activity, if, e.g., they are placed in a relatively strong electric and/or

magnetic fields. In this study we restrict ourselves to the analysis of the natural optical

activity only.

In general, the optical activity is uniformly related to the spatial dispersion, i.e. to the

non-local relation between the electric induction D and electric field E. For the Cartesian

components of these vectors we can write [2]

Di(r, t) = Ei(r, t) +
∫ ∞

0
dτ

∫

d3r1Fij(τ, r, r1)Ej(t− τ, r1) (1)

where Fik(τ, r, r1) = Fki(τ, r1, r) is the kernel of integral operator. For monochromatic field

components E(r, t) = E(r) exp(−ıωt) and Eq.(1) takes the form

Di(r) = Ei(r) +
∫

d3r1fij(ω; r, r1)Ej(r1) (2)

This equation with the kernel fij(ω; r, r1) expresses a non-local relation between D and E

which is also called spatial dispersion. In general, the kernel fij(ω; r, r1) in Eq.(2) rapidly

decreases with interatomic distances. In many cases such a kernel is very small already at

distances ≈ 3 a, where a designates some average (or effective) atomic dimension. Briefly,

the relation, Eq.(2), is written in the form

Di(r) =
∫

d3r1 · ǫij(ω; r, r1)Ej(r1) (3)

where ǫij is some non-local operator (tensor) which also depends upon the frequency ω (see

below). The 3 × 3 tensor ǫ̂ = ǫij is the dielectric tensor (also called electric permittivity).

From the transparency of the media it follows that all nine matrix elements ǫij are real and

all three eigenvalues of this tensor are positive.
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In all studies of optical activity in organic compounds only infinite, homogeneous media

are considered, a convention adopted in this work. Unless otherwise specified, the absorption

of radiation is assumed to be absent at all frequencies considered below. In such cases the

kernel in Eq.(2) depends only on the difference R = r − r1. The functions D and E

in infinite, homogeneous media can be expanded in a Fourier integral with the respect to

Cartesian coordinates as well as time. Finally, this allows one to obtain the following relation

between the corresponding Cartesian components of the vectors D and E

Di(k) = ǫij(ω;k)Ej(k) =
[

δij +
∫ ∞

0
dτ

∫

d3Rfij(τ,R) exp[ı(ωτ − k ·R)]
]

Ej(k) (4)

In other words, the dielectric tensor ǫik(ω;k) (also called electric permittivity) takes the

form

ǫij(ω,k) = δij +
∫ ∞

0
dτ

∫

d3Rfij(τ,R) exp[ı(ωτ − k ·R)] (5)

As follows from this formula the dielectric tensor is a function of the field frequency ω and

wave vector k. In general, the dependence of the dielectric tensor ǫij on ω is called dispersion,

while the analogous dependence upon the wave vector k represents the spatial dispersion.

The spatial dispersion of ǫij(k) is responsible for optical activity (see below).

In solutions of organic substances the optical activity corresponds to the case of weak

spatial dispersion, i.e. k =| k | is small. In such cases the tensor εij(ω,k) can be expanded

in powers of the wave vector k, e.g.,

ǫij(ω,k) = ǫ
(0)
ij (ω) + γijl(ω)kl + βijlm(ω)klkm + αijlmn(ω)klkmkn + . . . (6)

Such an expansion is valid, if the first term in Eq.(6), i.e. ǫ
(0)
ij (ω), has no zeros in a given

range of frequencies ω. Since in this study we restrict ourselves to the consideration of

transparent (or slightly absorbing) solutions only, then we can neglect the imaginary part

of dielectric tensor ǫ
(0)
ij (ω).

If these two conditions are obeyed, then for small k only the first few terms in such an

expansion are important. Let us restrict to the two lowest order terms (the second of which

is responsible for optical activity), i.e. we can write

ǫij(ω,k) = ǫ
(0)
ij (ω) + γijl(ω)kl = ǫ

(0)
ij (ω) + ı

ω

c
γijl(ω)nl (7)

where n = c
ω
k and γijlnl is an antisymmetric tensor of the second rank (upon indexes i and

j). For tensor γikl the antisymmetry means γijl = −γjil. If absorption of radiation is absent,
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then the tensor γijl is real, i.e. γ
∗
ijl = γijl. These two conditions mean that the γijlnl tensor

can be re-written into another form γijlnl =
c
ω
eijlgl, where eijl is the complete antisymmetric

tensor, while gl is the l−th component of the axial giration vector g. In tensor algebra this

relation is called the duality relation. In general, the giration vector g is a function of the

unit wave vector n, i.e. (g)i = gilnl, where gil is the pseudotensor of the second rank. In

isotropic media gil = δilf and such a pseudotensor is reduced to a single pseudoscalar f . In

this case the γijl tensor is essentially reduced to the complete antisymmetric tensor eijl.

In fact, for the tensor γijl one finds γijl(ω) =
c
ω
eijlf(ω), and therefore,

D = ǫ(0)E+ ıf(ω)(E× n) (8)

Note again that this equation can be applied only in those cases when the absolute value of

f(ω) is much smaller than the minimal eigenvalue of the tensor ǫ(0)(ω).

As is well known (see, e.g., [2]) in an arbitrary dielectric media we always have D ·n = 0.

In this case from Eq.(8) one also finds that E · n = 0. For a monochromatic wave we can

write the Maxwell equations

ω

c
H = (k× E) and

ω

c
D = (k×H) (9)

It follows from here that k ⊥ D ⊥ H and also that E ⊥ H. In three-dimensional space

this means that the three vectors E,D and k are coplanar. This simplifies drastically the

following analysis of optical activity in isotropic media.

Consider now the energy transfer. In general, the direction of the energy flux is given by

Poynting vector S = c
4π
(E ×H). Now by using the unit vector n defined above (n = c

ω
k)

we can write for the Poynting vector

S =
c

4π
(E×H) =

c

4π
[nE2 − (E · n)E] (10)

The total energy flux through an element dS of surface orthogonal to n is

dW =
c

4π
[E2 − (E · n)2]dΩ =

c

4π
E2sin3ΘdΘdΦ (11)

where Θ is the angle between the vector E and outer normal to this surface element dS, i.e.

n. Also, it follows from the two equations of Eq.(9) that D = n2E−n(n ·E). On the other

hand the basic relation between vectors D and E is D = ǫ̂E, where ǫ̂ is the dielectric tensor.

From here one finds the following equation written in Cartesian components

(n2δij − ninj − ǫij)Ej = 0 (12)
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where ǫij are the components of dielectric tensor.

Formally, this equation coincides with the corresponding eigenvalue equation for the

dielectric tensor ǫik. However, the eigenvalues of this tensor are the functions of three

spatial directions. By using some unitary transformation, one can reduce Eq.(12) to the

principal axes of the tensor ǫij which are also called the principal dielectric axes. In fact,

there are some advantages to writing Eq.(12) in the principal dielectric axes. In this case

it exactly coincides with Fresnel’s equation which is the main equation of crystal optics.

In general, Eq.(12) determines the wave-vector surface in the nx, ny, nz coordinates. Such

surfaces depend upon three constant coefficients ǫx, ǫy, ǫz (eigenvalues of the dielectric tensor

ǫij).

For homogeneous solutions the Fresnel’s equation simplifies significantly, since is these

systems ǫx = ǫy = ǫz. We want to consider such a transition in the two following steps.

First, consider the case of two different eigenvalues ǫx = ǫy = ǫ⊥ and ǫz = ǫ‖ (these values

of parameters correspond to uniaxial crystals). In this case the Fresnel’s equation can be

factorized to the form

(n2 − ǫ⊥)[ǫ‖n
2
z + ǫ⊥(n

2
x + n2

y)− ǫ⊥ǫ‖] = 0 (13)

where n = (nx, ny, nz) is the direction of the light propagation. In other words, an equation

of the fourth order (upon n) is reduced to the product of the two quadratic equations

n2 = n2
x + n2

y + n2
z = ǫ⊥ (14)

n2
z

ǫ⊥
+

n2
x + n2

y

ǫ‖
= 1 (15)

where the first equation is the equation of a sphere, while the second equation determines

an ellipsoid. The sphere represents the propagation of ordinary waves. Such waves have the

same refractive index n =
√
ǫ⊥. The second equation represents the so-called extraordinary

waves which are directly related with the optical activity. Let us consider the extraordinary

waves in homogeneous solutions, or in crystals of a cubic system. These two cases can be

obtained as the limit of Eq.(15) when ǫ‖ → ǫ⊥. In reality, it can be written in the two

different forms ǫ‖ = ǫ⊥ ± ∆, where the positive parameter ∆ → 0. In such cases, Eq.(14)

does not change, while the second equation takes the form

n2
z

ǫ⊥
+

n2
x + n2

y

ǫ⊥ ±∆
= 1 or

n2cos2θ

ǫ⊥
+

n2sin2θ

ǫ⊥ ±∆
= 1 (16)
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where nx = n · sin θ cosφ, ny = n · sin θ sin φ, nz = n · cos θ, where θ is the angle between the

optical axis and vector n.

In homogeneous solutions the orientation of chiral molecules is random, i.e. we have to

replace the factors cos2θ and sin2θ in the last equation by their mean values 1
2
. This gives

1

ǫ⊥
+

1

ǫ⊥ ±∆
=

2

n2
(17)

or
2

n2
=

ǫ⊥ + ǫ⊥ ±∆

ǫ⊥(ǫ⊥ ±∆)
≈ 2(ǫ⊥ ± 1

2
∆)

(ǫ⊥ ± 1
2
∆)2

=
2

(ǫ⊥ ± 1
2
∆)

(18)

From here one finds that n2 = ǫ⊥ ± 1
2
∆, or in other words, we have two different refractive

indices n2
1 = ǫ⊥ + 1

2
∆ and n2

2 = ǫ⊥ − 1
2
∆. This means that two different refracted wave are

formed and, formally, we have to consider the double refraction or birefringence. However,

the parameter ∆ is small (in fact, very small) in comparison with n2. Therefore, the overall

scale of such a birefringence is ≈ ∆.

Result can be obtained in a slightly different way with the use of some microscopic

identities. Indeed, let us note that for homogeneous solutions of chiral molecules ǫij =

ǫ · δik + ı c
ω
f(ω)eiklnl, where eikl is the complete antisymmetric tensor. In this case we do

not need to use the complete Fresnel’s equation to produce the same answer as above. The

chiral activity can be described with the use of only one numerical parameter f(ω) which

is pseudoscalar. In fact, such a parameter can be introduced in a slightly different way.

Indeed, the Maxwell equations in the case of homogeneous solutions take the form

D = ǫE− g
∂H

∂t
, B = µH+ g

∂E

∂t
(19)

where g is a some constant, which depends upon ω. By taking into account polarization of

media by the electric and magnetic field we can write, e.g., for the D vector

D = (1 + 4πNα)E− 4πN
β

c

∂H

∂t
(20)

where α is the static polarizability, while β is the so-called optical rotatory parameter, or

optical rotation, for short. As follows from Eq.(20) the parameter β is also a pseudoscalar.

The parameter β determines the optical rotation, i.e. the rotation of the plane of left- and

right-circularly polarized light when it passes through an optically active medium. Also, in

this equation N is the number of chiral molecules per unit volume. It follows from the last

7



two equations that ǫ = 1 + 4πNα and g = 4πN β

c
. The relation between factor g and the

indices of refraction for circularly polarized light can also be obtained from Eq.(20)

χL =
√
ǫ− 2πωg and χR =

√
ǫ+ 2πωg (21)

Now it is easy to find the overall rotation (δ) when the light propagates the distance z in

some chiral media

δ =
πz

λ
(χR − χL) =

4π2z

λ2
g = 4π2ν2z · g =

16π3ν2Nz

c
· β (22)

Note that the optical rotatory parameter β (as well as α) which follows from Eq.(20) can

rigorously be determined only with the use of the quantum mechanics of molecules. This

will be our goal in the third Section.

III. STOKES PARAMETERS

As follows from its definition any monochromatic wave has a certain polarization. How-

ever, in actual optical experiments it is almost impossible to create a beam of pure monochro-

matic waves, and usually we have to operate with real light which contains frequencies dis-

tributed in a small interval ∆ω around the main frequency ω. The means that the real light

is, in fact, a mixture of light quanta with different polarizations. An arbitrary property of

such a beam of light, e.g., the electric field E, in the real light depends upon time. If the

frequency distribution ∆ω around ω is narrow, then the E(t) function can be represented in

the form E(t) = E0(t)exp(−ıωt), where E0(t) is a slowly varying function of time t which

determines the polarization of the actual light. From the last formula one can expect that

such a polarization will be slowly changing in time, i.e. we are dealing with the partially

polarized light [3].

In regular experiments we cannot observe the polarization properties of electromagnetic

waves directly. Instead, one measures the intensity distribution of light when it passes

through various physical bodies. This means we are dealing with quadratic functions of

the field. In other words, in actual experiments we are measuring the components of the

following tensor Jαβ = E0αE
∗
0β , where E0α and E∗

0β are the Cartesian components of the

slow varying E0(t) vector. The line over the product of the two complex vectors mean the

value averaged in time. If all vectors are represented in the form E(t) = E0(t)exp(−ıωt),
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then the E0αE
∗
0β product is the only value which has non-zero time-average. Other similar

combinations, i.e., E∗
0αE

∗
0β and E0αE0β, contain rapidly oscillating factors exp(−2ıωt) which

gives zero upon time averaging.

Since in any plane wave one finds E ⊥ n, where n is the direction of wave propagation,

then the Jαβ tensor has only four components. Moreover, the Jαβ tensor also contains the

total intensity of the wave J =
∑

α Jαα = E ·E∗. This value has nothing to do with with

polarization of the wave and can be excluded by introducing the tensor ραβ =
Jαβ

J
. The

tensor ραβ has the unit trace and it is called the polarization tensor. It can be shown that

the polarization tensor is hermitian, i.e. ρ∗αβ = ρβα. Now, we can introduce the degree of

polarization P which is defined as

P =
√

1− 4det(ραβ) =
√

1− 4ρ11ρ22 + 4 | ρ12 |2 (23)

where det(ρβα) is the determinant of the 2× 2 matrix ρβα.

An arbitrary hermitian 2× 2 matrix can be represented in the following form

ραβ =
1

2
(ραβ + ρβα) +

1

2
(ραβ − ρβα) = Sαβ −

ı

2
eαβA (24)

where Sαβ is the real symmetric 2 × 2 tensor. The analogous non-symmetric 2 × 2 ten-

sor in two-dimensional space is reduced to the unit antisymmetric tensor e12 = −e21 and

pseudoscalar A. The pseudoscalar A is called the degree of circular polarization. It is

bounded between -1 and +1. The case of a light wave with linear polarization corresponds

to the A = 0 value. The waves with circular polarization correspond to the values A = +1

(right-circular) polarization and A = −1 (left-circular polarization).

An alternative expansion for an arbitrary hermitian 2 × 2 matrix is performed with the

use of three Pauli matrices σ̂i (i = x, y, z) (see, e.g., [4]) and one unit matrix Î. It is written

in the form

ραβ =
1

2

(

Î + ξ1σ̂x + ξ2σ̂y + ξ3σ̂z

)

=
1

2







1 + ξ3 ξ1 − ıξ2

ξ1 + ıξ2 1− ξ3





 (25)

The parameters ξ1, ξ2 and ξ3 which appear in this formula are the so-called Stokes parame-

ters. In general, any intensity measurement may be written as a linear combination of these

three parameters and one additional Stokes parameter ξ0 which is the total intensity of the

scattered light. The determinant of the ρβα tensor is

det(ραβ) =
1

4
(1− ξ21 − ξ22 − ξ23) (26)
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while the degree of polarization is P =
√

ξ21 + ξ22 + ξ23 . The Stokes parameters ξ1 and ξ3

determine the degree of the linear polarization, while the parameter ξ2 shows the degree

of circular polarization. Note that the parameter ξ2 coincides with the pseudoscalar A

introduced above. From three Stokes parameters one can construct the two scalars (ξ2 and
√

ξ21 + ξ23) which are invariants under Lorentz transformations. The three Stokes parameters

also have a number of other advantages in actual applications.

IV. CIRCULAR DICHROISM

In all formulas above we have neglected the absorption of light during its propagation in

the dense media. In actual cases the absorption of light always occurs. At some frequencies,

e.g., in the vacuum ultraviolet region, it plays a very important role and cannot be ignored

even in the first approximation. In reality the situation is even more complicated, since

light waves with different circular polarization are absorbed differently by the media. This

is called circular dichroism (CD). Such a differential absorption of light with left- and right-

circular polarizations can directly (and substantially) affect the observed optical activity.

It appears that optical rotation and differential absorption of light with different circular

polarizations can be considered as the two manifestations of one phenomenon.

In general, a detailed study of circular dichroism at different frequencies allows one to

develop a new approach for analysis of organic substances. In this Section we want to discuss

the modification which is required in all formulas presented above. The absorption of light

is described by introducing an imaginary part into the permittivity tensor ǫij(ω, r), or in

other words, by considering static polarizability α as a complex value. However, we are

not interested here in the total light absorption. Our interest is related to a very specific

difference between absorption of light with left- and right-circular polarizations. It is clear

that a complex static polarizability α, Eq.(20), cannot describe such differences. As follows

from Eq.(20) this goal can be achieved by considering the optical rotatory parameter β as a

complex value.

In these cases the parameter β is represented as the sum of its real and imaginary parts,

i.e. β = β1+ ıβ2, where β1 and β2 are two functions of the frequency ω. These two functions,

however, are not completely independent, since there are two additional connections between

them which follow from the Kramers-Kronig relations. This follows from the fact that β(ω)
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is the response function [2], [6] which is an analytical function in the upper half ω plane (for

now, we consider the frequency ω as a complex variable) (see, e.g., [6]). This allows us to

use Cauchy’s theorem for β(ω):

β(z) =
1

2πı

∮

C

β(ω′)dω′

ω′ − z
(27)

The contour C can be chosen to consist of the real frequency axis ω and a great semicircle

at infinity in the upper half plane. The function β(ω) vanishes rapidly at infinity, i.e. there

is no contribution to the integral from the great semicircle. Finally, Cauchy’s integral is

written in the form

β(z) =
1

2πı

∫ +∞

−∞

β(ω′)dω′

ω′ − z
(28)

where z now is any point in the upper ω−half plane and the integral is taken over the real

axis. In fact, we want to place the point z at the real axis. This can be done by approaching

the real axis from above, i.e. by representing the complex variable z in the form z = ω+ ıε.

This gives

β(ω) =
1

2πı

∫ +∞

−∞

β(ω′)dω′

ω′ − ω − ıε
(29)

The denominator in the last formula can be written in the form [6]

1

ω′ − ω − ıε
= P

( 1

ω′ − ω

)

+ πıδ(ω′ − ω) (30)

where the symbol P means the principal part, while δ(x) designates the Dirac delta-function.

Now Eq.(29) takes the form

β(ω) =
1

πı
P

∫ +∞

−∞

β(ω′)dω′

ω′ − ω
(31)

By separating here the real and imaginary parts one finds

Reβ(ω) =
1

π
P

∫ +∞

−∞

Imβ(ω′)dω′

ω′ − ω
(32)

Imβ(ω) = −1

π
P

∫ +∞

−∞

Reβ(ω′)dω′

ω′ − ω

This is the most general Kramers-Kronig relations written for the optical rotatory parameter

β. In general, it can be shown that the Reβ(ω) is an even function in ω, while Imβ(ω) is

odd. This allows one to transform the last two integrals in Eq.(32) to the integrals taken

over positive frequencies only, i.e.

Reβ(ω) =
2

π
P

∫ +∞

0

ω′[Imβ(ω′)]dω′

(ω′)2 − ω2
(33)

Imβ(ω) = −2ω

π
P

∫ +∞

0

[Reβ(ω′)]dω′

(ω′)2 − ω2

11



These formulas can be used in actual applications which include the optical rotatory pa-

rameter β. By using Eq.(22) we can re-write these formulas for the corresponding angles

δ = θ + ıκ

θ(ν) =
2

π
P

∫ +∞

0

ν ′κ(ν ′)dν ′

(ν ′)2 − ν2
(34)

κ(ν) = −2ν

π
P

∫ +∞

0

θ(ν ′)dν ′

(ν ′)2 − ν2

where we have also introduced the linear frequency ν = ω
2π

(ω is called the circular frequency).

The importance of the linear frequencies ν follows from the fact that these values are usually

used in actual experiments. In general, Eq.(34) represents the explicit relation between the

actual optical rotation (angle θ) and circular dichroism (angle κ). As follows from Eq.(34)

the optical rotation known for all frequencies allows one to determine the circular dichroism

at each frequency [5]. In reality, however, one finds a number of restrictions which exist

in the solution of this problem. Most of such restrictions follow from the fact that optical

rotations in the VUV region (λ ≤ 150 nm) are not known even approximately. On the

other hand, it is clear that for each molecule the VUV area of wavelengths contains many

resonance lines which are crucially important to describe the absorbtion of radiation. If

we ignore the VUV region of wavelengths, then we can restore the circular dichroism at all

frequencies only approximately (in reality, very approximately). For some limited areas of

wavelengths, however, such a reconstruction can be quite accurate and complete. Usually,

these areas of wavelengths are located far from the VUV region.

Note also, that the experimental knowledge of the θ(ν) and κ(ν) values for large number

of different frequencies ν1, ν2, . . . , νn is used to detect uniformly the corresponding organic

substance. Formally, such an identification allows one to solve many problems of quantative

and qualitative analysis of the mixtures of chiral organic substances.

V. TENSOR OF MOLECULAR OPTICAL ACTIVITY. ROTATION POWER.

In the middle of 1930’s Placzek shown [7] that a significant number of effects related to

the interaction between atom(s) and electromagnetic field can be described with the use of

only one tensor, later known as the tensor of light scattering. In particular, the differential

scattering cross-section of light by an atom (or any other electron containing system) can
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be written in the form

dσ =
ω(ω + ω12)

3

h̄2c4
| (Cik)21(e

′
i)

∗ek |2 do′ (35)

where (Cik)21 is the 3 × 3 tensor of light scattering, while ei and ek are the polarization

vectors of the incident and final photons. The integration in Eq.(35) is performed over

the angular variables of the final photon which is designated by the superscript ′. Here

and everywhere below we shall assume that the angular volume element do′ has the form

do′ = sinθ′dθ′dφ. The explicit expression for the light scattering tensor (Cik)21 is [8]

(Cik)21 =
∑

n

[ (di)2n(dk)n1
ωn1 − ω − ı0

+
(dk)2n(di)n1
ωn1 + ω′ − ı0

]

(36)

where ω′ = ω + ω12, while di and dk are the corresponding components of the vector of the

dipole moment d. Note that the differential cross-section dσ, Eq.(35), corresponds to the

lowest order approximation upon the fine structure constant α ≈ 1
137

and contains only the

electric dipole-dipole interaction.

The Placzek approach for atoms suggests attempting to derive an analogous method

for molecules which would describe their optical activity. In this Section this problem is

considered in detail and it is shown that in the lowest order approximation can be described

by the tensor (Cik)21 of light scattering and by the four (or two in some cases) new tensors.

These tensors are called the tensors of (molecular) optical activity. Note that in many

actual cases the four/two tensors of optical activity are reduced to one tensor only. To

produce the closed analytical expressions for these tensors below we shall assume that the

electromagnetic field is represented as a combination of plane waves. Each of these plane

waves has its own frequency ω and polarization which is represented by the vector e. The

wave functions of the incident and final photons can be taken in the form (see, e.g., [8])

Aeω =

√

2π

ω
exp(−ıωt + ık · r)e , Ae′ω′ =

√

2π

ω′
exp(−ıω′t + ık′ · r′)e′ , (37)

where ω and ω′ are the corresponding frequencies, while vectors e and e′ represent the

polarization of the incident and final photons, respectively. Below, we shall consider the

plane waves in the transverse (or radiation) gauge, where divA = 0. In this gauge one finds

k · e = 0 and k′ · e′ = 0. Note that in calculations for the final photon we need to use

the wave function which is conjugate to its wave function, i.e. A∗
e′ω′ . As follows from these

13



equations the electric E and magnetic H fields are

Eeω = − ∂

∂t
Aeω = −ı

√
2πωeexp(−ıωt + ık · r) (38)

Heω = curlAeω = ı

√

2π

ω
(k× e)exp(−ıωt+ ık · r)

By introducing the unit vector n = k

ω
we can re-write the last equation in the form

Heω = ı
√
2πω(n× e)exp(−ıωt + ık · r) (39)

Analogous expressions can be obtained for the Ee′ω′ and He′ω′ fields which are related with

the A∗
e′ω′ wave function.

From these equations one finds the following expressions for the electric dipole and mag-

netic dipole interactions. In fact, for each of the (e, ω)-components of the E and H vectors

we have

V e
eω = −d · Eeω = ı

√
2πω(d · e)exp(−ıωt + ık · r) (40)

and

V m
eω = −m ·Heω = −ı

√
2πω[m · (n× e)]exp(−ıωt + ık · r) (41)

where d and m are the vectors of the electric and magnetic dipole moments, respectively.

In the lowest order approximation the one-photon matrix elements of the V e and V m in-

teractions equal zero identically. The first non-zero contribution can be found only in the

second order of perturbation theory. In the second order approximation the matrix element

V21 for the transition between states 1 and 2 is written in the following form [8]

V21 =
∑

n

( V ′
2nVn1

E1 − E I
n

+
V2nV

′
n1

E1 − E II
n

)

(42)

where the notation E designates the total energy of the system (‘molecule + photons’), i.e.

in the case considered here we have E I
n = En and E II

n = En + ω + ω′. The matrix elements

Vab represent absorbtion of the photon with the wave vector k. Analogously, the matrix

elements V ′
ab represent emission of the photon with the wave vector k′. In the general case,

in Eq.(42) the V = V21 interaction is represented in the form V = V e+V m+V qe+V qm+ . . .

and V ′ = (V e)′ + (V m)′ + (V qe)′ + (V qm)′ + . . ., where V e, V m, V qe are the electric dipole,

magnetic dipole and electric quadruple interactions, respectively. Keeping only lowest order

terms in the expansion of V in terms of the fine-structure constant α ≈ 1
137

, we can write
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V ≈ V e + V m and V ′ ≈ (V e)′ + (V m)′. In this case one finds from Eq.(42)

V21 =
∑

n

[(V e)′2nV
e
n1

E1 − E I
n

+
(V e)2n(V

e)′n1
E1 − E II

n

]

+
∑

n

[(V e)′2nV
m
n1

E1 − E I
n

+
(V e)2n(V

m)′n1
E1 − E II

n

+
(V m)′2nV

e
n1

E1 − E I
n

(43)

+
(V m)2n(V

e)′n1
E1 − E II

n

]

+
∑

n

[(V m)′2nV
m
n1

E1 − E I
n

+
(V m)2n(V

m)′n1
E1 − E II

n

]

+ . . .

By neglecting here by all terms ∼ V mV m and other terms of higher orders in the fine

structure constant α, we obtain the following formula for the differential cross-section of

light scattering dσ

dσ =| V21 |2
(ω′)2do′

4π2
= dσee + dσem (44)

where dσee is the part of the total cross-section which can be reduced to the expression given

above (see Eq.(35)). This part of the cross-section is not related with the optical activity.

The second term in the right-hand side of Eq.(44) is significantly smaller, in the general

case, than the first term, i.e. dσem ≪ dσee. However, the second term in Eq.(44) is a great

interest, since it represents all lowest order effects which are determined by the molecular

optical activity.

As follows from Eq.(43) in order to determine the part of the total cross-section respon-

sible for molecular optical activity in the lowest order approximation we need to obtain the

explicit formulas for the matrix elements of the V eV e, V eV m, and V mV e products. The

arising expressions are extremely complicated, since each of the V e and/or V m interactions

contains an infinite number of V e
eω and V m

eω components. In the V eV m and/or V mV e prod-

ucts one finds an infinite number of cross-terms which explicitly depend upon coordinates.

These terms cannot be computed without a complete and accurate knowledge of the molec-

ular electron density ρe(r).

However, we can introduce an approximation that the wavelengths λ of the incident

and final photons are significantly larger than typical linear sizes of molecule a (our light

scatterer). In this case we have k · r ≤| k || r |≪ a
λ
≈ 0. In this approximation one finds

from Eqs.(40) and (41)

Eeω = −ı
√
2πωeexp(−ıωt) (45)

and

Heω = ı
√
2πω(n× e)exp(−ıωt) . (46)

Therefore, we can write

V e
eω = ı

√
2πω(d · e)exp(−ıωt) = ı

√
2πω(dω · e) (47)
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and

V m
eω = −ı

√
2πω[m · (n× e)]exp(−ıωt) = −ı

√
2πω[mω · (n× e)] (48)

where dω and mω are the corresponding Fourier-components of the dipole and magnetic

moments of the molecule. Note that with the identity m · (n× e) = e · (m×n), the formula

for magnetic interaction can also be written in another form

V m
eω = −ı

√
2πω[(mω × n) · e] (49)

which is similar to the formula for V e
eω in which the vector of the dipole momentum d is

replaced by the vector-product mω × n.

Now, we can write the lowest order term upon the magnetic interaction in the differential

cross-section dσ of the light scattering

dσ =
∣

∣

∣

∑

n

(d2n · e′)(dn1 · e)
ωn1 − ω − ı0

+
(d2n · e)(dn1 · e′)
ωn1 + ω′ − ı0

∣

∣

∣

∣

∣

∣

∑

n

(d2n · e′)[(mn1 × n) · e]
ωn1 − ω − ı0

+(50)

[(m∗
2n × n) · e′](dn1 · e)
ωn1 − ω − ı0

+
(d2n · e)[(m∗

n1 × n) · e′]
ωn1 + ω′ − ı0

+
[(m2n × n) · e](dn1 · e′)

ωn1 + ω′ − ı0

∣

∣

∣ · ω(ω
′)3

h̄2c4
do′

where the notation e′ designates the vector (e′)∗. This notation is also used in the two

following equations. This equation can be re-written as

dσ =
∣

∣

∣

∑

n

(d2n · e′)(dn1 · e)
ωn1 − ω − ı0

+
(d2n · e)(dn1 · e′)
ωn1 + ω′ − ı0

∣

∣

∣

∣

∣

∣

∑

n

(d2n · e′)[mn1 · (n× e)]

ωn1 − ω − ı0
+(51)

[m∗
2n · (n× e′)](dn1 · e)

ωn1 − ω − ı0
+

(d2n · e)[m∗
n1 · (n× e′)]

ωn1 + ω′ − ı0
+

[m2n · (n× e)](dn1 · e′)
ωn1 + ω′ − ı0

∣

∣

∣ · ω(ω
′)3

h̄2c4
do′

In these equations and below the notation m∗ stands for the vector which is a complex

conjugate vector to the vector of magnetic dipole moment m. In quantum mechanics (in

the coordinate representation) we always have d∗ = d, but m∗ 6= m. Note that the vector n

in these equations corresponds to the direction of the scattered light. Formally, this vector

can be oriented in an arbitrary spatial direction, but in almost all modern experiments

on optical activity in homogeneous solutions the direction of the scattered light always

coincides with the direction of the incident light. This means that our differential cross-

section must be multiplied by a delta-function δ(nin − n) and integrated over the angular

variables o′ = (θ′, φ′) of the unit vector n = (cosθ′cosφ′, cosθ′sinφ′, sinθ′) which represents

the direction of the final photon. The unit vector nin describes the direction of the incident

photon. This produces the following expression for the cross-section σ

σ =
4πω(ω + ω12)

3

h̄2c4
·
∣

∣

∣

∑

n

(d2n · e′)(dn1 · e)
ωn1 − ω − ı0

+
(d2n · e)(dn1 · e′)
ωn1 + ω′ − ı0

∣

∣

∣

∣

∣

∣

∑

n

(d2n · e′)[mn1 · (nin × e)]

ωn1 − ω − ı0
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+
[m∗

2n · (nin × e′)](dn1 · e)
ωn1 − ω − ı0

+
(d2n · e)[m∗

n1 · (nin × e′)]

ωn1 + ω′ − ı0
+

[m2n · (nin × e)](dn1 · e′)
ωn1 + ω′ − ı0

∣

∣

∣(52)

where ω′ = ω+ω12 and unit-vector nin designates the direction of propagation of the incident

photon.

The expression, Eq.(52), can be cast in the following form

σ =
4πω(ω + ω12)

3

h̄2c4
·
∣

∣

∣(Cik)21(e
′
i)
∗ek

∣

∣

∣ ·
∣

∣

∣(Ŝik)21(e
′)∗i (nin × e)k + (T̂ik)21(nin × (e′)∗)iek (53)

+(Ûik)21(e)i(nin × (e′)∗)k + (V̂ik)21(nin × e′)i(e
′
k)

∗
∣

∣

∣

where (Sik)21, (Tik)21, (Uik)21 and (Vik)21 are 3 × 3 tensors, while the dipole-dipole tensor

(Cik)21 is defined above in Eq.(36). Here we assume that, in the general case, the vectors

e′ and e which represent the polarization of light are complex. Each of these tensors is

represented as a sum of its irreducible components, e.g., Sik = S0δik + Ss
ik + Sa

ik, where

S0 =
1

3
Sii , Ss

ik =
1

2
(Sik + Ski)− S0δik , Sa

ik =
1

2
(Sik − Ski) (54)

Note also that S0, T 0, U0 and V 0 are called the scalar parts of the S, T, U and V ten-

sors, respectively. The components with the superscripts s and/or a (e.g., T s, T a)

are the symmetric and antisymmetric parts of the tensor. All components of the

S0, T 0, U0, V 0, Ss
ik, T

s
ik, U

s
ik, V

s
ik, S

a
ik, T

a
ik, U

a
ik and V a

ik tensors contain the products of the cor-

responding components of the d and m vectors, which are the vectors of the electric dipole

momentum and magnetic dipole momentum, respectively. The vector-operators which rep-

resent the electric and magnetic dipole momenta are assumed to be self-conjugate. Further-

more, as mentioned above in the coordinate representation the vector d is a real vector (i.e.

d∗ = d), while the vector m is a complex vector (i.e. m∗ 6= m). For instance, the explicit

expressions for the S0, T 0, U0 and V 0 tensors (they are called the scalar-components) are

(S0)21 =
1

3

∑

n

(di)2n(mi)n1
ωn1 − ω

, (T 0)21 =
1

3

∑

n

(m∗
i )2n(di)n1
ωn1 − ω

, (55)

(U0)21 =
1

3

∑

n

(di)2n(m
∗
i )n1

ωn2 + ω
, (V 0)21 =

1

3

∑

n

(mi)2n(di)n1
ωn2 + ω

,

respectively. Analogous formulas for the symmetric and antisymmetric parts of the S, T, U

and V tensors are significantly more complicated. These formulas and the physical meaning

of all irreducible components of these S, T, U and V tensors will be discussed elsewhere.

Thus, we have shown that all phenomena related to the optical activity can completely

be described with the use of only four tensors: Ŝ21, T̂21, Û21 and V̂21. The fifth ten-

sor Ĉ21 (the tensor of electric-dipole light scattering) is included in the formula for the
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cross-section as an amplification factor. These five tensors have fifteen irreducible tensor-

components C0, Cs
ik, C

a
ik, S

0, T 0, U0, V 0, Ss
ik, T

s
ik, U

s
ik, V

s
ik, S

a
ik, T

a
ik, U

a
ik and V a

ik. The first three

tensors C0, Cs
ik, C

a
ik here have nothing to do with the optical activity itself. Instead they

determine the amplification factor which also appears to be ω−dependent. The optical

activity is described by the twelve tensors (S0, T 0, U0, V 0, Ss
ik, T

s
ik, U

s
ik, V

s
ik, S

a
ik, T

a
ik, U

a
ik and

V a
ik). In many real applications, however, the total number of independent tensors can be

reduced. For instance, if the 1- and 2-states are identical and ω21 = 0 (Rayleigh scattering),

then to describe optical activity one needs only two tensors (not four!) with six irreducible

components. This case corresponds to the regular optical activity (optical rotation) mea-

sured in modern experiments with dilute solutions of organic molecules. Furthermore, if the

polarization vectors are always chosen as real (not complex), then to describe the optical

activity one needs only one 3 × 3 tensor with three irreducible components. However, the

explicit ω−dependence of such a tensor will be quite complicated. All such cases will be

considered in our next study.

The intensity of the scattered light I ′ is uniformly related to the intensity of the incident

light I by the relation

I ′ =
(ω′

ω

)

σI (56)

As follows from the formula for the cross-section σ, Eq.(52), in any optically active solution

the intensity of the (scattered) light will always be rotated during its propagation along the

direction nin. The factor
(

ω′

ω

)

σ in the last formula can be considered as the rotation power.

As follows from the last formula the uniform combination of the twelve tensors mentioned

above multiplied by the amplification factor, Eq.(36), allows one to determine the so-called

rotation power of the given optically active solution for the initially polarized light. Note

that only our approach produces the correct and complete formula for the ω−dependence

of the rotation power.

VI. QUANTUM THEORY OF MOLECULAR OPTICAL ACTIVITY

As can be seen above, the physical origin of the relations between different parameters

used in classical theory of optical activity remains unknown. The corresponding analytical

expressions, numerical values and all possible relations between such ‘phenomenological’

parameters can be found only with the use of modern quantum theory based on Quantum

18



Electrodynamics. The first and very important step in the development of quantum origin

of optical activity was made by Rosenfeld almost 80 years ago [1]. Below, we shall follow the

same general direction. Our main goal in this Section is to obtain the relation between the

optical rotatory parameter β from Eq.(22) and properties of an isolated molecule. For an

isolated molecule the optical rotatory parameter β can only be a function of the molecular

2ℓ-pole moments. In reality, however, only a few moments with small ℓ (ℓ = 1, 2) contribute

noticeably. As we mentioned above the parameter β is a pseudoscalar. Therefore, the first

(largest) term in the expansion of β in terms of 2ℓ-pole molecular moments is proportional

to the scalar product of the dipole vector and the pseudovector of the magnetic moment

d ·m. The second term must be proportional to the product d · Q̂ ·m, where Q̂ is the second

order tensor of the electric quadropole momentum.

Below, we shall assume that all molecular wave functions (for the ground and excited

states) are known (or can be determined) to very good accuracy. In this case, by using

Rosenfeld’s formula one can calculate the optical rotatory parameter β (in some studies it

is also called the chiral response parameter)

β =
c

6πh̄

∑

b

Im
[

〈a | d | b〉〈b | m | a〉
]

ν2
ab − ν2

(57)

where the summation is taken over all intermediate states. In this equation we use the linear

frequencies ν instead of circular frequencies ω, where ω = 2πν. The notation Im designates

the imaginary part of the terms written in brackets. Symbols a and b stand for the quantum

(molecular) states, while | a〉 and | b〉 mean the corresponding wave functions. Rosenfeld’s

formula is based on an assumption that all molecular states (ground and excited) have zero

widths. In other words, these states are stable, i.e. the decay time is infinite. In general,

this is not a very realistic assumption and we need to introduce finite line widths, e.g.,

γab(ν) = 4π2e2|Dab|
2(νa−νb)

3

3ǫ0h̄c3
(in SI-units and in the lowest order dipole approximation [9]).

The Rosenfeld formula for the optical rotation δ can now be written in the form

δ =
16π2Nz

3hc

∑

b

ν2Rab

ν2
ab − ν2 + ıνγab

(58)

where Rab = Im
[

〈a | d | b〉〈b | m | a〉
]

is the so-called rotating power. By separating the

real and imaginary parts of this expression one finds for the actual optical rotation

θ =
16π2Nz

3hc

∑

b

ν2(ν2
ab − ν2)Rab

(ν2
ab − ν2)2 + ν2γ2

ab

(59)
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and for the circular dichroism

κ = −16π2Nz

3hc

∑

b

ν3γabRab

(ν2
ab − ν2)2 + ν2γ2

ab

(60)

where the notations from formula Eq.(34) are used. The definition of rotating power given

above corresponds to the dipole-dipole approximation. In the higher order approximation

the rotating power must be taken in the form Rab = Im
[

〈a | d | b〉〈b | m | a〉 + ∑

cd〈a | d |
c〉〈c | Q̂ | d〉〈d | m | a〉

]

. In reality it is very difficult to calculate the matrix elements Rab

accurately. However, a number of useful approximate formulas have been derived from the

expressions Eq.(59) and Eq.(60). For instance, if in some experiment we can see N peaks in

the θ(λ) function and K peaks in the κ(λ) function, then it is possible to approximate our

experimental data by using the two following formulas

θ(λ) =
N
∑

i=1

Ai(λ
2 − λ2

i )

(λ2 − λ2
i )

2 +Bi

and κ(λ) =
K
∑

j=1

Cjλ

(λ2 − λ2
j )

2 +Dj

(61)

where all numerical parameters Ai, Bi, Ci and Di must be determined by using the experi-

mental values of θ and κ at different wavelengths λ = 1
ν
. Numerical examples can be found

in the book by Djerassi [5].

Rosenfeld’s theory of optical activity allows one to determine the relations between basic

molecular properties and actual optical rotation and circular dichroism observed in experi-

ments. Indeed, by applying the known molecular wave functions one can compute the values

of 〈a | d | b〉 and 〈b | m | a〉 which are used in formulas for θ and κ above. By using these

values we can evaluate the rotating powers Rab. Then we can try to approximate the curves

θ(ν) and κ(ν) obtained in actual experiments. During this step all line widths γab can be

varied as numerical parameters. In practice, this approach works approximately only for

some simple molecules. For many molecules of interest, e.g., for complex molecules used in

cancer research, the current accuracy of the numerical determination of the 〈b | m | a〉 values
is not sufficient to make accurate comparisons with experiments. In particular, the signs of

the 〈b | m | a〉 values can be wrong in a number of cases. In addition to this, Rosenfeld’s

theory of optical activity is essentially a semi-classical theory, since all radiation fields in this

theory are considered classically. The most rigorous analysis of molecular optical activity

can be performed only on a basis of modern quantum electrodynamics (QED) [8]. This will

be one of our goals in future studies.
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VII. SPECIFIC ROTATION BY CHIRAL ORGANIC MOLECULES

In previous Sections we have briefly considered some theoretical aspects of the molecular

optical activity at arbitrary wavelengths. In this Section we discuss a few basic features

which are known for optically active organic molecules in solutions. In general, if some

organic molecule has non-zero electric and magnetic moments, then its optical rotation θ,

Eq.(59), differs from zero. Such a molecule shows a number of phenomena which are usually

designated as ‘optical activity’, or briefly, as an optical rotation of plane-polarized light. In

principle, any molecule which does not coincide with its mirror image can be optically active.

Moreover, for each optically active molecule one can always find another non-identical form

of the same molecule which is related to the original molecule through reflection. These two

forms of one molecule are called enantiomers, specifically D− and L− enantiomers, which

naturally refer to the right- and left-handed forms, respectively. In many sources the D-

and L-enantiomers of various molecules are discussed. However, it should be emphasized

that currently there is no uniform relation between the absolute configuration of complex

molecules and their ability to be left- and/or right-rotating. Here it is not our intention to

summarize all basic rules found for numerous organic substances which are optically active.

Instead, we restrict ourselves to an analysis relevant to observation of optical activity in the

vacuum ultraviolet region.

The most interesting cases can be observed in various organic molecules, i.e. in molecules

which include one or more carbon atoms. Formally, one carbon atom in a molecule which

is bonded to four different atoms and/or groups of atoms is sufficient for manifestation of

optical activity. In general, such a carbon atom is called an asymmetric atom, or a chiral

center. In many cases the optical activity can be observed in molecules with two, three and

more asymmetric carbon atoms (for more detail, see, e.g., [10], [11] and references therein).

A very well known example is the tartaric acid which may exist in the form of D- and L-

enantiomers and in its meso-form which has no optical activity. Note also that a number of

organic molecules with no chiral centers show overall optical activity, e.g., allenes, spiranes

and biphenyls. Such systems are considered as inherently dysymmetric. The active electrons

in these molecules are delocalized over a chiral nuclear system.

In this work we restrict ourselves to the consideration of organic molecules with one asym-

metric carbon atom (chiral center). In general, the observed optical rotation θ, Eq.(59),
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produced by one asymmetric carbon atom in a molecule will be small. However, if some

additional conditions are combined with each other, then the actual optical rotation θ in-

creases to moderate, large and very large values. It was shown more than sixty years ago

that ‘close’ presence of some special groups of atoms can increase the actual optical rotation

by a few orders of magnitude. Such special groups are called ‘chromophors’. Typical exam-

ples of chromophors are the −NH2, >CO, −CN, −C6H5 groups and some others. It should

be emphasized that none of these groups is optically active, but each amplifies significantly

the optical activity of the neithbouring chiral center.

Currently, there are a few dozens of different atomic groups which are recognized as

regular basic chromophors and a large number of special groups of atoms which become

chromophors only at certain wavelengths. In general, any group of atoms which has excessive

π−electron density can be considered as a potential chromophor and any experimental study

of optical activity in organic molecules is reduced to the analysis of various chromophors

and their influence on one of more asymmetric carbon atom(s). The problem contains many

complications. For instance, if one of the hydrogen atoms in a benzene ring bonded with

a chiral carbon center is replaced by the −NH2 group, then one finds the new chromophor

−C6H4NH2 which has a different influence on this chiral center. In other words, the change

in optical activity of the chiral center produced by the new chromophor (−C6H4NH2) cannot

be predicted accurately and uniformly from the analogous information known for the −C6H5

and −NH2 groups. In general, the delocalization of π−electrons in various organic molecules

can be used to create a huge number of ‘new’ chromophors. Moreover, if the same chiral

center is bonded to both the −C6H5 and −NH2 groups, the amplification of its chiral activity

will be drastically different from the previous case. In addition to this one also finds that

substitution of one hydrogen atom in the −C6H5 chromophor by, e.g., the −CH3 group

will also have a noticeable effect on overall optical activity. The following experimental

analysis must detect (and investigate) a direct relation between the actual optical activity

and position of the hydrogen atom (in the benzene ring) which was replaced by the −CH3

group.

It is important for the general theory that each chromophore group can be represented by

a number of poles located in the complex plane of frequencies ν (so-called ν-plane). In other

words, any chromophore group has a number of poles in the complex ν-plane associated

with it. If such a pole is close to the real axis, then in experiments one finds large and
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very large values of optical rotation δ and circular dichroism κ, respectively. In real organic

molecules one finds not one, but a few different chromophore groups. The experimental

curves for the δ(ν) and κ(ν) values measured for ν > 0 in actual organic molecules are

the result of interaction between various poles located in a complex frequency plane (ν) at

different frequencies. In general, the interaction between different chromophores produces

very complicated spectra for the optical rotation δ(ν) and circular dichroism κ(ν). The

complexity of these spectra rapidly increases as the number of poles per unit frequency

interval increases. In particular, this is the case for vacuum ultraviolet wavelengths, since

almost all known chromophors have many absorption lines located in VUV region.

VIII. CONCLUSION

We have considered the phenomena of optical activity in homogeneous solutions of var-

ious organic substances. The classical macroscopic theory based on Maxwell equations in

dielectric (or nonconducting) media is discussed in detail. The Stokes parameters for almost

monochromatic light are defined rigorously. The relations between the optical rotation and

circular dichroism are derived from the basic Kramers-Kronig relations. These relations al-

low one to obtain/evaluate, e.g., the circular dichroism by using the known values of optical

rotation at the same frequencies. The explicit expression for the tensors of molecular optical

activity are derived. Our formulas derived for the tensor(s) of molecular optical activity

can be used to explain a large number of phenomenon currently known in molecular optical

activity. Note that our formulas can successfully be applied to the case of the Raileigh

(or non-shifted) scattering when ω21 = 0 and also to the cases when ω21 6= 0 (shifted or

combined light scattering). It is shown that all known lowest order effects of optical activity

must be described with the use of finite number of tensors (five, three or one tensors).

We also briefly consider the quantum (or semi-classical) theory of molecular optical ac-

tivity developed by Rosenfeld in [1]. In this theory all molecules are quantum systems, while

all electromagnetic fields are described by classical Maxwell equations. A possibility to ex-

tend measurements of optical rotation and circular dichroism into the vacuum ultraviolet

region is discussed. Currently, this task seems to be extremely difficult, since there are a

large number of unsolved problems which must be considered before the whole procedure

can be usefully implemented. Moreover, it is clear that even the requisite experimental
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technique will have many fundamental differences from the technique applied for traditional

wavelengths. Nevertheless, we can expect that measurements of optical rotation and circular

dichroism in the vacuum ultraviolet region will produce a large volume of very valuable ex-

perimental data. These measurements will open a new avenue for some important discoveries

and improvements in our current understanding of optical activity of organic molecules.

Acknowledgments

It is a pleasure to acknowledge the University of Western Ontario for financial support.

[1] L. Rosenfeld, Z. Phys. 52, 161 (1928).

[2] L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, (2nd Ed., Pergamon

Press, New York, (1984)).

[3] L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, (4th Ed., Pergamon Press,

New York, (1979)).

[4] P.A.M. Dirac, Principles of Quantum Mechanics, (Oxford: Clarendon Press, 4th Ed., 1958).

[5] C. Djerassi, Optical Rotatory Dispersion, (McGraw-Hill, New York, (1960)).

[6] J.D. Jackson, Classical Electrodynamics, (2nd Ed., John Wiley and Sons, New York, (1975)).

[7] G. Placzek, in: Handbuch der radioologie Ed. E. Marx, (Academishe, Leipzig, (1934)), 6, 205.

[8] V.B. Beresteskii, E.M. Lifshitz and L.P. Pitaevskii, Quantum Electrodynamics, (2nd Ed.,

Pergamon Press, New York, (1984)).

[9] R. Loudon, The Quantum Theory of Light, (2nd Ed., Clarendon Press, Oxford, UK (1983)).

[10] S.F. Mason, Molecular Optical Activity and Chiral Discrimination, (Cambridge University

Press, London, (1982)).

[11] J.D. Roberts and M.C. Caserio, Basic principles of Organic Chemistry, (2nd Ed., W.A. Ben-

jamin, Inc., Menlo Park, (1977)).

24


	I Introduction
	II Classical theory of molecular optical activity
	III Stokes parameters
	IV Circular dichroism
	V Tensor of molecular optical activity. Rotation power.
	VI Quantum theory of molecular optical activity
	VII Specific rotation by chiral organic molecules
	VIII Conclusion
	 References

