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ERROR BOUNDS FOR SMALL JUMPS OF LEVY PROCESSES AND
FINANCIAL APPLICATIONS

EL HADJ ALY DIA*

Abstract. The pricing of exotic options in exponential Lévy models amounts to the computation
of expectations of functionals of the whole path of a Lévy process. In many situations, Monte-Carlo
methods are used. However, the simulation of a Lévy process with infinite Lévy measure generally
requires either to truncate small jumps or to replace them by a Brownian motion with the same
variance. We derive bounds for the errors generated by these two types of approximation. These
bounds can be applied to a number of exotic options (barriers, lookback, American, Asian).
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1. Introduction. In the recent years, the use of general Lévy processes in fi-
nancial models has grown extensively (see |2, 4, [7]). A variety of numerical methods
have been subsequently developped, in particular methods based on Fourier analysis
(see [3, 8, O, 10]). Nonetheless, in many situations, Monte-Carlo methods have to
be used. Yet, the simulation of a Lévy process with infinite Lévy measure is not
straightforward, except in some special cases like the Gamma or Inverse Gaussian
models. In practise, the small jumps of the Lévy process are either just truncated or
replaced by a Brownian motion with the same variance. The latter approach was in-
troduced by Asmussen and Rosinsky [I], who showed that, under suitable conditions,
the normalized cumulated small jumps asymptotically behave like Brownian motion.

The purpose of this article is to derive bounds for the errors generated by these
two methods of approximation in the computation of functions of the Lévy process at a
fixed time or functions of the supremum process. Error bounds are also derived for the
cumulative distribution functions. Our bounds can be applied to derive approximation
errors for lookback, barrier, American or Asian options.

The paper is organized as follows. In the next section, we recall some basic facts
about real Lévy processes. In section [3l we will study the errors resulting from the
small jump truncation. The results of this section are based on estimates for the
difference X — X¢, where X¢ is obtained by removing jumps with absolute value
smaller than a given positive €, and on Taylor’s formula. We also derive an estimate
for the expectation of the difference of the supremum processes, by using Sptzer’s
identity. The errors resulting from Brownian approximation are studied in section [l
The main result of this section is Theorem .5 which states an error bound for the
computation of a the expectation of a function of the supremum. The proof of this
results relies on the Skorohod embedding theorem.

2. Preliminaries. Recall that a Lévy process X is defined by its generating
triplet (v, o, v), where (v,0) € R x RT, and v is a Radon measure on R\ {0} satisfying

/ (1A 2?) v(dz) < oo.
R
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The process X has finite activity if v(R) < oo. If ¥(R) = 400, the process X is called
an infinite activity Lévy process. By the Lévy-I1to decomposition, X can be written
in the form

X =~vt+oB; —|—/ xJx (dz x ds) + lim aJx (dz x ds) (2.1)
|z|>1,5€[0,t] 010 Js<|z|<1,5€]0,¢]

Here J is a Poisson measure on R x [0, 00) with intensity v(dz)dt, Jx(dz x ds) =
Jx (dx x ds) — v(dx)ds and B is a standard Brownian motion. Given ¢ > 0, we define
the process R by

R; = / aJx (dz x ds), t > 0. (2.2)
0<|z|<e,5€[0,1]
Note that
ERS =0
Var (Rf) = t/l - 22 (dx) = o(€)?t.

The process X ¢ is then defined by
X; =Xy —R;, t>0. (2.3)
We also define the processes Xe by
Xf=Xf+o(e)W,, t>0, (2.4)

where W is a standard Brownian motion independent of X. We aim to study the
behavior of the errors made by replacing X by X°€ or X¢, with respect to the level
€. These error are studied for the process X at a fixed date and for its the running
supremum. Set, for any ¢ > 0

X “re, X %
MX = sup X,, My = sup XS, M{™ = sup XC. (2.5)
0<s<t 0<s<t 0<s<T

When there is no ambiguity we can remove the super index X.

3. Truncation of small jumps. In this section, we will study the errors re-
sulting from the truncation of small jumps. The errors resulting from small jumps
approximation are related to the moments of small jumps. Define

oo(€) = max (o(€),€) . (3.1)

The next result will be usefull for many proofs in this article.
PROPOSITION 3.1. Let X be a Lévy process with generating triplet (v,0%,v),
€ € (0,1] and R° defined in 22). Then

E| RS = t/ eu(dr) + 3 (to(0)?)°,

and for any real ¢ > 0

E|R{|" < Kq100(e)",
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where Ky is a positive constant which depends on q and t.
Proof. Set

We have
D (u) = e¥e(w)
where W (u) = tf|y|<é (e™¥ — 1 —iuy) v(dy). Set

1 0",
en(e) = = B (0).

Using [Cont-Tankov(2004), proposition 3.13], we get

cn(€) = t/ 2"v(dx), Yn > 2.
|z|<e

Furthermore
1 0"®,

" Oun

E(R;)" =

(0).

By differentiating, we get
o, ov., \* oV, , \’ 020, oV, , 03,
L ) = ((Ww) 6 (Gew) G+ 15w 5w
R2v, \° 04,
+3(Garw) + 5 <u>> @.(u)

But, as ER; = 0, we have %‘I’E (0) = 0. Hence

u

o' ®, v, \° 9,
=3 (%) + Z5

Therefore

2 2 4
E(Rz>4—3(1 0 wDf(o)) L Lo

2 9%u it out
3(ca(€))” + cale)
3t?o(e)* + t/ |z| v (dz).

x| <e

Hence the first result of the proposition. Besides, for an integer n > 1 we have
. k q
o) = Y s (VOO) (¥P(0)
{3.k.p,a}€ER

where E, is a finite set, (aj7k7p7q){j kopqteE, are positive real which we can derive
explicitly. Note that for any {j, k, p, ¢} € F,, we have

7>1, p>1, jk+pg=2n
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So

. k
e[ < Y g [P0 8P 0)
{j7k7p7q}EEn

Therefore
€|2n n k
IR = [00) < Y ajepalei(© leple)]”.
{4:k,p,q}YEE,
But for j > 2, we have
@ <t [ e
|z|<e
=td20(e)?

< oo(e)’t.
Hence

ik
E|R{|™" < > @ |00(€)7t]" o0 (et
{4k:p,q}E€ER,j>1,p>1

— Z aj,k,p,qtk+q00(€)jk+pq

{j.k.p,q}€E,

- Z aj-,kﬁpﬁqtkﬂao(e)zn-

{j.k.p,q}€E,

Note K, ; = \/E{j,k,p,q}EEn ajkpqt? T, we get
E|R{|™™ < K7, ,00(e)*".
So
%
EIR" < (E|R{™")
< Kn,tUO(E)n'
The upper bound for E |R§|? where ¢ is a positive real can be easily deduced. O

3.1. Estimates for smooth functions. Let X be a Lévy process with gener-
ating triplet (v, 0,v) and f a C-Lipschitz function where C > 0. Then

E|f(Xe) = f (XD < CE[X; — X{|
= CE|R;]|

< C\E|R;”.

E|f (X:) = f(XP)| < CVito(e). (3.2)

Hence

Note that we do not ask that f(X;) be integrable. If f is more regular, sharper
estimates can be derived, as shown in the following Proposition.

PROPOSITION 3.2. Let X be an infinite activity Lévy process with generating
triplet (7, o2, 1/), e € (0,1] and t > 0.
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1. If f € CY(R) and satisfies E‘f, (X¥)

< o0, and if there exists B > 1 such

1
’ / B\ B
that (supée[m] E ‘f (X?+6RY) — f (X?) ) is finite and integrable with

respect to 6 on [0,1], then
E(f(Xi) = F(X7)) = o(o0(e))-

2. If f € C*(R) and satisfies E ‘f/ (X9)| +E ’f” (X5)| < o0, and if there exists

B > 1 such that (SHPSG[OJ]E’JCN (X7 + 0R]) — / (x?)

B\ B
) is finite and
integrable with respect to 8 on [0,1], then

o(e)

E(f (X)) - £ (X0) = 55

"EF(XE) + 0 (00(e)?).

Note that, if f has bounded derivatives or f is the exponetial function and e#X+ is
integrable, where 8 > 1, the conditions in the above proposition are satisfied. Recall
that the truncation of small jumps is used when v(R) = co. In typical applications,
we have liminf o(e)/e > 0, so that o (5o(e)?) is in fact o (c(€)?). This is the case for
Lévy processes with a Lévy density that behaves like 7% in the neighborhood of 0
with a > 1. Examples in finance are VG, NIG and CGMY processes.

Proof. We have

1
f(Xe) = f(X5) —/0 F(XE+ 0RS) Rsdf.

€
r—X;

X=X and moreover we have

The last equality is obtained by the substitution 6 =
by theorem 27.4 of [11]

P[X; — X{ =0] =P[R = 0] =0.

So
1 o 1 ’ € ey ¢ € R;
@E(f(Xt)_f(Xt))_/o E(f (X;+60R;)— f (Xt)) U(e)d9
1 R¢
-|-/O Ef (Xt)@de
! ’ € ey _ ¢ € ﬁ
_/0 ]E(f (X{ 4+ 0RS) — f (Xt)) 0%

Because Ry and X; are independent and ERf = 0. Let 1 < a < 3, by Holder’s
inequality we have

R a)%
a(e)

B| (7 (xc +0m) - 1 (x0)

< (B|f (i +0R) -1 ()

—1

Hence using the assumption of uniform integrability and proposition Bl we get

E(f(Xe) = F(X7)) = o(o0(e))-
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On the other hand, using Taylor’s formula we get

E(f (X)) — F(X0)) = Ef (X7) (X - Xp) + XX £ (@) (X, - 2)as
~Ef (XD R+ [ X+ 0R5) (1 6) (R o
/f (XE+0R) (1 - 0) (RS)* do
/ F (X8 (1 - 0) (RS> do
o (f (X; +0R5) — § (X)) (1 - 0) (Rq)" .

So
E(f (%)~ f (X)) = 5B/ (X7) o(e)?
1 1" 1" 2
+ [ B (5 5+ oR) - 1 (XD) (1= 0) (7).

Again, using Holder’s inequality, the assumption of uniform integrabilty and proposi-
tion Bl we get

o(e)?t
2

E(f(Xe) = F(XP) = Ef" (X;) + o (0()?).

O

REMARK 3.3. If X is an integrable infinite activity Lévy process with generating
triplet (y,o,v) and t > 0. If we also assume that f € CY(R) and [ is Lipschitz, then

E(f(X:) = f(X])) =0 (0(e)?).

The proof is similar to the proof of proposition If f is C-Lipschitz, and if we
denote by f” its a.e. derivative, we get }f”} < C. So we can prove that

E|f" (X;+0R;) - f* (X)| (R;)” < 2Cto(e)”.

This concludes the proof.

When we consider functions X -path-dependent, errors in Lipschitz case are similar
to that obtained above. We will consider now the case of the supremum process.

PROPOSITION 3.4. Let X be a Lévy process with generating triplet (y,o,v), f a
K -Lipschitz function, € € (0,1] and t > 0, then we have

E|f (My) = £ (Mf)] < 2K Vo (e).
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Proof. Consider R¢ defined in (Z2)). So R is a martingale. Thus

E‘f(sup XS)—f<sup X;)‘gK]E

sup X — sup Xg

0<s<t 0<s<t 0<s<t 0<s<t
< KE sup |Xs - Xs€|
0<s<t
€
< KE sup |R{|
0<s<t

2
<K E(sup |R§|) .

0<s<t

U Doob’s inequality, we get

E’f(sup Xs) —f(sup X;)’SQK E|Re[?

0<s<t 0<s<t

= 2K Vto(e).

REMARK 3.5. If X is a Lévy process with generating triplet (v,02,v), € € (0,1],
t > 0 and f a function from RT x R to R, K-Lipschitz with respect to its second
variable. Then

sup Ef (Tv XT) — Sup Ef (Ta Xf—) < 2K\/EU(€)7
7€T0,¢ T€T0,1]

where T4 denote the set of stopping times with values in [0,t]. The proof can be
found in [6].

The bound in proposition might not be optimal. This is what suggests the
following result.

THEOREM 3.6. Let X be an integrable infinite activity Lévy process with gener-
ating triplet (v,02,v), e € (0,1] and t > 0, then

0 <E (M, — Mf) = o(o(e)).

Proof. Using Spitzer’s identity (see Proposition 3.2 of [6] for details), we have

S S

k . ds
- e () &

S

t t +
EX; E(X¢
E(Mt—Mf):/ : ds—/ E(XD " 4
0 0
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Set It = E (Xj - (X§)+). So

I: = E (X7 - (x9)7)

—E (Xt +R)" - (X9")

=EX{ (Ixcire>0— Lxeso) +ER D x4 reso

=EX; (]lfR§<X§§0 - ]10<X;§7R§) + ER§1X§>7Rg

=EXS (1 _pecxe<o — Locxe<—re) + ER{L _pecxe<o
+ERL xc> R x>0

=EX; (]lfR§<X;§0 - ]10<X;§7R§) + ER:Z]I—R§<X§§0
+ERS (Ixes0 — Locxe<—re)-

Besides R€ and X € are independent and ER® = 0, thus

I =EX{ (]lng<X;§0 - 10<X§§7R§) + ERZ]lng<X;§0
+ERLo<x:<—re
=E(X; + R 1 pecxe<o —E(X; + RY) Locxe<—re
=E (R — XD 1 _recxe<o — E (X5 — |RS]) Locxe<—re
=E (|R;| - |X5]) (]1—R§<X;§0 + ]]-O<X§§—R§)
=E(|Rr;| - |Xs€|)+ (]l—R§<X§§O + ]10<X;§—Rg) .

But
]l—R§<X§§0 + ]10<X;§—Rg = ]]-R§X§<O + ]]-X§:O,R§<O-
Hence
=E (RS — XD (Lrexs<o + Lxe=o0,rs<0)
=E (R — | X" Lrexeco + EIRE| Lxe—o,re <0
=B (|RS| — |X5))" Lpexc<o + E|RY Lpe<oP [XS = 0]
=E (IR — | X)) " Laexeco + E (RS P[XS=0].

But IS > 0, therefore
E (M, — M;) >0

On the other hand, using Cauchy-Scwarz inequality
2\ 2
c 2\ ? X" 2% oy
Isg(IE|RS|) el (1- +(E|Rs|) P[X¢ = (]

e\ )2
< o(e)Vs E((l—'ﬁ;ﬁ“) ) +P[X¢=0]

=

=




APPROXIMATION ERRORS OF SMALL JUMPS 9

Note that v(R) = 400, so RS # 0 a.s. Then we get

E(Mt—Mf)go(e)/ot E<(1—||‘;f§||>+>2 +PIXE = 0]

Furthermore by dominated convergence, we have

2
. XN\
?%E<<“‘ma =0

Indeed RS — 0 a.s. and X — X, a.s. with X; # 0 a.s. We also have

=

Sl

limP[X¢ =0] = P[X, = 0]
e—0
=0.

On the other hand

Y
E<<1—|R:|> ) +P[XE=0]<2.

Therefore by dominated convergence

i [ (2 ( (1 XY +pxe=o | & 2o
=0 Jo IRe] )

Hence
E (M — M) =o(o(e))

d

REMARK 3.7. The result of theorem[3.8 is optimal, in the sense that we cannot
have a better power for o(e).

Indeed, in the previous proof we have shown that

E(Xo)" —E(X5)" =E(|R| - [XS)" Lrexeco + E (RS P[Xg =0].
So
E(X,)" —E(X)" 2 E(R) P[X{=0]
= SEIRPX; = 0],
because ERS = 0. Let X be a Lévy process with generating triplet (0,0, v) where

dx
v(dr) = O‘]lO<|m|<1W7

and « €]0,2[. We have
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We can prove that there exists a positive constant C,, > 0 such that
E (M, — Mf) > Coo(e)™=

This justifies the above remark.

In financial applications, the function f defined in proposition 3.4 is not always
Lipschitz, as for call lookback option where the function is exponential. Hence the
following proposition.

PROPOSITION 3.8. Let X be a Lévy process with generating triplet (v,0%,v),
p>1,ec(0,1] and t > 0. We suppose that EePMt < oo, then

E ‘er — eM:

(€);

where Cy, is a positive constant independent of e.
In fact we have to ensure that EePM:
dent of e.
LEMMA 3.9. Let p >0 and e € (0,1]. If Ee?Mt < oo, then

¢+ is bounded by a constant which is indepen-

3
sup EePMr < o0
0<5<1

REMARK 3.10. For any p > 0, EePMt < oo if only if Jyor €7 v(dz) < 0.

Proof of lemmalZ4 Let § € (0,1],

X;:”yS—FO’BS—F/ Jx(ds x dx)

0<7<s,|z|>1

R = / Jx(ds x dz)
0<7<s,0<|z|<1

So

5 1. 55
EePM: < EePSUPoss<t Xg+supg<o<y R

S EePSUPo<s<t Xsl Ee

By hypothes1s and remark [3.10], EeP *"Po<s<s X! < 0. We need to bound
E

00 pI\™
Eepsupogsgt|ég| —E Z (p SupOSSSt ‘RSD
|
o n!
+oo pn

_EZ sup ‘R‘;‘

0<s<t

+oon

—Z —E sup ’Ré‘
n!

0<s<t

=1+pE sup ‘R |+Zp E sup |R5‘

0<s ! 0<s<t
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By Doob’s inequality (R’ is a martingale)

Eer sl Bl < 1 4 p /Eoigp IR Zm (n_ > E|R|"
— 12 +Oopn =57
< 1+2p\/E|R]| +252"E11~2;§y
— 2p (\/E|R;§|Q—E|Rf5) Z 2P R

Hence
56 2 = 2"p"
Supg<s<t| RS Do 20 =5
EePsupoca<|RL| < o) <\/E\Rt\ —E|Rt|> +EZ;J—”! |R?|
2 (w/E\Rf\Q —E]Rf]) e
<2 (\/]E B[ —E mgy) LR | Eo R
But
E|R}| < \/E|R|
< t/ x2v(dx)
0<|z|<1
< t/ z2v(dx)
|z|<1
And we can prove that for any 5 € R, (eﬁéf) s is uniformly integrable. Hence
0<6<1

. 53J
sup EePsiPoso<e|R2| < g
0<5<1

Proof of proposition[7.8. By the mean value theorem, we have
eMe — eMi — (M, — M) eMi

where M is between M; and Mf. Let g be defined such that %—i— % = 1. In the sequel
C)p will denote a constant depending on p.

E‘ M _ oM M| M

<E sup |R§|6Mf
0<s<t

1 1

q Tre =

< <IE sup |Rf|q) (Eepr)p
0<s<t
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Hence, using Doob’s inequality and then proposition 3.1}, we get
1

B [eM— M| < - (E|R|")7 (Ber™ )
=

< Cpoo(e) (IE (eth + ePME))% '

We conclude the proof by lemma d

3.2. Estimates for cumulative distribution functions. For cumulative dis-
tribution functions bounds are expected to be bigger. However, in some cases we can
get similar results as in Lipschitz case. Consider the following result which will be
useful for the next proofs.

ProprosiTION 3.11. Let X and Y be two r.v. We assume that X has a bounded
density in a neighborhood of x € R, and there exists p > 1 such that E|X —Y|" is
finite. Then there exists a constant K, > 0, such that for any § > 0

P
|MX2ﬂ—MYZMSKJ+@g$XL

Proof. We have
PX>2]-PY>z||=PX>2Y <z]-P[X <zY >z
We will study the above terms on the right of the equality.
PX>z,Y<z]=Pz<X<z+(X-Y)
=Pz<X<z+(X-Y),|X-Y|<J]
tPr<X<z4+(X-Y),| X -Y|>/
<Pr<X<z+d+P[|X-Y]|>J].

But the probability density function of X is bounded in the neighborhood of z. So
there exists a constant K} > 0 such that

Pla <X <x+6] <KL
Hence
PX>uzY <2] <KMN+P[X -Y]| >0

E|X - Y

<K+ 7

, by Markov’s inequality.
On the other hand,

PX<z,Y>z]=Plz—(X-Y)< X <1]
=Plz-(X-Y)<X<uz/|X-Y|<J]
+Pz—-(X-Y)< X<z, |X-Y]|>
<Plz-d< X <za]+P[|X -Y|>/].

The boundedness of the probability density function of X in the neighborhood of z,
also yields that there exists a constant K2 > 0 such that

Plz -0 <X <] < K2,
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Hence
P[X <xz,Y >z] < K§5+E|X67;Y|p.
Therefore
IP[X >2] —P[Y > 2] < max (K., K2)0+ ElXT;YV).
a

In the first result below, we assume local boundedness of the probability density
function of the Lévy process X and its supremum process M at fixed time ¢.
PROPOSITION 3.12. Let X be a Lévy process with generating triplet (v,o%,v),
e€(0,1] and t > 0.
1. If 0 > 0, then

1
sup|P[X; > z| —P[XS > z]| <
sup P (X, > x] ~ PIX} > x]] € ———

2. If X has a locally bounded probability density function, then for any q € (0,1),

o(e).

IP[X; > 2] —P[X{ > ]| < Oyt q00(e) 79

3. If My has a locally bounded probability density function on (0,+00), then for
any q € (0,1),

|P[M; > a] — P[M; > ]| < Cpyq00(e)' 7,

where Cy 1.q means a positive constant depending on x, q and t.

Proof. We have
IP[X, > 2] — P[X{ > 2| = [P[X, > o, X§ < 2] — P[X, < 2, X§ > 2]
But, in the case ¢ > 0
PX,>x,X; <z]|=Plx — (X, — X{) < X{ <z
=Pzt —R; <oB,+ (X; —0B)) <x].
1

Note that the r.v. 0By, (Xf —o0B;) and R§ are independent, and 75 is a bound
of the probability density function of o B;. Then

PX; >x,X{ <z] < E|R;|

1
\V2mto
1
< E |Rg|”

T\ 2mto

Similarly
PX: <z, X;>zx]=Plr < X; <z+ (X — X{)]
:P[{ESUBt-i—(XtE—O'Bt) <,’E+R;]
(€)-

<

1
o
V2mo
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So

(X, > 2]~ PX; > o] <

Consider now the second part of the proposition. By proposition B.11] there exists a
constant K+ > 0 such that for any p > 1, we have

E|X; — X§|”

op

E|R{”
or

[P[X, > a] — P[X{ > a]| < Kpd +

=K, 40 +
But by proposition [3.1] there exists a constant K, ; > 0 such that
E|R{|” < K, +00(€)P.
So

p
P[X; > ] -P[Xf > ]| < Kppd+ K ,t”i;#

S max (Kz,ty Kp,t) (6 +

.,

Thus by choosing § = a(e)#, we get
IP[X; > a] — P[X{ > ]| < max (K, Kpt) o0(e) 7.
Therefore for any ¢ € (0,1), we have
IP[X, > 2] —P[Xf > z]| < Cpyqole) ™
For the third part of the proposition, set
I=P[M;>a]—P[M; > x]|.
By proposition B.I1] there exists a constant K;)t > 0 such that

E (M — M)"

[<K, 0+ =

On the other hand
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Therefore, by choosing § = a(e)#, we have

’ p p P
I < max (Kr 0 Kp <—1> > oo(€)Pr1.
. b

So for g € (0,1), we have
I< C%t)qoo(e)l*q.

d

REMARK 3.13. When there is no assumption on the boundedness of the probability
density function of M, the upper bounds for cumulative distribution functions are
bigger. If o > 0 then

P [M; > 2] — P[Mf > ]| < Coo(e)?
If o0 = 0 and there exists a > 0 such that
linﬁ/%nf e_o‘/ |z[2dv(x) > 0 (3.3)
then for any 6 > 0
IP[M; > z] — P[M; > z]| < Coag(e)Toart

Constants C' et Cy are independent of €. The proof can be found in [6].

4. Approximation of small jumps by a Brownian motion. In this method
we will replace R® by a Brownian motion. This method gives better results than the
truncation one, subject to a convergence assumption. In fact, Asmussen and Rosinski
proved ([1], theorem 2.1) that, if X is a Lévy process, then the process o(e)~1R€
converges in distribution to a standard Brownian motion, when ¢ — 0, if only if for
any k>0

o (ko(e) Ne)

11_1})% () =1. (4.1)
This result is implied by the condition
lim a(e) = +00. (4.2)
e—=0 €

The conditions ([@1]) and ([£2) are equivalent, if v does not have atoms in some neigh-
borhood of zero ([I], proposition 2.1).

4.1. Estimates for smooth functions. The errors resulting from Brownian
approximation have not been much studied in the literature, at least theoretically.
There is a result which we can find [5] (proposition 6.2).

ProOPOSITION 4.1. Let X be an infinite activity Lévy process with generating
triplet (y,0,v) and t > 0,

1. If f € CYR) and satisfies E|f' (Xf)| < oo, and if there exists B > 1 such
1

N B\ B
that (supée[oﬁl] E ‘f/ (Xf + HU(e)Wt) — (X5 ) and
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(supecon B |1 (X2 + om0 - £ X0
spect to 6 on [0, 1], then
E(f(X0) = f(X5)) = 0(00(e)).
2. If f € C?(R) and satisfies E|f' (X5)| + E|f" (X{)| < oo, and if there ex-
ﬂ) B
and

(supee[m] E|f"(Xf+6R5) — f" (X§)|B> are finite and integrable with re-
spect to 0 on [0, 1], then
E(f(X0) - f (X)) =o(o0(e)?).

The remark we did next to the proposition is still true here.
Proof. By proposition 3.2, we have

B\ B
) are finite and integrable with re-

ists B > 1 such that <supée[011]E ’f” (Xté + HU(E)Wt) — (X5

@l

o(e)*t
2

On the other hand, using the same reasoning as the proof of proposition (we will
replace R¢ by o(e)W) we get

E(f(X:) — f(Xf)) = Ef" (Xf) + o0 (o0(e)?)

()%t

ES (X)) + 0 (00(0))

E(f (X + o) - 1 (x0) =2
Hence
E(f (X))~ (%)) = o (oole)?)

a

The combination of proposition 6.2 of [5] and the Spitzer’s identity for Lévy
processes ([6], proposition 3.2) leads to the following result.

PROPOSITION 4.2. Let X be an integrable infinite activity Lévy process with
generating triplet (v,02,v), then

< 4max (1 + \/? A) a(e)p(e) (1 + log (%)) 5

where A is a positive constant < 16.5. Compared with the estimate of theorem [3.6]
we have gained a factor of about p(e).
Proof. Using Spitzer’s identity (see Proposition 3.2 of [3] for details), we have

EM, — EN;

t
EXF
E sup X, = 5 ds

0<s<t o S

E sup (XSE—I—U(G)WS) —/0

0<s<t

Set

I°= ‘E sup Xs—E sup (X;—I—U(G)WS) .

0<s<t 0<s<t
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Let 6 > 0, then

t + _ € 'y +
o / EXJ —E (XS +o(e)Ws) i
0 S
SEXT —E(X¢ V)" tEXF —E(X¢ AN
:/0 : ( ;+0(E)W) d8+/5 - ( ;+U(E)W) ds
PEXF —E (XS +o(oWs) " YEXF —E (XS +o(0Ws) "
< /0 S ds| + ,/5 S ds

ds

t
EXS —E(Xs+ ov(e)Ws)+ ds +/
S 5 S

EX} —E (XS +o(eW.) "

5
</
0

We will call I§ (resp. I§) the first (resp. the second) term of the last expression. Note
that the function z — x* is 1-Lipschitz, So by proposition 6.2 of [5], we have

}E(X; + R B (x: +a<e>m)*} < Ao()ple),

where A < 16.5. So

On the other hand

}EXS* _E (X; + a(e)W5)+} <E ‘(X; + RO - (X; + J(E)Ws)+

gE’(X;—i—R;) - (X§+U(e) )

=E ‘R; — o(e)W,

<E|R| +U(E)E‘Ws
<\E|R) + o(e)E ‘WS
= <1 + \/%) Vsa(e).

Hence
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where A; =2 (1 + \/g) Finally

I < max (A, Ay) o(e) (x/5+ p(€) log (%)) .

The right term of the above inequality is minimal for § = 4p(€)?. So

I¢ < 2max (A, Ay) o(e)ple) (1 +log (Tﬁ))) .

This concludes the proposition. O

4.2. Estimates by Skorokhod embedding. We will use a powefull tool to
prove the results of this section. This is the the Skorokhod embedding theorem. We
will begin by defining some useful notations.

DEFINITION 4.3. We define

REMARK 4.4. Note that under the condition [E2), we have

lim A(e) = 0. (4.3)

e—0

The proof of proposition cannot be extended to the Lipschitz functions, be-
cause the reformulation of the spitzer identity for Lévy processes cannot be applied
in that case. We have to use an other method.

THEOREM 4.5. Let X be an integrable infinite activity Lévy process with gener-
ating triplet (v,02,v), e € (0,1), t > 0 and f be a Lipschitz function, then

Ef (M,) — Ef (Mt)

< Coo(€)r(e),

where C' is positive constant independent of €.
Compared with the estimate of theorem B.6] we have gained the factor 531 (e).
Proof. Set

It = ‘E (f (Os<u1;<>th) - f <Os<u1;<>t (X§ —i—o(e)WS)))’

I§(n) = }E (f( sup X%> —f( sup (Xi_t +a(e)W r)))’
0<k<n 0<k<n \ "

7

ol
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Because f is, say, K-Lipschitz, we have

I5(n) < KE

sup Xk — sup (Xi_t +U(€)Wﬂ)
0<k<n ™  0<k<n N ™ "

= KE| sup (Xi_t —|—R€k_t) — sup (Xi_t +O’(€)Wﬁ)
0<k<n " " 0<k<n " "
< KE sup |R% —o(e)Wi
0<k<n! ™ "
< KIE( sup RS |+o(e) sup |Wi )
0<k<n! ™ 0<k<n! ™
< KE ( sup |RS|+ o(e) sup |W, > :
0<s<t 0<s<t

As the last expression is integrable, by dominated convergence we can deduce that

lim [§(n)=1I}.

n—-+oo

So we will consider I¢(n). For k € {1,...,n}, we have

1 k
RS, = H;VJ

sz

S

where
V=V (R = Rigg)

The r.v. (an)je{l,...,n} are i.i.d. and have the same distribution as /nRS. But

EVi = 0, and var (V1) = o(e)*t, by theorem 1 of [12] (see pp. 163) there ex-

ists positive i.i.d. r.v., (Tj)jel _,» and a standard Brownian motion, B, such that

(25:1 Vihked{l,... ,n}) and (BTIJF...JFT,C,I{ ef{1,..., n}) have the same join dis-
tribution. Thus (Rék_t,k e{1,..., n}) and
(Bew ke {1, " . n}) have the same join distribution. Furthermore

Er = var(Vh), (4.4)
and for any ¢ > 1, there exists a positive constant L, such that

Erl < LEV. (4.5)
We also have

(U(e)W%,k c {1,...,n}) _d (BLk c {1,...,n})

Set
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Thus

I5(n) < KE sup
1<k<n

Br, — Br,

The following theorem concludes the proof. O
THEOREM 4.6.
1. We have

Br, — Bry

limsupE sup < Coo(e)Bi(e),

n——+oo 1<k<n

2. and

® < Coo(e)2Ba(e).

Br, — Br

limsupE sup
n—-+oo 1<k<n

3. For any real p > 1 and for any real § € (0,1), we have

A

A p
By, — Bre| < Cpooo(€)’ Bpo(e),

limsupE sup
n——+oo 1<k<n
where C and Cp, ¢ are constants independent of e.
This theorem is the main result of this section. The other important which we
need for the sequel is the following lemma.
LEMMA 4.7. Let § > 0, then we have

limsup P [ sup |Tx —T¢| >0
n—-+oo 0<k<n

] - 4L2t005(26)4ﬁ(6)'

Proof of lemma[].7] By Markov’s inequality, we have

] < ESUP1§k§n |Tk - T1§|2

]P’{sup [Ty — T >0 52

0<k<n

On the other hand (T}, — T}) is a martingale, so using Doob’s inequality, we get

1<k<n
AR |T,, — T¢|?
62
4 wvar (n1)
— 462 n
o AER
~— 462 n
AL, BV
<220y
< —=— by@E3)
4
ALonE (R; )

g %/ #Mu(de) + 3 <%U(e)2>2.

]P’[ sup |Tk—T,§|>5} <

0<k<n

But by proposition 3]

E|R%




So

Therefore

Thus
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4 te
lim nE (Ri) zt/ |21y (dx)

n—-+oo e

limsup P [ sup |T — Tj| > 5] <
n—-+oo 0<k<n

62

Proof of theorem[{.0, For § > 0, have

E sup
1<k<n

We set

_é — _é < E su E _ E ]1 .
o T = 1§k2n o T {Sup1§k§n|Tk*Tk
+E sup |Br — Bpe|1 )
1§k2n T T {Sup1§k§n|Tk*Tk
I =E sup |Br, — Bre|1
1 1gk2n Ty T | {supy<pep [T —T5| <0}
I, =E sup |Br, — Br|1 '
2 1gk2n Ty T | {supy<pap [T —T¢|>0}

On {sup;<y<, [Tr — Tg| < 0}, set, for k fixed

81=T]:/\Tk
SQZT]:\/Tk.

4L2t0’0 (6)45(6) .

21

We have s1 < s2 < 81 +d. Let j be such that j§ < s1 < (j 4+ 1)d, we have 51 < 59 <
(j42)0. If j6 < 51 < 89 < (j+1)d, we have

A

B,, — B,

A

+ Bj5 - 382

< ‘-Bﬁ - Ej(s

<2 sup sup
0<5< [f’(éT)%} +1J05u<(G+1)8

If jo < s1 < (j+1)d < 89 < (j+2)d, we have

A
B, —

Hence

A A

B,,|<|B,, - Ajé} + }Eﬂ? = B(jt1s
<3 sup sup Eu - .B_j& '
0<j< [n(e&ﬂt] 4+20Su<(j+1)8
I, < 3E sup sup Bu - ng}

0<j< ["(?Qt] 19 J8<u<(j+1)8

=3E sup sup B, — f?j(;

1<j< 292 ] 45 (- 1)ISusis

éu_gﬁ\.

+ }B(j-i-l)& - Bs2
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The r.v. (su - . ‘B - B; D are i.i.d. withe the same distri-
P(i-Ds<ugjs |[Pu = 5js 1< [292 ] 43

. Then

A

B,

bution as SUP)<y<5 ’Eu ~ \/gsupogugl
I, < 3VE sup Vi,
1<< [29% ] 43

where (V) are i.i.d. r.v. with the same distribution as

1<G<[ 293 +3

SUP<y<1 ’Eu . On the other hand, we know that if (V;),_,_,, areiid. r.v. satisfying

2 . oy
Ee®"T < 0o where « is a positive real, then

E sup V;<g (mEeaVl2> ,

1<j<m

where g : 2 € [1,+00) = 1/ % log(z). Indeed g being concave, we have

E sup V; =E sup g(eo‘vf2)

1<j<m 1<j<m

2 . .
=[Eg < sup e*Vs ) , because g is non-decreasing
1<j<m

<g (E sup eo‘vf2) , by Jensen’s inequality

1<j<m

m
2
<g EZ e®Vi |, because g is non-decreasing
Jj=1
<g (mEeO‘V12) .

. So

In our case Vi = supg<, <1 ‘Bu

V1 < sup Eu+ sup (—Eu)
0<u<1 0<u<l1

Thus
Vi < 620‘((5“1’0@51 B )+ (supo<u<i (—Bu))?)

1 . 1
< (Ee“a(S”POSug Bu)2) : (Ee‘lo‘(S”POSuS(*BH)f) 2

S Ee4a(sup0§u§1 éu)z )

22
But the probability density function of supg<,<; B, is 2%]1120, SO an easy com-

. . 1
putation give that for any real 8 < 5
Eeﬁ(supogug1 B’u)2 — (1 _ 25)_%, (4,7)
Thus choosing a < %, we get

Ee*"’ < (1- 804)_%.
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Hence for o € (0, §)

I < 3f\/ Sios (|75 +3) IEV>
gsg@ e e (5] )

o (1- o (74] )

ool

< e (2 )

Notice that C, = 3\/ (1 — M) and the second inequality come from the fact

IN

Il
>,
=

21log(3)

that for any =,y € RT we have log(z +3) +y < (1 + 523 )) log(z + 3). Consider now
I>. We have

1
2\ 2
I, < (]E( sup ‘BTk—BTe> ) (]P’[sup |Tk—T1§|>5D
1<k<n 1<k<n
2 % %
< IE( sup ‘BT,C’—F sup ‘BTe > <IP’[ sup [Ty — TF] >5]> .
1<k<n 1<k<n 1<k<n

So

1
3 3
I, < <<IE sup |BTk| ) (E sup ‘BTe ) ) <]P’{ sup |Tx —Tg| >0 )
1<k<n 1<k<n 0<k<n
1
2\° A |2
< <IE sup |Rg| ) + (E sup ’BS )
0<s<t 0<s<o(e)2t

Using Doob’s inequality, we get
1 1
2\ 2 2
> ) <]P>{sup |Tk—T§|>5}) .
0<k<n

1
I, <2 <(E|R§|2) L, <]E‘BU(E)%
%
I < 4V/to(e) (]P’ [ sup [Ty — Ty| > 5])

1<k<n

[N

Nl

[N
[N

) P{sup |Tk—T§|>6>

0<k<n

Hence

So, by lemma .7 we have

4Latoo(e)*B(e) ) 3

limsup Ir < 4v/to(€) ( 52

n—-+oo
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Hence

limsupE sup |Br, _BT§
n—-+oo 1<k<n

< Cq \/6 log (0(?2t + 3) + %0’(6)0’0(6)2 B(e) Lo

< C’a\/élog (@ +3> + 8\/L_ZtO'O(G)S B(e)

0

_Cu <\/5log <"0(§)2t + 3> + %00(6)3 5(@) ,

where Cy, = max (Ca,8v/Iat). Choosing § = oo(e)2(e)5, we get

< Caoo(€)B(e)? (\/bg (@ + 3) + 1) .

For the second part of the theorem we will use the following definition for the function
g

limsupE sup
n—-+oo 1<k<n

Br, — Br

g(x) = élog(m), x € [1,400).

And for the third part of the theorem, the function g will be defined as follows

o) = (S 108(0))

The proofs of the second and the third part of the theorems can be found in [6]. O
With the method used above, we can derived results for functions depending on
X at a given time.
PROPOSITION 4.8. Let X be an infinite activity Lévy process with generating
triplet (y,02,v), t >0, € € (0,1] and f be a Lipschitz function. Then

Ef (X.) - Ef (X;)

< CBi(€)oo(e),

where C' is a positive constante. If we replace condition f, bounded by f l Lipschitz,
then using a Richardson-like extrapolation method, we get the following result.

PROPOSITION 4.9. Let X be a Lévy process with generating triplet (v, 02,v), f
be a continuously differentiable function satisfying f, is Lipschitz. Then

Ef (X)) —E (2/ (X7) = (X)) | < C()oo(e)*,

where C' is a positive constant.

For exotic payoffs, we have the following results.

PrOPOSITION 4.10. Let X be an infinite activity Lévy process with generating
triplet (v,02,v), € € (0,1],t > 0 and f be a function from RT xR in R K -Lipschitzwith
respect to its second variable. We assume that U(Z) 18 bounded. Then

sup Ef (1,X,;)— sup Ef (T, Xﬁ)
T€T0,1) T€T 0,1

< Cog(€)Bi(e),
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where Tjo 4 is the set of stopping times with values in [0,t], and C' is a positive constant
independent of €.

PROPOSITION 4.11. Let X be a Lévy process with generating triplet (vy,0%,v),
p>1,ec (0,1] andt > 0. We assume that EePMt < oo, then for any x € R and for
any 6 € (0,1)

1—1

E (eM — x)+ —-E (eM"e - ;v)+' < Cp,900(€) (5%,9(6)) ",

1

where Cy, g is a positive constant independent of €.
To prove the above propositions, we will use the same notations as in the proof
of theorem

Proof of proposition [{-8 We have

R = By

o(e)W;, =4 ETS'
So, if f is K-Lipschitz, we have

Ef (X,) — Ef (Xf + a(e)Wt)

- ’Ef (Xf +BTn) —f (Xf +BT;N

< KE|Br, - Br|.

We conclude with theorem O
Proof of proposition [[.9 We have
RS = Br,

n
A

o(e)W, =4 ET;-

We have showed in the proof of proposition that
1 ’
Bf (X0) ~ Bf (X0) = [ Bf (X + 0R}) Rids
0
Because R€ is independent of X€ and W, we have
1 ’ ! ~
BS (X0 ~EF (X0) = | B (7 (X5 +0RD) — £ (X + 00(0W0) ) Rido.
By the same way, we will get
1
Ef (X{) - Ef (X;) = / Ef (X; +00(e)W:) o(e)Widd
01 ’ A ’ A
:/ E (f (X5 +00()W) — f (X5 +9R§)) o (€)Widd.
0

Set

1 =Ef (X,) —E (2 (X)) - £ (X5)).
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Hence
I°=E(f (X)) - (X)) +E(f (%) - £ (x7)
1

- /0 E (f’ (XE+0RS) — f (X; + ea(e)Wt)) <R§ - a(e)Wt) df

_ /01 E(f (Xi+0Br,) - f (X +0Bz,)) (Br, - Br,) db.
Therefore, if f is K-Lipschitz, we get

’Ef (X,) —E (2f (XS — f (Xt))’ < /01 KOE (BTn - BTﬁ)zdo

= DB (Br, ~ Br,) .

We conclude with theorem |

Proof of proposition [[.10 Set ti = Et and

n

p(t)= sup Ef(7,X;)

T€7—[013]

p(t) = sup Ef (T,Xﬁ)
T€7—[013]

pn(t) = sup Ef (7, X;)
TeTH

[0,]

pa(t) = swp Ef (r,X:),

7'67—[&75]
where ﬁg)t] is the set of stopping times with values in {tx, k=1,...,n}. We know
that
Lim pa(t) = p(?)
. c €
Jum p(t) = p(2)-

Let 6 € 7{&1, we have

Ef (0, Xg) =Ef (0, X5) + E (f (0, Xo) — f (97)25))

<pS(t)+E sup (f(tk,th)—f(tk,ka))

1<k<n
= p¢ () +E1§:§n (f (te, X5, +R;, ) — f (tk,X;C + o(e)Wtk))
=p(t)+E sup (f (tk,ka "I‘BTk) —f (tkraXtek + BT,S))

Br, — Bry|.

So

pn(t) < pt(t) + KE sup
1<k<n

Br, — Bry
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By the same reasoning, we get

Pu(t) < pn(t) + KE sup |Br, — Br|.
1<k<n
Therefore
lpn(t) = pr,(t)] < KE sup |Br, — Brg|.

1<k<n
We conclude by theorem

Proof of proposition [{.11} Define

M;" = sup ( ot +RZL)
0<k<n n n

M™ = sup (Xzz + U(E)W;i) :
0<k<n n n

We know that

lim M =M; a.s.

n—-+oo
lim M;" =M; a.s.
n—-+oo

Set
U= sup (X;i + ETk)
0<k<n n
Us™ = sup (XZL +BT]:) .
0<k<n n
So
My = Uy

re,n _d fren
M;" ="U,
By mean value theorem, we have
n fre,n A rre,m
Vi — el = (Ut" - Uf") el

where UF™ is between U and UF™. Set

27
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Thus
IS <E eV — Vi
<E|Up - U™ eV
<E sup ET;C — ETe eU:m
0<k<n k
2 \1-3 ~ 1
< (E sup BTk _BTE ? ) (EepUt’ )p
0<k<n
_p_ 1*% R 1
A~ A~ —1 n en
< (E sup |Br, — Bre ! ) (IE (eth + ePMy ))p
0<k<n
2 \1-3 X 1
< (E sup BTk _BTE ? > (E (eth +eth))p .
0<k<n
But

E (eth + epr) <E (eth + ePo(e) supo<, < Wi epr)

2
< EePMt 4 2¢7 0( tEepM;

< 26§a(€)2tE (eth + epr) )
So using dominated convergence, theorem and lemma B9 we get
‘IE (M —z)" —E (e”f - x)+‘ — lim ‘IE (eM? - m>+ K (er’" - m)+
= lim sup

n——+oo
n + sen +
E (eU’f - ac) —E (eUﬂ - ac)
n——+oo

< Cpooo(@) (2r000)

1

0

4.3. Estimates for cumulative distribution functions. The bounds ob-
tained in this section are better than those obtained by truncation, provided that
condition ([.2]) is satisfied.

ProOPOSITION 4.12. Let X be an infinite activity Lévy process with generating
triplet (v,02,v), > 0 and € € (0,1]. Set

69,0(5) = 5571,9(5)
1. If 0 > 0, then

sup |[P[X; >z —P [Xf > LEH < Coy(€)pi(e).
x€R

2. If X; has a locally bounded probability density function, then for any pair of
reals 0, p € (0,1)

BLX: > 2]~ B [ X5 > 2] < Coon(@) 7 (Bo(0)”.
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3. If My has a locally bounded probability density function on (0,+00), then for
any pair of reals 0, p € (0,1)

PM; > o]~ B [N} > ]| < Cpoon(e) " (Ba()”.

The positive constants C' and C), g9 independent of e.
Proof. We will use the same notations as in the proofs of theorem 5] and propo-
sition .11l Recall that

R =4 By,

o(e)W; = By
Set

Y, = X + Br,

Y = X{ + Brg
Thus

But, in the case ¢ > 0
]P’[Yth,}Aff<x} :]P{x— (K—YT) SY;<:1:}
=P {x— (ETH —BTﬁ) <oB; + (Yf — aBt) < x} .
By construction, o B; is independent of (Yf — aBt) and of (BTn — BTn) We know

that a\/12? is an upper bound of the probability density function of o B, so

1

oV 2nt

IP’[YtZ;v,Yf<x}§ E‘ETH—ET:L .

We get the first part of the proposition by using theoremG6l Consider now the second

part of the proposition. By proposition 311l we know that there exists K, > 0 such

that

. P

i E[v; - V¢

P[}QZY]—P{WE;E” < Kob+ ———
. FT

E |Bt, — Bre

=Kedt ——5——

By theorem 6] we know that there exists Cp g > 0 such that

PIY, 2 V] -P[¥ 2 o] | < Kuo 4 C ,9%
< o (K Cp) (54 P20l

S 2 max (K;E, Cpﬂ) Uo(é)liﬁﬁ(e)p_}rl,
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The last inequality is obtained by choosing § = ao(e)l_ﬁﬂp,g(e)ﬁ. We set
I(e) = ‘P[Mt > ] - P {M; 290”
I"(e) = ’]P’ (M > 2] — P [Mt” > x] ’ :
Note that lim._,0 I"™(e) = I(€). So (see the proof of proposition FLTT))
I"(e) = ‘IE” U7 >a] — P [Ut" > x} ‘ .

Using the proof of proposition B.11] we get

. P
E|Ur—US"
I"(e)SP[ISUt"<x+5]+5—p
. .
Esuplgkgn BTk_BT]:
<Plze<U}<z+0)+ 5P
But
lim Pa<Ul'<z+46]= lim Pla <M <z+4]
n—-+oo n—-+oo
=Plz <M, <z -+
Sczav

where C,, is a positive constant given by proposition .11l Thus by theorem

C
1(e) < Cab + 22 a0(e)" Bp.o(c)

< 2max(C,, Cp9)o0(e)' 7T B, g(€) 7.

The last inequality is obtained by choosing § = o¢ (e)lfp_ilﬁz(e)ﬁ. O
REMARK 4.13. Suppose that ¢ > 0 or o = 0 and there exists o > 0 such that
B3) is true, then for any 0,p € (0,1)

P[My 2 2] -P {Mte 2 CU” < Cp,eao(e)m (Bl p(q)m
=
The constant C,, ¢ is independent of €. The proof can be found in [6].
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