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Abstract

If the probability of default parameters (PDs) fed as input into a credit portfolio model are

estimated as through-the-cycle (TTC) PDs stressed market conditions have little impact on

the results of the capital calculations conducted with the model. At first glance, this is totally

different if the PDs are estimated as point-in-time (PIT) PDs. However, it can be argued

that the reflection of stressed market conditions in input PDs should correspond to the use of

reduced correlation parameters or even the removal of correlations in the model. Additionally,

the confidence levels applied for the capital calculations might be made reflective of the

changing market conditions. We investigate the interplay of PIT PDs, correlations, and

confidence levels in a credit portfolio model in more detail and analyse possible designs of

capital-levelling policies. Our findings may of interest to banks that want to combine their

approaches to capital measurement and allocation with active portfolio management that,

by its nature, needs to be reflective of current market conditions.

1 Introduction

Economic Capital (EC) is typically used within banks to

• determine the amount of capital needed in order to ensure solvency,

• allocate actual capital to business units in a systematic manner, and

• facilitate origination activities by consistently assessing different opportunities within a

RAROC (Risk Adjusted Return on Capital) framework.

Key ingredients to the computation of EC and RAROC are estimates for the underlying assets’

probability of default (PD), loss-given-default (LGD), and correlation parameters.

Furthermore, when setting up an EC framework, it is commonly believed that these input

parameters should be so-called through-the-cycle (TTC) estimates. In practice, the estimates

∗The opinions expressed in this note are those of the authors and do not necessarily reflect views of Lloyds

Banking Group.

1

http://arxiv.org/abs/1009.5401v1


are frequently derived as “historic average” estimates based on several years of observation

resulting in fairly stable capital requirements for banks. While stable capital requirements are

clearly desirable for a bank’s longer term planning process and actual operations, producing true

TTC parameter estimates proves challenging.

In practice, banks often operate several PD and LGD models, and the extent to which these

models display a true TTC behaviour varies considerably. In contrast to TTC estimates, point-in-

time (PIT) estimates are based on current economic conditions and aim to provide more accurate,

short term estimates of an obligor’s default likelihood and losses. However, most models in

practice are hybrid in nature, and, henceforth, the capital requirements as determined bottom up

through usage of typical credit portfolio models (e.g. KMV, CreditMetrics) may vary accordingly

and fail to reflect the true risk.

In this chapter, we investigate whether or not a stable level of economic capital can be achieved

within a PIT modelling environment. There is some literature on the properties of PIT and TTC

PD estimates (e.g. Heitfield, 2005) but not much has been published on a definition that can

be used in practice to characterise PIT or TTC estimates. We therefore begin by considering

and comparing methods for PIT and TTC PD estimates and the connection between PIT PD

estimates and credit portfolio risk modelling. It turns out that full consistency of PD estima-

tion and portfolio modelling is feasible in principle but unlikely to be achieved in practice. We

then demonstrate the consequences of being consistent and failing to be consistent in portfo-

lio risk modelling and PD estimation by a numerical example. We also demonstrate the effect

of one possible work-around, the “time-varying target solvency probability” as suggested by

Gordy and Howells (2006) in the context of stabilising regulatory capital requirements.

2 TTC vs. PIT PD modelling

TTC estimates are appropriate for stabilising capital requirements in the mid and long term.

Use of TTC estimates, however, risks to overlook immediate and near-term developments. Par-

ticularly in a crisis situation, an institution might suffer significant losses when relying on TTC

estimates only. PIT estimates are appropriate when a realistic short to mid term view of risk is

required. Ideally, PIT and TTC estimates would be consistent for longer horizons in that long-

horizon PDs converge to TTC PDs whereas short-term estimates are more reflective of current

economic conditions.

A risk measurement policy for a financial institution therefore could include the following ele-

ments:

• Capital requirements: Based on TTC estimates.

• Short term lending: Rely on PIT estimates and PIT risk assessments for decision making.

• Mid to long term lending: Rely on TTC estimates and TTC risk assessments for decision

making although near-term fluctuations should be considered as indicated above.
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• Credit extensions and limit management for existing obligors: Look at PIT estimates and

PIT risk assessments to identify obligors who are temporarily high risk (e.g. with PIT PD

of 5% or more).

Key for the implementation of a policy with such elements is the ability to estimate PIT and

TTC PDs. Aguais et al. (2006) describe an approach to PIT PD modelling which is based on

a structural model and uses segment-wise average indices of the so-called distance-to-default to

infer the current state in the credit cycle. This approach is very attractive as it provides a way to

determine TTC PD estimates at the same time. In addition, this approach ties in very naturally

with the estimation of a correlation structure for a credit portfolio model.

From a causality perspective – why are obligors more vulnerable in certain time periods? –

PIT PD estimation approaches based on macroeconomic factors like GDP growth are also quite

interesting. Engelmann and Porath (2003), for instance, suggest that a proportional hazard rate

model can be utilised very efficiently to include macroeconomic factors and thus provide PIT

PD estimates.

The further discussion in this chapter draws mainly on the estimation approach suggested

by Hamerle et al. (2004). This approach is based on logit or probit regression that includes

macreeconomic factors but also a latent factor to better capture correlation. We adopt here

the simpler version of the methodology without latent factor because it provides an intuitive

framework that allows a consistent approach to PIT and TTC PD estimation on the one hand

and credit portfolio risk modelling on the other hand.

The need for such a consistent approach is intensified by increased regulatory requirements for

stress testing. Clarity with respect to PIT and TTC risk assessments is required to avoid “double

stressing” and to more efficiently implement specific stress scenarios.

A policy to achieve consistency of PIT and TTC risk assessments could include the following

elements:

• Estimate PIT PDs with (e.g.) the Hamerle et al. (2004) probit approach.

• Transform PIT PDs into TTC PDs (e.g., as described in section 3 below).

• Use the factor structure as provided by the probit regression as the factor model for the

credit risk portfolio model. Note that this is different to typical portfolio models where

frequently factor models based on equity or default correlations are used and estimated

using long periods of historic data resulting in predominantly TTC correlation parameters.

• To study stress scenarios, evaluate certain factors or apply the distribution truncation

approach as suggested by Bonti et al. (2006).

3 Portfolio credit risk modelling and PD estimation

The purpose of this section is to describe an ideal situation such that portfolio credit risk

modelling and PD estimation are perfectly consistent. While such a situation is unlikely to be
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found in practice, knowing an example of how it could look like nonetheless might help to improve

consistency between the portfolio model in place and the way parameter estimation is done. In

addition, the simple setting of this section should help to clarify the notions of point-in-time

(PIT) and through-the-cycle (TTC) PDs.

3.1 A simple credit portfolio model

For the purpose of illustration we consider a simple default-mode Gaussian copula credit portfolio

model with deterministic loss severities. In this model, the portfolio-wide loss realised in one

observation period can be described as follows:

L =

N
∑

i=1

ui I(Di)

Di =
{

√

1− ̺2i ξi + ̺iw
′
iS ≤ Ti

}

(1)

Explanation of the notation used in (1):

• L is portfolio-wide realised loss if we assume that losses occur only as a consequence of

default and loss given default is deterministic.

• N is the number of obligors in portfolio.

• ui is the (deterministic) loss in case of default associated with obligor i. In this chapter,

we consider relativ losses, i.e. we assume
∑

ui = 1.

• Di denotes the event that obligor i defaults.

• I(A) is the indicator function of the event A, i.e. I(A) = 1 if A occurs and I(A) = 0

otherwise.

• S = (S1, . . . , Sk) is a random vector of systematic factors, assumed to be multi-variate

normal with mean vector 0. The number k of factor usually is small (e.g. not greater

than 10). The factors could be GDP growth, change in unemployment rate, or something

similar.

• wi = (wi1, . . . , wik) is the vector of weights of the systematic factors associated with

obligor i. The weights are assumed to be normalised such that var[w′
iS] = 1 (w′

iS =
∑k

j=1wij Sj denotes the Euclidian inner product).

• ξi is the individual risk factor associated with obligor i, assumed to be standard normal and

stochastically independent of all other random variables in the model. X = (ξ1, . . . , ξN )

denotes the vector of all ξi.

• ̺i ∈ [−1, 1] denotes the sensitivity of obligor i to the systematic risk. ̺i = 0 means that

the obligor i’s wealth is not vulnerable with regard to systematic risk (obligor is acyclical).

̺i = 1 means that obligors i’s wealth is completely determined by the systematic risk.

̺i < 0 would imply that obligor i is counter-cyclical.
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• Ti is obligor i’s default threshold. T = (T1, . . . , TN ) denotes the vector of all Ti.

Usually only the individual factors ξi and the vector S of systematic factors are considered

random elements. The default threshold Ti is determined individually for each single obligor

but often not considered random although it may change year on year if the obligor’s perceived

creditworthiness changes. In this chapter we allow for Ti to be a random variable as this helps

to consider some issues more rigorously.

TTC portfolio risk measurement. The distribution of the portfolio loss P[L ≤ ℓ], 0 < ℓ < 1,

usually is estimated from an artificially generated sample of loss realisations – by Monte-Carlo

simulation of realisations of the individual risk factors ξi and the systematic factors S but usually

not the thresholds Ti. This process is equivalent to trying to calculate the probabilities P[L ≤ ℓ]

by taking the expectation of the event {L ≤ ℓ} with respect to X and S. Technically speaking, as

the loss L = L(X,S, T ) is a function of the random vectors X, S, and T , taking the expectation

results in ∫

I[0,ℓ]
(

L(x, s, T )
)

P(X,S)(dx, ds) = P
[

L(X,S, t) ≤ ℓ
]
∣

∣

t=T
. (2)

The right-hand side of (2) is not the unconditional probability P[L ≤ ℓ] but – if we assume that

the risk factors X and S and the thresholds T are stochastically independent – can be interpreted

as the conditional probability P[L ≤ ℓ |T ]. The assumption of stochastic independence is crucial

for this interpretation. In general the formula for the conditional probability P[L ≤ ℓ |T ] is given
by

P[L ≤ ℓ |T ] =

∫

I[0,ℓ]
(

L(x, s, T )
)

P(X,S) |T (dx, ds). (3)

This differs from the left-hand side of (2) by the fact that the integration is done with respect

to the conditional distribution P(X,S) | T of (X,S) given T which in general – unless (X,S) and

T are stochastically independent – is not the same as the unconditional distribution P(X,S) of

(X,S). But it is the unconditional distribution of (X,S) that is approximated by the Monte-

Carlo simulation. Hence Monte-Carlo simulation of (X,S) with fixed T as described above yields

an economically interpretable result if and only if the risk factors (X,S) and the threshold T can

be assumed to be stochastically independent.

Note that integrating with respect to the systematic factors means that a cycle-neutral (or TTC)

perspective on the risks is adopted. Clearly, TTC PDs should be used for this kind of calculation.

The random variables in the definition of the default event Di in (1) are normalised in such a way

that
√

1− ̺2i ξi+̺iw
′
iS is standard normal and hence the TTC PD of obligor i – more correctly

the PD of obligor i conditional on Ti which is cycle-neutral after integration with respect to S

– is1

PDi = P[Di |Ti] = Φ(Ti). (4)

PIT portfolio risk measurement. In the model framework given by (1), a PIT view on the

actual risk of the portfolio can be achieved in two ways:

1Φ denotes the standard normal distribution function.
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• By taking the expectation of the event {L ≤ ℓ}, 0 < ℓ < 1, with respect to X and S as

described above for TTC risk measurement, but with a restricted range for S to specify

specific economic conditions. Details about this approach can be found in Bonti et al.

(2006).

• By fixing a realisation s of the systematic risk factor vector S and taking the expectation

of the event {L ≤ ℓ}, 0 < ℓ < 1, with respect to X only – while keeping the values of

the Ti constant at the same time. As the vector X of individual risk factors is assumed to

be independent of S and T , this procedure gives estimates of the conditional distribution

P
[

L ≤ ℓ |S, T
]

, 0 < ℓ < 1.

In section 3.2 we will see that in both approaches for the PIT risk view TTC PDs should be

used as input to the portfolio model.

3.2 The probit regression model for PD estimation

We describe in this section an approach to PD modelling and estimation that is perfectly con-

sistent with the portfolio model (1). The approach we have chosen is essentially a simplified

version of the probit estimation suggested by Hamerle et al. (2004, without latent factor).

We consider obligors in a fixed segment, defined say by industry or region. With each obligor i,

we associate a vector of characteristic factors Fi = (Fi1, . . . , Fim) (m does not depend on i),

i = 1, . . . , N . Typically, Fij will be a financial ratio from the balance sheet or a qualitative score

like management quality. Denote by F the random matrix F = (F1, . . . , FN ).

The point-in-time PDs resulting of a probit regression of default event indicators on the risk

factors Fi (different for different obligors) and the vector of systematic factors S (the same vector

for each obligor) can then be characterised as

PDi(F, S) = Φ(a0 + a′Fi + b′S), (5)

with a0 being a constant and a and b being constant vectors of appropriate dimension (estimated

by regression).

To see the connection between the probit model (5) and the Gaussian copula credit portfolio

model (1) it is convenient to rewrite (5) as a probability conditional on the factor vectors Fi

and S. Denote by ξi a standard normal random variable as in subsection 3.1 (with the same

interpretation as individual risk factor). Then we have

PDi(F, S) = P
[

ξi ≤ a0 + a′Fi + b′S |Fi, S
]

= P

[

ξi − b′S
√

1 + var[b′S]
≤ a0 + a′Fi
√

1 + var[b′S]

∣

∣

∣
Fi, S

]

= P
[

√

1− ̺2 ξi + ̺w′S ≤ Ti |Fi, S
]

,

(6)

where
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• the sensitivity ̺ is defined by ̺ =

√
var[b′S]√

1+var[b′S]
;

• the weight vector w is defined by w = − b√
var[b′S]

;

• the default threshold Ti is defined by

Ti = (a0 + a′Fi)
√

1− ̺2 =
a0 + a′Fi

√

1 + var[b′S]
. (7)

Proposition 1 Assume that the same vector of systematic factors S is used both for portfolio

risk modelling and for PIT PD estimation and that the constants in the description of the

default event Di in (1) are not allowed to differ between different obligors but only between

different segments of obligors. Then there is a one-to-one relation between the constants ̺ and

w and the thresholds Ti in the default events Di in (1) on the one hand and b, var[b′S], and

(a0 + a′Fi)i=1,...,N on the other hand.

Proof. We have seen above how ̺, w and the thresholds Ti are determined by b, var[b′S], and

a0 + a′Fi. Conversely, if ̺, w and the thresholds Ti are given then b, var[b′S], and a0 + a′Fi can

be determined by

var[b′S] =
̺2

1− ̺2

b = −w
̺

√

1− ̺2

a0 + a′Fi =
Ti

√

1− ̺2
.

(8)

This provides the other direction of the one-to-one relation. 2

While we have shown how to parameterise the portfolio model (1) from probit estimators (5)

and to derive a PIT probit estimator from the parameterisation of (1), to show full consistency

of the model (1) and the probit PD estimator (5) we have to prove that indeed the threshold

Ti from (7) is related to a TTC PD that derives in an intuitive way from the PIT PD (6). The

following proposition shows that this consistency property of the portfolio model and the probit

PD estimation can indeed be obtained if the risk factors Fi and the systematic factors S are

independent (i.e. the risk factors are through-the-cycle).

Proposition 2 Assume that the risk factors Fi = (Fi1, . . . , Fim) and the systematic factors

S = (S1, . . . , Sk) are stochastically independent. Then the TTC PD corresponding to (5) by

integration with respect to the systematic factor vector S is given by (4) with threshold Ti as

defined by (7).

Proof. The TTC PD corresponding to a PIT PD is derived from the PIT PD by integration

with respect to the systematic factors over the full range they can take on. By independence of
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Fi and S and the fact that b′S is normally distributed we can calculate the TTC PD for (5) as

follows

PDTTC
i (F, S) =

∫

PDi(F, x)PS(dx)

=

∫

Φ(a0 + a′Fi + y)Pb′S(dy)

=

∫

P
[

ξi ≤ a0 + a′Fi + b′S | b′S = y
]

Pb′S(dy)

= P
[

ξi − b′S ≤ a0 + a′Fi]

= Φ

(

a0 + a′Fi
√

1 + var[b′S]

)

.

In this calculation the random variable ξi is assumed to be standard normal and indepen-

dent of all other random variables. By definition of the default threshold Ti, we then have

Φ
(

a0+a′Fi√
1+var[b′S]

)

= Φ(Ti). This completes the proof. 2

In practice, integration of (5) with respect to the vector S of systematic factors might be ap-

proximated by averaging the values of (5) across a time series with realisations of the systematic

factors in both benign and poor economic conditions.

At first glance, the result of proposition 2 seems more or less self-evident. However, in practice

most of the time not all assumptions underlying proposition 2 are satisfied such that consistency

of portfolio modelling and PIT PD estimation might not be obtained.

• The vector of systematic factors S might not be normally distributed in reality.

• PIT PDs are not necessarily estimated by probit estimation but by logit estimation or

other methods (see, e.g. Tasche, 2009). While this could be accounted for in the portfolio

model by choosing another distribution for the individual risks, nonetheless a lot of further

adjustments would be necessary which would make the model much less straight-forward.

• A bank typically operates several different PD models, some of which may be expert driven

and less suitable for statistical modeling.

• It is unlikely that the characteristic factors Fi and the systematic factors S are stochas-

tically independent. As a consequence, the portfolio loss distribution P[L ≤ ℓ |T ] when
calculated according to (2) might be upward or downward biased, depending on the posi-

tion in the credit cycle when the calculation is conducted.

Remark 1 There are two other interesting consequences of proposition 1 on the one hand and

proposition 2 and (7) on the other hand.

1) The PIT PD estimates according to (5) should never be used as an input to a model like

(1), even if the model is applied to make a PIT risk measurement unless all other model

parameters can be specified consistently as outlined in footnote 2 below.
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2) The naive transformation of the PIT PD (5) into a TTC PD by just removing the sys-

tematic factors S from the right-hand side of the equation is inadequate. The simple term

Φ(a0+a′Fi) would underestimate the true TTC PD which according to (7) and proposition

2 is given by Φ
(

(a0 + a′Fi)
√

1− ̺2
)

(it would be an underestimation as a0 + a′Fi should

be negative most of the time for even PIT PDs in general will be less than 50%).

In this section we have discussed how – under certain assumptions – a consistent framework

of PIT PD estimators, TTC PD estimates, and the factor model for the correlation structure

of a credit portfolio model can be constructed. In particular, by proposition 1 we have shown

that there is a one-to-one mapping between suitable probit PIT PD estimators and the factor

model for the correlation structure while proposition 2 provides a recipe of how to derive TTC

PD estimates from the PIT PD estimators such that the results can be used as input to the

portfolio model. In the following section, we demonstrate the potential issues with mixing up

PIT and TTC parameters in standard portfolio models by means of a stylized example in the

context of the computation of tail risk and EC.

4 Numerical example

We look at a stylised homogeneous portfolio with 100 assets. All assets have the same exposure,

all LGDs are assumed to be 100%. We study the two cases of all assets being of investment

grade quality (TTC PD 0.3%) and all assets being of sub-investment grade quality (TTC PD

3%). The calculations are done with a one-factor version of model (1) and a sensitivity of 50%

unless explicitly stated otherwise. As the calculation is for illustrative purposes only we need

not identify the systematic factor. We calculate tail risk as Value-at-Risk (VaR) and economic

capital (EC) as Unexpected Loss which is defined as VaR minus Expected Loss.

The upper panel of table 1 shows the results for the TTC case where the input PDs for the

calculation are just the TTC PDs assigned to the assets. VaR and EC here are calculated at

99.9% confidence level. Note that the confidence level of 99.9% implies a target TTC PD of 0.1%

for the bank holding the portfolio. The VaR and capital values resulting from the calculations

seem rather high – this is a consequence of the high granularity of the portfolio, the 100% LGD

assumption and the relatively high sensitivity of 50% to the systematic factor.

The lower panels of table 1 show the results for the PIT case where the input PDs for the

calculation are a) PIT PDs determined by having the single factor taking on the value -2.33

(which corresponds roughly to a 1 in 100 scenario) and b) the TTC PDs as in the TTC analysis.

For a), the TTC PD of 0.3% is transformed into a PIT PD of 3.4% whereas the TTC PD of 3%

is transformed into a PIT PD of 20.4%. Otherwise the calculation is done exactly in the same

way as for the TTC analysis – that is why a) is labelled “PIT input, TTC calculation”. For b),

TTC PDs are used as input PDs2 to the model but the calculation is done by integration with

respect to the individual risk factors only while the systematic risk factor has the fixed value

-2.33. This is labelled “TTC input, PIT calculation” in table 1.

2Actually, it might be easier to implement this calculation by using the PIT PD derived as described in a) as

input PD and then run the portfolio model in TTC mode but with sensitivity ̺ = 0.
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Table 1: Value-at-Risk (VaR) and economic capital (EC) results for a homogeneous port-

folio with 100 assets calculated with a one-factor model under TTC and PIT assumptions.

EC is determined as ’Unexpected Loss = VaR minus Expected Loss’. Details on input

parameters and calculation methods are provided in section 4.

TTC analysis

Asset PD (TTC) 3% 0.3%

VaR (99.9%) 37% 9%

Capital (99.9%) 34% 8.7%

PIT analysis: PIT input, TTC calculation

Input PD 20.4% 3.4%

VaR (99.9%) 81% 39%

TTC capital (99.9%) 60.6% 35.6%

VaR (98.7%) 64% 21%

PIT capital (98.7%) 43.6% 17.6%

VaR (98%) 60% 18%

PIT capital (98%) 39.6% 14.6%

PIT analysis: TTC input, PIT calculation

Input PD 3% 0.3%

VaR (99.9%) 34% 10%

TTC capital (99.9%) 13.6% 6.6%

VaR (98.7%) 30% 8%

PIT capital (98.7%) 9.6% 4.6%

VaR (98%) 29% 7%

PIT capital (98%) 8.6% 3.6%

The rows labelled “VaR (99.9%)” and “TTC capital (99.9%)” respectively in the lower panels of

table 1 display the VaR and capital values calculated for these input PDs if the confidence level of

99.9% remains the same as for the TTC analysis. With PIT input PDs the new VaR and capital

values are then clearly much higher (e.g., for EC we have 60.6% to 34% for sub-investment grade

and 35.6% to 8.7% for investment grade) than the ones calculated for the TTC analysis. This

picture changes dramatically when the input PDs are the same TTC PDs as before in the TTC

analysis (e.g., for EC 13.6% to 34% for sub-investment grade and 6.6% to 8.7% for investment

grade). Note, however, that the VaR results are remarkably similar to the VaR results from the

TTC analysis (34% to 37% for sub-investment grade and 10% to 9% for investment grade). The

reason for these significant changes is the fact that in the PIT analysis default events become

stochastically independent because the calculations are conducted with a fixed value (-2.33) for

the systematic factor. Despite the higher input PDs the model (1) therefore generates lighter

tail loss distributions than in the TTC analysis. In addition, expected loss is higher because it

is based on the PIT PDs.

The rows labelled “VaR (98.7%)” and “PIT capital (98.7%)”, and “VaR (98%)” and “PIT capital

(98%)” respectively in the lower panels of table 1 display the VaR and capital values calculated

for the PIT analysis if the confidence level is adapted to reflect ’1 in 100’ PIT target PDs for the
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bank holding the portfolio. The target PD of 1.3% = 100% − 98.7% has been derived from the

bank’s TTC target PD of 0.1% in the same way as the PIT transformed PDs of the assets in the

portfolio. In particular the same sensitivity of 50% to the systematic factor has been applied.

The target PD of 2% = 100%− 98% has been derived from the bank’s TTC target PD of 0.1%

under the assumption of a higher sensitivity of 71% (=
√
50%) to the systematic factor in order

to reflect the fact that the systematic risk of banks is higher than the systematic risk of most

other industries.

Comparison of the most upper and the most lower panels of table 1 shows that in the PIT analysis

the reduced uncertainty by the realisation of the systematic factor implies that the portfolio

model effectively is evaluated with stochastically independent default events and, therefore,

indicates broadly the same VaR values but less capital requirements than in the TTC analysis

even in a 1 in 100 stressed environment. Adopting a PIT target PD for the bank holding the

portfolio further enlarges the difference between PIT capital figures and TTC capital figures,

in particular if the higher systematic risk of the bank is taken into account (3.6% and 8.7% for

investment grade and 8.6% and 34% for sub-investment grade). In contrast, PIT VaR figures

differ not too much from the TTC analysis VaR figures even if PIT target PDs are used to

determine the confidence level for VaR.

In total, the results of table 1 appear somewhat unintuitive as most people would expect to see

higher capital requirements in a 1 in 100 stressed environment. Hence one should think again

about whether a “conditional independence” (conditional on the systematic factors) model like

(1) is really appropriate for the calculation of risk in poor economic conditions. Weakening

the conditional independence by taking recourse to a latent systematic factor as suggested by

Hamerle et al. (2004) could be a work-around. In addition or alternatively inclusion of contagion

effects in the model structure appears as a promising approach to more realistic modelling with

regard to the issue of unintuitive results.

The observations from table 1 also confirm that “time-varying target solvency probabilities”

(Gordy and Howells, 2006) indeed do not only reduce regulatory capital requirements but also

economic capital – at least when they are combined with consistent approach to PIT portfolio

risk modelling.

5 Conclusions

We have looked in some detail at an ideal framework of a credit portfolio model and a methodol-

ogy for the estimation of PIT PDs. In this framework, the same systematic factors are included

in the portfolio model and in the regression approach that is applied for PD estimation. There is

actually a one-to-one relation between the key portfolio model parameters and factors and the

key PIT PD estimation parameters and factors. It turns out, however, that stochastic indepen-

dence of the obligor-characteristic factors in the PD estimates and the systematic factors is a

crucial condition both for the portfolio model to be able to generate unbiased TTC risk measures

and the portfolio model and the PIT PD estimates being consistent in the sense that the TTC

PD input parameters for the portfolio model can be derived from the PIT PD estimates.
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We have then demonstrated the conclusions from the theoretical considerations by a numerical

example. The example clearly shows that using PIT PD estimates as input to a portfolio model

that is run in TTC mode leads to unrealistically high capital requirements. The example shows

also that this effect can be mitigated to some extent by replacing the TTC confidence level for

the capital calculation by a PIT confidence level that is derived from the bank’s own PIT PD.

In addition, the results of the numerical example indicate that PIT capital levels may come out

unintuitively low when calculated in the theoretically correct way. This observation, however,

might be a consequence of a choosing a too simple portfolio model and a too simple PIT esti-

mation approach for the purpose of this chapter as defaults become stochastically independent

in our modelling framework when it is used for PIT calculations. Further investigation is rec-

ommend of how to modify “conditional independence” modelling in order to create appropriate

levels of correlations for PIT calculations. Promising approaches are the use of latent systematic

factors and the inclusion of contagion effects in the modelling. Duffie et al. (2009) and some of

the references therein provide further examples of extending approaches used for PD modelling

towards portfolio risk modelling.
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