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On a numerical approximation scheme for
construction of the early exercise boundary for a
class of nonlinear Black—Scholes equations

Daniel Sevcovic

Abstract The purpose of this paper is to construct the early exerasadary for

a class of nonlinear Black—Scholes equations with a véiafiinction depending
on the option price. We review and revisit a method how tosfam the problem
into a solution of a time depending nonlinear parabolic ¢qualefined on a fixed
domain. An example of numerical computation of the earlyreise boundary for a
nonlinear Black—Scholes equation is also presented.

1 Black—Scholes equations with a nonlinear volatility funtion

The main purpose of this paper is to review and revisit thedfokemain transfor-
mation method adopted for solving a class of nonlinear Bi&dholes equations
having the form:

oV ov 1 2 oV B
E+(r—q)sﬁ+§0(§dsv,S,T—t)Sza—Sz—rV_O. (1)

A solutionV =V(St) can be identified with a pricé of the option contract in the
future maturity timeT > O (e.g. call or put) wher& > 0 is the underlying asset
value at the present tintec [0, T). Here,r > 0 is the interest rate of a zero-coupon
bond,q > 0 is the dividend yield rate of the underlying asset. For Ainger style

of a call option, a solutio¥ to equation[{ll) is defined on a time dependent domain
0<S<Si(t), 0<t < T (cf. Kwok [12]).V is subjected to the boundary conditions
yieldingC* smooth pasting 0¥ (S;t) andV (S, T) atS= S(t):

V(O,t):O, V(Sf(t)’t)zsf(t)_Ea aSV(Sf(t)vt):lv (2)
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and the terminal pay-off condition at expiry=T,
V(ST)=(S-E)", ©)

whereE > 0 is the exercise price.

We briefly mention a motivation for studying the nonlineaa&t—Scholes equa-
tion having the form of{I). Such equations with a volatifityctiono (S902V, S, T —
t) arise from modeling the option prices by taking into accauonttrivial transac-
tion costs (cf. Leland [13], Hoggaret al. [9], Avellaneda and Parakl[3]), market
feedbacks and effects due to large traders choosing gieek-stading strategies
(Frey [€], Frey and Pati€¢ 7], Frey and Stremmk [8], Dur@gl. [5], Schonbucher
and Wilmott [14]), the risk adjusted pricing methodologyaebdue to Kratka[11]
and its modification developed by Jandacka Sescovic [10,16]). As an example
for application of the numerical method, we consider on adinear model taking
into account imperfect replication and investor’s prefees which has been pro-
posed by Barles and Soner [ [4]. If investor’'s preferencescharacterized by an
exponential utility function they derived a nonlinear B{a&choles equation with
the volatility functiono given by

02(SP03V,S,1) = 62 (1+ W(a’dTSPA3V)) . (4)

Hered? > 0 is a constant historical volatility of the asset price re¥ is a so-
lution to the ODE:¥'(x) = (W(x) +1)/(2y/x¥(x) — x),#(0) =0 anda> 0 is a
given constant representing investor’s risk aversion [ggeThe functiony satis-
fies:W(x) = O(x3) for x — 0 and¥(x) = O(X) for x — oo.

We revisit an iterative numerical algorithm for solving thiee boundary prob-
lem (1)-[2) developed bgevcovic in [16]. The key idea of this method consists
in transformation of the free boundary problem into a seraedr parabolic equa-
tion defined on a fixed spatial domain coupled with a nonlolegtaraic constraint
equation for the free boundary position. This method has bealyzed and utilized
in a series of papers][1,2.]153+19] by Ehrhardt and Ankudireméathe author. The
disadvantage of the original method consists in the ndgesfsolving an algebraic
constraint equation. In this approach, highly accuratéuetimn of the derivative of
a solution at one point entering the algebraic constraineeded (cf.[[16]). In this
note, we present a new efficient way how to overcome this dlffidoy considering
an equivalent integrated form of the algebraic constraifet.also present results of
numerical calculation of the free boundary position for Begles and Soner non-
linear extension of the Black—Scholes model.

2 Fixed domain transformation of the free boundary problem

We recall the method how to transform the free boundary erold[1)-{(3) into a
form of a nonlinear parabolic equation defined on a fixed daraad satisfying a
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nonlocal algebraic constraint equation developed by thiecain [16]. It is based
on the following change of independent variables and thesfoamed functior] =
1(x, 1) defined as follows:

T=T-t, x=In(p(1)/9), MNx1)=V(St)—SAkV(St), (5)

wherep(t) = $(T —1). Clearly, 7 € (0,T) andx € (0,) iff S (0,5(t)). The
boundary valuex= 0 corresponds to the free boundary posit®#a St (t) whereas
X = 400 corresponds to the default val@e= 0 of the underlying asset. Under the
structural assumption

0<qg<r

made on the interest and dividend yield rates and followigvdtion of the equa-
tion for I1, it turns out that the functiofl and the free boundary positignsatisfy
the following system of parabolic equatidd (6) with algeb@nstraint[(¥):

on o?\on 19 ([ ,on
MQ,t)=—-E, M(4»,7)=0,x>0,7€(0,T),

_ [ —=E forx<In(r/q),
M(x.0) _{ 0, otherwise,

2
p(r) ==+ ZEREDLO TR 0.1y, wit p0) =S, )

wherea? = a?(a[1(x,1),p(1)e ™%, 1), b(1) = % +r1 —q (cf. [16]). Notice that
equation[(¥) is not quite appropriate for construction adlaust numerical approxi-
mation scheme since any small inaccuracy in approximafitimeovalued,/1(0, T)

is immediately transferred in to the entire computatiorahdinx € (0, ) through
the free boundary function(t) entering[(6). Instead df{(7), we present a new equiv-
alent integrated equation for the free boundary pospicr). Indeed, integrating the
governing equatiori{6) fax € (0,) taking into account the boundary conditions
[1(0,7) = —E, (e, 1) = 0 (and consequentlgk/1 (e, T) = 0), we obtain the fol-
lowing spatially integrated form of the algebraic consitai

% (Elnp(r) +'/(;07‘I(x, r)dx) +0p(1)—gE

+/Om (—%oz(dxl'l (X, r),p(r)efx,r)i—IZ(x, T)+r(x, r)) dx=0. (8)

3 Numerical scheme based on operator splitting technique

The idea of the iterative numerical algorithm is based ondtiginal numerical
discretization scheme proposed by the authofin [16]. Weifydhis method by
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considering the alternative integrated fofh (8) of the ¢a@iist between andp.
The spatial domaimx € (0,) is restricted to a finite interval of valuesc (O,L)
whereL > 0 is sufficiently large. For practical purposes one can take3 (see
[16]). Let us denote bk > O the time stepk = T/m and byh > 0 the spatial
step,h = L/nwherem,n € N stand for the number of time and space discretization
steps, respectively. We denote b‘ly an approximation of7(x;, 7j), pl ~ p(T)),
bl ~ b(tj) wherex; = ih, 7 = jk. We approximate the value of the volatility at
the nodgx;, 7j) by the finite difference approximation as follows:
o) = o((My,—1))/hple,1j).
We setl1°(x) = 1(x,0). Next, following the idea of the operator splitting method
discussed in[16], we decompose the above problem into twts pa convection
part and a diffusive part by introducing an auxiliary intexhate step‘lj*%. Our
discretization of equationEl(8) arid (6) reads as follows:

(Integrated form of the algebraic part)

Einp) =Elnpl 4 1o(IT 1) —1o(MT7) + k (gE —ap’ —11(p),117)),  (9)

wherelo(/7) stands for numerical trapezoid quadrature of the inteffdll (£)d&
wheread;(p’, 1) is a trapezoid quadrature of the second integrdllin (8), i.e.

l1(p!, M) ~ '/: (—%oz(dxl'l (x),ple™, r,—)i—Z(x) + rl'l(x)> dx.

(Convective part)

12 pi-s =
: +bl =11 0, (10)
(Diffusive part)
n-ni-z (g2 9 j 10 29 M j
5 —éa—x<(0)a—xl'l)+rl'l =0. (11)

The convective part can be approximated by an explicit Ewiub the transport

~ ~ i1
equationd; 1 + b(1)dxIM = 0. Thus the spatial approximatidﬁ\J 2 can be con-
structed from the formula

pimdZ [M7HE) & =xi—Inpj+Inpj1—(r=qk>0, ),
! —E, otherwise,

where a piecewise linear interpolation between discrelmaesa‘lij’l,i =0,1,....n,
is being used to compute the vallid—1(x; — Inp; +Inpj_1 — (r — g)k).

The diffusive part can be solved numerically by means ofdidifferences. Using
central finite difference approximation of the derivati€l! we obtain
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) i1 i j j
w+rﬂ.1 _ (Uij)z ”ij+1_ ”ijfl
k I 2 2h
ol -
" <(0ij)2% SO T ) =0.ad)

Now, equationd(9)[[(12) and (113) can be rewritten in the ajgeform:
pl=7(.p)), niz=7(nlph), w(niphni=mni-z,

where.Z (M1, pl) is the right-hand side of the integrated algebraic equaf@n
The operator7 (1}, pl) is the transport equation solver given by the right-hand
side of [I2) ands” = &7 (I1},pl) is a tridiagonal matrix with coefficients given
corresponding td(13). At each time levgl j = 1,...,m, the above system can be
solved approximately by means of successive iterationsguhare. Given a discrete
solution[11-1, we start up iterations by defining!? = 1111, pi9 = pi=1. Then

the (p+ 1)-th approximation of 71} andp! is obtained as a solution to the system:

plPHL— Z(MiP piPy =3Pl — g (iP plptl),

o (MIP, pIPry i+l — =3P+ (14)

We repeat the procedure fqr = 0,1..., pmax, until the prescribed tolerance is
achieved.

At the end of this section, we present a numerical examplgpfaimation of
the early exercise boundary for the Barles and Soner modeténns of a solu-
tion to the transformed system of equations. In this modeMiiatility is given by
expression[{4). A discrete solution péifl, p) has been computed by our iterative
algorithm for the model parametes:= 10, T = 1 (one year)r = 0.1 (10% p.a) ,
g=0.05 (5% p.a.) andr = 0.2. As for the numerical parameters, we chnse 750
spatial points andn = 225000 time discretization steps. The skep T /m repre-
sents 140 seconds in the real time scale. In order to achieverecision 107 we
usedpmax = 6 micro-iterates in[(114). A graphical plot of the early exsecbound-
aryp(1) = S¢(T — 1) is shown in Fig[IL. Taking a positive value of the risk avensio
coefficienta = 0.15 resulted in a substantial increase of the free boundaiipo
p(T) in comparison to the linear Black—Scholes equation withstamt volatility
o = 4. Notice that the Barles and Soner modeldot 0 coincides with the linear
Black—Scholes model with constant volatility.
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